第15讲 弯曲切应力、弯曲强度条件
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(弯曲应力)【圣才出品】
对于圆形截面
W Iz πd 4 / 64 πd 3 d / 2 d / 2 32
对于环形截面
W D3 1 4 32
式中,α=d/D,d为内径,D为外径。
2.弯曲正应力强度条件 σmax=Mmax/W≤[σ] 强度条件的应用: ①强度校核 Mmax/W≤[σ] ②截面设计 W≥Mmax/[σ] ③确定许可载荷 Mmax≤W[σ]
8 / 71
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 5-1-5 2.选择合理的截面(提高抗弯截面系数) (1)合理的截面形状应该是截面面积 A 较小,而抗弯截面系数 W 较大,常见截面的 W/A 值如表 5-1-2 所示。
FS I z b0
bh2 8
bh02 8
(3)翼缘主要承担了作用于工字形截面梁上的弯矩,通常不计算翼缘上的切应力。
5 / 71
圣才电子书 十万种考研考证电子书、题库视频学习平台
3.圆形截面梁 (1)切应力分布特点 边缘各点的切应力与圆周相切;y 轴上各点的切应力沿 y 轴,如图 5-1-3 所示。 (2)计算假设 AB 弦上各点的切应力作用线通过同一点 p;AB 弦上各点的切应力沿 y 轴的分量 y 相 等。
(1)变形几何关系:服从平面假设 应变分布规律:直梁纯弯曲时纵向纤维的应变与它到中性层的距离成正比。 (2)物理关系:满足胡克定律 应力分布规律:直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。 (3)静力关系 纯弯曲时,梁轴线变形后的曲率 1/ρ=M/(EIz)。由于曲率 1/ρ 与 EIz 成反比,因此称 EIz 为梁的抗弯刚度。联立胡克定律:σ=Ey/ρ 可得纯弯曲时正应力计算公式 σ=My/Iz 式中,M为梁横截面上的弯矩;y为梁横截面应力计算点到中性轴的距离;Iz为梁横截 面对中性轴的惯性矩。 适用范围:①适用于任何横截面具有纵向对称面,且载荷作用在对称面内的情况;②公 式由等直梁得到,对缓慢变化的变截面梁和曲率很小的曲梁也近似成立。
弯曲应力
二、弯曲强度条件
1、塑性材料:
max
M max y max Iz
令Iz /ymax=W, W-----抗弯截面系数
弯曲强度条件:
max
M max W
[]
注意:
当梁为变截面梁时, max 并不一定发生在| M |max 所在面上。
2.脆性材料: 因为 [t ] < [c ] ,所以应分别建立强度条件。
q 30 kN m
解:弯矩图如图所示
A
0.5m
B
WZ
M max
2m
FB 28.1kN
61.2cm3
FA 46.9kN
31.9
查表
N0 12.6工字钢 WZ=77.5cm3
15
kN
13.16
28.1
kNm
3.75
例5
铸铁梁受荷载情况如图示。已知截面对形心轴 的惯性矩Iz=403×10-7m4,铸铁抗拉强度[σ +] =50MPa,抗压强度[σ -]=125MPa。试按正应力强 200 度条件校核梁的强度。
y
z
F F
y
结 论:
对于均质,连续的等截面直梁在纯弯曲时,横截面上只产生 正应力, (与横截面的形状无关)。
6.2纯弯曲时的正应力
纯弯曲时梁的正应力公式推导:
F F
m n
m
n
m
n
m
dx
n
一、变形几何关系(应变-位移)
o n
d
凹边变弯缩短
dx
n
(- )
无 (+)
m
z y
m
dx
中性层上变弯 凸边变弯伸长
弯曲应力及强度计算
工程背景
第2页/共32页
1999年1月4日,我国重庆市綦江县彩虹
桥发生垮塌,造成:
40人死亡;
14人受伤;
直接经济损失631万元。
第3页/共32页
由工程实例可知:
工程中存在大量与弯曲强度有关的问题。
弯曲强度问题的研究对避免受弯结构的破坏 具有十分重要的意义。
研究弯曲强度问题
受弯构件内 应力的分布规律
12.75103 139103 403107
43.98MPa
如果T截面倒置会如何???
