《因式分解》提升训练

合集下载

八上 因式分解强化提高训练(含答案)

八上 因式分解强化提高训练(含答案)

因式分解强化训练一.选择题(共3小题)1.“已知:a m=2,a n=3,求a m+n的值”,解决这个问题需要逆用幂的运算性质中的哪一个?()A.同底数幂的乘法B.积的乘方C.幂的乘方D.同底数幂的除法2.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1B.﹣1或﹣11C.1D.1或113.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25B.20C.15D.10二.填空题(共10小题)4.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.5.已知m2+2km+16是完全平方式,则k=.6.若x2﹣3x+1=0,则的值为.7.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.8.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=9.分解因式:x4+y4+(x+y)4﹣2=.10.已知a2+b2=4,则(a﹣b)2的最大值为.11.已知x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,则(a+b+c)2=.12.已知5x=30,6y=30,则等于.13.+a+=()2.三.解答题(共23小题)14.如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①;方法②.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:.(4)若a+b=6,ab=5,则求a﹣b的值.15.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).16.(1)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达).(2)运用你所得到的公式,计算(a+2b﹣c)(a﹣2b﹣c).17.已知22n+2﹣4n=192,求n的值.18.(2x﹣3y)(4x2﹣9y2)(﹣2x﹣3y).19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)(3)x3+x2y﹣xy2﹣y3.(4)n(m+1)2+2mn+3n.(5)2x2+4x+2﹣2y2;(6)ax2+bx2﹣ax﹣bx+a+b.(7)(b2+a2﹣c2)2﹣4a2b2 (8)﹣12x2y+x3+36xy220.在实数范围内分解因式(1)x4﹣9(2)y2﹣2y+3.(3)(x2y2+3)(x2y2﹣7)+2521.计算:12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042.22.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(x﹣1)(x99+x98+…+x+1)=.(2)请你利用上面的结论计算:299+298+…+2+1.23.已知:x、y满足:(x+y)2=5,(x﹣y)2=41;求x3y+xy3的值.24.已知a、b、c是△ABC的三边,a、b使等式a2+b2﹣4a﹣8b+20=0成立,且c是偶数,求△ABC的周长.25.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.26.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,试判断△ABC的形状.27.若a,b,k均为整数且满足等式(x+a)(x+b)=x2+kx+36,写出两个符合条件的k的值.28.已知x2﹣x﹣5=0,求x5+2x4﹣6x3﹣19x2﹣8x+18的值.29.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.30.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.31.以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)22(2x+1)(3x﹣2)6﹣2(ax+b)(mx+n)am bn (2)已知(x+3)2(x2+mx+n)既不含二次项,也不含一次项,求m+n的值.(3)多项式M与多项式x2﹣3x+1的乘积为2x4+ax3+bx2+cx﹣3,则2a+b+c的值为.32.(1)若a2+ab=7+m,b2+ab=9﹣m.求a+b的值.(2)若实数x≠y,且x2﹣2x+y=0,y2﹣2y+x=0,求x+y的值.33.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.34.m取什么值时,x3+y3+z3+mxyz(xyz≠0)能被x+y+z整除?因式分解强化训练参考答案与试题解析一.选择题(共3小题)1.“已知:a m=2,a n=3,求a m+n的值”,解决这个问题需要逆用幂的运算性质中的哪一个?()A.同底数幂的乘法B.积的乘方C.幂的乘方D.同底数幂的除法【解】:a m+n=a m•a n,∴解决这个问题需要逆用同底数幂的乘法.故选:A.2.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1B.﹣1或﹣11C.1D.1或11【解】:a2﹣ab﹣ac+bc=11,(a2﹣ab)﹣(ac﹣bc)=11,a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.3.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(A)A.25B.20C.15D.10【解】法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.二.填空题(共10小题)4.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=3.【解】:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.5.已知m2+2km+16是完全平方式,则k=±4.【解】:∵m2+2km+16是完全平方式,∴2km=±8m,解得k=±4.6.若x2﹣3x+1=0,则的值为.【解】:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入======7.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=