第19页/共32页
* 梁的剪应力强度条件
一、梁横截面上的剪应力
Q—横截面上的剪力
QS
* z
IZb
IZ—横截面对中性轴的惯性矩
S*Z—所求应力点以上或以下部分截面对中性轴的静矩 b—所求应力点的截面宽度
剪应力沿截面高度呈抛物线分布,在中性轴处最 大,在上下边缘处为零。
成变截面的。横截面沿梁轴变化的梁,称为变截面梁。
F A
F A
h(x) B
z
b
B
各个横截面具有同样强度的梁称为等强度梁,等强度梁是一种
理想的变截面梁。但是,考虑到加工制造以及构造上的需要等,实际 构件往往设计成近似等强的。
第29页/共32页
小结:
一、梁的应力:
横截面上的正应力: M y ; Iz
等直梁 max
Mmax所在横截面 离中性轴最远处
max
Mmax IZ
ymax
等直梁的最大弯曲正应力公式
第12页/共32页
* 梁的正应力强度计算
max
M max IZ
ymax
设 ymax为到中性轴的最远距离
材料力学 弯曲应力与强度条件
150 50
A
l 2
B
l 2
96 .4 C 50
200
z
M max
FL 16kNm 4
y
max max
200 50 96.4 153.6mm 96.4mm
max
My max IZ My max IZ
24.09MPa 15.12MPa
max
例题
长为2.5m的工字钢外伸梁,如图示,其外伸部分为0.5m,梁上 承受均布荷载,q=30kN/m,试选择工字钢型号。已知工字钢抗弯 强度[σ]=215MPa。
q 30 kN m
A
0.5m
解:1、求支反力,画梁的弯矩图,确 定危险截面 FA 46.9KN , FB 28.1KN
E
y
X
A
0:
y
A
N dA E
A
dA
E
A
ydA 0
S Z ydA yc A 0(中性轴通过截面形心)
M
A
Z
0:
M Z ydA M
A
M yE dA
y
E
y 2 dA 令: y 2 dA I Z A
C截面
c
B
B截面
∴铸铁梁工作安全。如果T截面倒
例题
A
y 铸铁制作的悬臂梁,尺寸及受力如图示,图中F=20kN。梁 的截面为T字形,形心坐标yc=96.4mm。已知材料的拉伸许用应 150 力和压缩许用应力分别为[σ]+=40MPa, [σ]-=100MPa。试 校核梁的强度是否安全。 F 50 96 .4
矩形弯曲应力计算公式
材料力学笔记之——弯曲切应力、梁的强度条件横力弯曲的梁横截面上既有弯矩又有剪力,所以横截面上既有正应力又有切应力。
下面,讨论几种常见截面梁的弯曲切应力。
矩形截面从发生横力弯曲的梁上截取长度为dx的微段,该段梁上没有载荷作用,微段两侧截面上的剪力相等,但方向相反。
右侧截面上的弯矩相对左侧截面有增量,因为弯矩不等,因而两截面上的正应力也不相同。
对于狭长矩形截面,由于梁的侧面上无切应力,根据切应力互等定理,截面上两侧边各点处的切应力与边界相切,即与边界平行,梁发生对称弯曲,对称轴y轴上的切应力一定沿着y方向,在狭长截面上切应力沿宽度方向变化不大。
于是,关于横截面上切应力的分布规律,作以下假设:横截面上各点的切应力的方向都平行于剪力;切应力沿截面宽度均匀分布,即与中性轴平行的横线上各点的切应力大小相等。
截面高宽比大于2的情况下,以上述假定为基础得到的解与弹性理论的精确解相比,有足够的精确度。
根据切应力互等定理,横截面垂直的纵向截面上应存在与横截面上大小相等的切应力。
沿矩中性轴距离y的纵向面把微段截开,取纵向面下侧微元,受力如图所示。
左侧截面上正应力的合力为右侧截面上正应力的合力为显然这两个合力大小不等,纵向截面上必存在一个沿轴向的力使微段保持平衡,这个力为切应力的合力,这也证明了纵向截面上存在切应力,由于d x 是小量,则设纵向面的切应力均匀分布根据平衡条件即其中由切应力互等定理及剪力与弯矩之间的微分关系可得其中:b为截面上矩中性轴为y的横线的宽度,对于矩形截面为常数;I z为整个横截面对中性轴的惯性矩;S z*为横截面上矩中性轴为y的横线以外部分的面积对中性轴的静矩;F s为横截面上的剪力。
其中代入切应力计算公式切应力沿截面高度为抛物线分布,当y=0时,即中性轴处有截面上的最大切应力角应变为可见角应变大小沿截面高度也为抛物线分布,此时横力弯曲时横截面翘曲形状如下图,验证了横力弯曲变形不满足平面假设。
剪力不变的横力弯曲,相邻横截面上的切应力相同,翘曲程度也相同,纵向纤维的长度不因截面翘曲而改变,因此不会引起附加的正应力。
材料力学——弯曲应力
公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
工程力学第15章组合变形
32(1.0103)20.75(1.0103)2
M 20.010.21kNm 3 160106
max
2 2 r4M2W0.75T232M2d30.75T2
d3
32
M2 0.75T2
由内力图及强度公式可判断危险截面在E 处 ⑶ 确定AB 轴的直径 所以AB 轴的直径d = 44mm 。
例:图所示齿轮传动轴,用钢制成。在齿轮1 上作用有径
tmax
Mymax Wy
Mzmax Wz
F2l bh2 /
6
2F1l hb2 /6
90118605201109/618029082001019/6 cmax(MWymyaxMWzmzax)9.98MPa
例:图所示一矩形截面悬臂梁,截面宽度b = 90mm ,高度h = 180mm , 两在两个不同的截面处分别承受水平力F1和铅垂力F2。已知F1 = 800N , F2 = 1650N ,l = 1m ,求梁内的最大正应力并指出其作用位置。
FN
N
FN A
F S y F S z (对实心截面引起切应力很小,忽略)
M y Mz
M
My Iy
z
Mz Iz
y
T
T
IP
1
1(
2
242)
3
1(
2
242)
强度条件
弯扭组合受力的圆轴一般由塑性材料制成,采用第三或第四强度理论建立强 度条件。分析危险截面A A
3
T 410 A W
20MPa 20103 (10103)2(8103)2
6
W 20010 85104 100106
P
强度校核 由内力图及强度公式可判断危险截面距B 端2m 处, 计算危险点在横截面的应力值 所以AB 段强度满足要求。
工程力学习题库-弯曲变形
第8章 弯曲变形本章要点【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。
剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。
【公式】 1. 弯曲正应力 变形几何关系:yερ=物理关系:Ey σρ=静力关系:0N AF dA σ==⎰,0y AM z dA σ==⎰,2zz AAEI EM y dA y dA σρρ===⎰⎰中性层曲率:1MEIρ=弯曲正应力应力:,My Iσ=,max max z M W σ=弯曲变形的正应力强度条件:[]maxmax zM W σσ=≤ 2. 弯曲切应力矩形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F bh F S S 2323max ==τ工字形梁弯曲切应力:dI S F y z z S ⋅⋅=*)(τ,A F dh F S S ==max τ圆形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F S 34max =τ弯曲切应力强度条件:[]ττ≤max3. 梁的弯曲变形梁的挠曲线近似微分方程:()''EIw M x =-梁的转角方程:1()dwM x dx C dx EIθ==-+⎰ 梁的挠度方程:12()Z M x w dx dx C x C EI ⎛⎫=-++ ⎪⎝⎭⎰⎰ 练习题一. 单选题1、 建立平面弯曲正应力公式zI My /=σ,需要考虑的关系有()。
查看答案A 、平衡关系,物理关系,变形几何关系B 、变形几何关系,物理关系,静力关系;C 、变形几何关系,平衡关系,静力关系D 、平衡关系, 物理关系,静力关系;2、 利用积分法求梁的变形,不需要用到下面那类条件()来确定积分常数。
查看答案A 、平衡条件B 、边界条件C 、连续性条件D 、光滑性条件3、 在图1悬臂梁的AC 段上,各个截面上的()。
弯曲切应力和强度校核
材料力学
二、工字形截面梁 在腹板上
腹板上的总剪力
材料力学
材料力学
在翼缘上,有平行于 的切应力分量,分布情况较复 杂,但数量很小,并无实际意义,可忽略不计。
在翼缘上,还有垂直于 的切应力分量,它与腹板上 的切应力比较,一般来说也是次要的。
腹板负担了截面上的绝大部分剪力,翼缘负担了截面 上的大部分弯矩。
材料力学
材料力学
弯曲切应力和强度校核 一、矩形截面梁
材料力学
My
Iz
材料力学
材料力学
假设:1) 的方向都与 FS平行; 2) 沿宽度均布。
FN1 dA A*
My
dA
I A* z
M Iz
y dA
A*
M Iz
S
* z
FN2
A*
dA
(M
A*
dM )y dA Iz
M
dM Iz
160
10 6
得 d 137 mm
32
由剪应力强度条件
max
4 3
FS max A
[ ]
即
4 3
40 103 πd 2
100
10 6
得 d 26.1 mm
4
所以 dmin 137 mm
材料力学
材料力学
材料力学
材料力学
例:圆形截面梁受力如图所示。已知材料的许用
应[力] 160 MPa [ ] 100 MPa
d m in
,
, 试求最小直径 。
材料力学
材料力学
解: FS max 40 kN ,
M max
ql 2 8
40
kN m
由正应力强度条件
工程力学 弯曲变形
则:
wC 6 4 4.4210 10 l
B 103 rad
刚度满足。
2、提高刚度措施
除外加载荷外,梁的位移 w、 还与梁的弯曲 刚度EI成反比,与跨长l的n次方成正比,因此,提 高刚度的措施有: 1)升高EI。 各种钢材E相差不大,主要提高I,在截面面积 A不变时,尽可能使面积分布远离中性轴。 如工字形、箱形等截面。 2)合理安排约束与加载方式
q
l
l 4
q
l 2 l 4
1,max
2,max
2 ,m ax 8.75 % 1 ,m ax
F
l 2
qF l
l 2
1,max
2 ,m ax 12.5 % 1 ,m ax
l 2,max
增加约束,制作成静不定梁
超静定梁:
A
C
B
B
§12-5 简单静不定梁
• 静不定度与多余约束
A l C F EI l F D l B
解:原荷载可看成为图a和b两种荷载的叠加,对应 的变形和相关量如图所示。
F
(a)
wC1
C1
直线
C1 2l B1
·
wC1
wB1
F
(b)
wD1
直线
D1
wD1
D1 BD B 2
wB2
对图a,可得C截面的挠度和转角为:
F
(a)
wC1
C1
直线
§12-2
梁变形基本方程
ρ(x) ρ M(x) M
一、挠曲轴微分方程
1、中性层曲率表示的弯曲变形公式
M EI
(纯弯曲变形公式, EI为抗弯刚度)
1
材料力学--弯曲正应力及其强度条件
C
E
15 106 200 109
7.5 105
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例21:图示木梁,已知下边缘纵向总伸
长为 10 mm,E=10GPa,求载荷P的大小。
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 (x) d x l/2 M ( x) d x
1m
例20:简支梁受均布荷载,在其C截面
的下边缘贴一应变片,已知材料的 E=200GPa,试问该应变片所测得的应变 值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力 C
MC Wz
15MPa
应变值
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
(1)
max
M max y2 Iz
[ ]
(2)
(1) 得: y1 [ ]
(2)
y2 [ ]
例16:图示外伸梁,受均布载荷作用,
材料的许用应力[σ]=160 MPa,校核 该梁的强度。
10 kN / m
2m
4m
200 100
10 kN / m
变形几何关系 从三方面考虑: 物理关系
静力学关系
1、变形几何关系
m
mn
m
aa
bb
mn
m
m
观察到以下变形现象: (1)aa、bb弯成弧线,aa缩短,bb伸长 (2)mm、nn变形后仍保持为直线,且仍与变为
材料力学梁的弯曲应力
52 y
解:(1)求截面形心
z1
8 0 2 0 1 0 12 20 0 80
z
yc
5m 2 m 8 0 2 0 12 200
(2)求截面对中性轴z的惯性矩
Iz
80 20 3 12
80 20 42 2
20 120 3 20 120 28 2 12
7.64 10 6 m4
28
2.5kN.m 4kN.m
与实验结果相符。
9
(2)应力分布规律
在线弹性范围内,应用胡克定律
sE E y
(b)
对一定材料, E=C; 对一定截面,
1
C.
sy
——横截面上某点处的应力与此点距中性轴的距离y成比例。
当 y0时,s0;
应力为零的点的连线。
s s yyma 时 x, ma.x
M
与实验结果相符。
10
(3)由静力平衡方程确定中性轴的位置及应力计算公式
Iz
即使最大拉、压应力同时达到许用应力值。 y
c
y2
z
y1
压边
39
(二)、合理安排载荷和支承的位置,以降低
M
值。
max
1、载荷尽量靠近支座:
F
F
A
A
B
B
0.8L
0.5L
L
L
0.25FL (+)
M 图
0.16FL (+)
M 图
40
F
F
A
BA
B
0.9L
L
L
0.09FL
(+)
M 图
M 图
41
2、将集中力分解为分力或均布力。
第四章-弯曲应力(1)
称为截面抗弯模量,单位: 称为截面抗弯模量,单位:m3, mm3 抗弯模量
21
宽b、高h的矩形
直径为d 直径为d的圆截面
2
Iz Wz = = ymax
bh3 12 h 2
bh = 6
Wz =
πd
3
32
轧制型钢(工字钢、槽钢等) 轧制型钢(工字钢、槽钢等)的 WZ 从型钢表中查得 强度条件
平衡(力学) 平衡(力学) 本构(物理) 多学科综合法) 本构(物理) (多学科综合法) 变形(几何) 变形(几何) 单元体 应力合成内力
20
二、 弯曲正应力强度条件
Strength criterion of normal stress in bending
M σ= y Iz
σ max
Mmax Mmax = ymax = Iz Wz
梁的强度符合要求
29
思考题
1、弯矩和剪力分别由什么应力组成? 、弯矩和剪力分别由什么应力组成 2、研究梁的正应力的基本思路是什么? 、研究梁的正应力的基本思路是什么? 3、什么是梁的中性层、中性轴?证明矩形梁的中 、什么是梁的中性层、中性轴? 性轴必通过横截面的形心。 性轴必通过横截面的形心。 4、什么是梁的曲率?它与什么有关?抗弯刚度越 、什么是梁的曲率?它与什么有关? 大曲率半径也越大, 大曲率半径也越大,抗弯刚度越小曲率半径也 越小,对吗? 越小,对吗?为什么 ?
−4 3
3
1
2 z
M1 y σ1 = σ2 = Iz − 60×60 5 = ×10 = −61.7MPa 24 5.832
120 y
σ1max
σmax
M1 60 4 = = ×10 = 92.6MPa Wz 6.48
弯曲正应力、切应力与强度条件
M
C
拉
Z
C
Z
中性轴
拉
y
中性轴
y
压
中性轴将横截面分为 受拉 和 受压 两部分。
M yAz(
d)A E
Az
y dA
E
I
yz
0
Iyz0
因为 y 轴是横截面的对称轴,所以 Iyz 一定为零。 该式自动满足
中性轴是横截面的形心主惯性轴
M ZAy(
d)A E
A
y2 dA
E
Iz
M
1M
EI z
基本假设2: 纵向纤维无挤压假设
纵向纤维间无正应力。
公式推导
d
用两个横截面从梁中假想地截取 长为 dx 的一段 。
由平面假设可知,在梁弯曲时,
这两个横截面将相对地旋转一个
角度 d 。
横截面的转动将使梁的凹边的纵 向线段缩短,凸边的纵向线段伸 长。由于变形的连续性,中间必 有一层纵向线段 O1O2 无长度改 变。此层称为 中性层 。
m M
FS m
m
m
M
FS
m
m
只有与切应力有关的切向内力元素 dFS = dA 才能合成剪力 只有与正应力有关的法向内力元素 dFN = dA 才能合成弯矩 所以,在梁的横截面上一般既有 正应力,又有 切应力
一,纯弯曲梁横截面上的正应力
RA
P
P RB
C a
P
+
D a
+
P
+
Pa
推导 纯弯曲 梁横截面上正应力的计算公式。 几何 物理 静力学
2 假想地从梁段上截出体积元素 mB1
m'
m z
5章弯曲应力及弯曲强度
第5章弯曲应力及弯曲强度
5.1 平面弯曲的概念和实例 弯曲: 弯曲: 以轴线变弯为主要特征 的变形形式。 的变形形式。 a) 外力特征 外力特征: 受横向荷载的作用, 受横向荷载的作用,即外 力或外力偶的矢量方向垂 直于杆轴. 直于杆轴 b) 变形特征 变形特征: 杆件的轴线由直线变为曲线. 杆件的轴线由直线变为曲线 以弯曲变形为主要变形的杆件. 梁:以弯曲变形为主要变形的杆件
x M(x)
5.2 剪力和弯矩与剪力图和弯矩图 图示简支梁受力F作用 试作此梁的内力图。 作用, 例 5-4 图示简支梁受力 作用,试作此梁的内力图。
a A C RA
b F L
b B L RB
计算约束反力. 解:①计算约束反力
a b RB = F RA = F L L 写出内力方程. ②写出内力方程 AC段 AC段: Fs1(x) = RA = b F L b M1(x) = RA ⋅ x = Fx L CB段 CB段: a Fs2 (x) = −RB = − F L a M2 (x) = RB ⋅ (L − x) = F(L − x) L
DEPARTMENT OF ENGINEERING MECHANICS KUST DEPARTMENT OF ENGINEERING MECHANICS KUST DEPARTMENT OF ENGINEERING MECHANICS KUST DEPARTMENT OF ENGINEERING MECHANICS KUST
• 正负号规定: 正负号规定: M──使梁下部受拉为正, M──使梁下部受拉为正, 使梁下部受拉为正 通常M图绘制在受拉侧,不标正负号。 通常M图绘制在受拉侧,不标正负号。 Fs──使脱离体顺时针转为正,逆时针转为负。 ──使脱离体顺时针转为正,逆时针转为负。 使脱离体顺时针转为正 ──拉为正 压为负。 拉为正, FN──拉为正,压为负。 Fs 、FN图正值绘在上侧,并标明正负号。 图正值绘在上侧,并标明正负号。 • 阴影线规定: 阴影线规定: 阴影线垂直于杆轴,表示取值方向。 阴影线垂直于杆轴,表示取值方向。
梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)
(3)几种特殊情况下必须进行梁的切应力强度计算。
短粗梁 自行焊接 木梁
梁的合理截面
max
M max Wz
(1) 将材料配置于离中性轴较远处
(2) 采用不对称于中性轴的截面
脆性材料
(3) 采用变截面梁
弯曲切应力及强度计算
弯曲
(内力图)
外力 —— 内力 —— 应力
弯曲变形 的条件
求约束反力
弯矩M 剪力Fs
My
Iz
Fs
S
* z
bI z
梁横截面上的切应力 矩形截面梁
S
* z
bI z
x
σ 分布规律 τ 分布规律
Fs
S
* z
不同形状截面梁的最大剪应力
bI z
矩形截面梁
B
A
C
A
C
B
max l max h
梁内的主要应力是正应力!
危险截面、危险点
E右到B左
z
y
危险点
危险截面 24
D右 28
24
My
Iz
Fs
S
* z
bI z
危险截面上的危险点
max ≤[ ]
max ≤[ ]
正应力强度条件 切应力强度条件
三类计算:①强度校核、②截面设计、③确定许用荷载
(1)在进行梁的强度计算时,必须同时满足正应力 和切应力两种强度条件。
“等强度梁”
Wz (x)
M ( x)
[ ]
工字形截面梁
max
3 2
Fs A
max
弯曲应力和强度.
第六章 弯曲应力和强度1、 纯弯曲时的正应力 横力弯曲时,0≠=Q dxdM。
,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。
根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。
横截面只是绕其面内的某一轴线刚性地转了一个角度。
这就是弯曲变形的平面假设。
(2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。
(2)物理关系根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。
当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为y EE ρεσ==该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上ρE为常数,说明弯曲正应力沿截面高度按线性规律分布,如图所示。
中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。
(3)静力关系截面上的最大正应力为zI My maxmax =σ 如引入符号m axy I W zz =则截面上最大弯曲正应力可以表达为zW M=max σ 式中,z W 称为截面图形的抗截面模量。
它只与截面图形的几何性质有关,其量纲为[]3长度。
矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面:621223maxbh h bh y I W zz ===直径为d 的圆截面:3226433maxd d d y I W z z ∏=∏==至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。
若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如T 形截面。
这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。
最大拉应力为:zt I My 1)(=σ 最大压应力为:ze I My 2)(=σ 2、横力弯曲时的正应力zI My=σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。
弯曲应力-材料力学
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。
梁的弯曲应力与强度计算
虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正
应力计算公式来计算横力弯曲时的正应力,所得结果误差不大,
足以满足工程中的精度要求。且梁的跨高比 l/h 越大,其误差越小。
My Iz
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
例: 已知 l=1m,q=6kN/m,10号槽 钢。求最大拉应力和压应力。 解:(1)作弯矩图
28 . 8 MPa t
y2
( 2 . 5 10 N m )( 88 10 763 10
8
3
m)
Iz
m
4
故该梁满足强度条件。
8 梁的弯曲应力与强度计算 8.3.1 梁的弯曲剪应力
8.3 梁的剪应力及其强度条件
1. 矩形截面梁的弯曲剪应力
关于横截面上剪应力的分布
M
max
2F 3W z
Wz
3 2
( 237 10
6
)( 160 10 ) N 56 . 9 kN
6
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
例:一矩形截面木梁,已知 F =10 kN,a =1.2 m。木材的许用应力
=10MPa。设梁横截面的高宽比为h/b=2,试选梁的截面尺寸。
bh 6
2
对于直径为 D 的圆形截面
Wz Iz y max
D / 64
4
D
32
3
D /2
对于内外径分别为 d 、D 的空心圆截面
Wz Iz y max
D (1 ) / 64
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲教学方案——弯曲切应力、弯曲强度条件
§5-3 弯曲切应力
梁受横弯曲时,虽然横截面上既有正应力
σ,又有剪应力 τ。
但一般情况下,剪应力对
梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。
1.矩形截面梁
对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。
现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。
根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。
由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。
根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。
又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。
基于上述分析,可作如下假设:
1)横截面上任一点处的剪应力方向均平行于剪力 Q 。
2)剪应力沿截面宽度均匀分布。
基于上述假定得到的解,与精确解相比有足够的精确度。
从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。
梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。
过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。
根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。
微块左右侧面上正应力的合力分别为1N 和2N ,其中
*
1I 1**
z z
A
z
A S I M dA I My dA N ==
=⎰⎰σ (a )
*
1II 2)()(*
*
z z
A
z A S I dM M dA I y dM M dA N +=+=
=⎰⎰σ (b) 式中,*A 为微块的侧面面积,)(II I σσ为面积*A 中距中性
轴为 1y 处的正应力,⎰=
*
1
*A
z dA y S 。
由微块沿x 方向的平衡条件
∑=0x ,得
021='-+-dx b N N τ (c )
将式(a )和式(b )代入式(c ),得
0*
='-bdx S I dM z z
τ 故 z
z
bI S dx dM *
='τ
因
ττ='=,Q dx
dM
,故求得横截面上距中性轴为 y 处横线上各点的剪应力τ为 z
z
bI QS *=τ (6-3) 式(6-3)也适用于其它截面形式的梁。
式中,Q 为截面上的剪力; z I 为整个截面对中
性轴z 的惯性矩;b 为横截面在所求应力点处的宽度;*
y S 为面积*A 对中性轴的静矩。
对于矩形截面梁(图6-7),可取1bdy dA =,于是
)4
(222
2111*
y h b dy by dA y S h y
A
z
-===⎰
⎰
这样,式(6-3)可写成
)4
(222
y h I Q z -=τ
上式表明,沿截面高度剪应力 τ按抛物线规律变化(图6-7b )。
在截面上、下边缘处, y=±
2
h
,τ=0;在中性轴上,z=0,剪应力值最大,其值为
A
Q
23max =
τ (6-4) 式中A =bh ,即矩形截面梁的最大剪应力是其平均剪应力的2
3倍。
2.圆形截面梁
在圆形截面上(图6-8),任一平行于中性轴的横线aa 1两端处,剪应力的方向必切于圆周,并相交于y 轴上的c 点。
因此,横线上各点剪应力方向是变化的。
但在中性轴上各点剪应力的方向皆平行于剪力Q ,设为均匀分布,其值为最大。
由式(6-3)求得
A
Q
34max =
τ (6-5) 式中24
d A π
=
,即圆截面的最大剪应力为其平均剪应力
的3
4倍。
3.工字形截面梁
工字形截面梁由腹板和翼缘组成。
式(6-3)的计算结果表明,在翼缘上剪应力很小,在腹板上剪应力沿腹板高度按抛物线规律变化,如图6-9所示。
最大剪应力在中性轴上,其值为
Z
z dI S Q max
max
)(*=
τ 式中(S *z )max 为中性轴一侧截面面积对中性轴的静矩。
对于轧制的工字钢,式中的max
*
)(z z
S I 可以从型
钢表中查得。
计算结果表明,腹板承担的剪力约为(0.95~0.97)Q ,因此也可用下式计算τmax 的近似
值
d
h Q 1max ≈
τ 式中h 1为腹板的高度,d 为腹板的宽度。
§5-4 弯曲强度计算
根据前节的分析,对细长梁进行强度计算时,主要考虑弯矩的影响,因截面上的最大正应力作用点处,弯曲剪应力为零,故该点为单向应力状态。
为保证梁的安全,梁的最大正应力点应满足强度条件
][max
max max σσ≤=
z
I y M (6-6) 式中][σ为材料的许用应力。
对于等截面直梁,若材料的拉、压强度相等,则最大弯矩的所在面称为危险面,危险面上距中性轴最远的点称为危险点。
此时强度条件(6-6)可表达为
][max
max σσ≤=
z
W M (6-7) 式中
z W =
max
y I z
(6-8) 称为抗弯截面系数(或抗弯截面模量),其量纲为[长度]3。
国际单位用m 3或mm 3。
对于宽度为 b 、高度为 h 的矩形截面,抗弯截面系数为
6
2122
3
bh h bh W z ==
(6-9) 直径为 d 的圆截面,抗弯截面系数为
32
2
643
4
d d
d W z ππ
== (6-10)
内径为 d ,外径为 D 的空心圆截面,抗弯截面系数为
()
()4
3
4
4
1322
164
απαπ-=-=D D
D W z , D
d
=α (6-11) 轧制型钢(工字钢、槽钢等)的 z W 可从型钢表中查得。
对于由脆性材料制成的梁,由于其抗拉强度和抗压强度相差甚大,所以要对最大拉应力点和最大压应力点分别进行校核。
根据式(6-7),可以解决三类强度问题,即强度校核,截面设计和许用载荷计算。
需要指出的是,对于某些特殊情形,如梁的跨度较小或载荷靠近支座时,焊接或铆接的壁薄截面梁,或梁沿某一方向的抗剪能力较差(木梁的顺纹方向,胶合梁的胶合层)等,还需进行弯曲剪应力强度校核。
等截面直梁的max τ一般发生在 max Q 截面的中性轴上,此处弯曲正应力0=σ,微元体处于纯剪应力状态,其强度条件为
()
][max
max max
ττ≥=
*
z
z bI S Q (6-12)
式中][τ为材料的许用剪应力。
此时,一般先按正应力的强度条件选择截面的尺寸和形状,然后按剪应力强度条件校核。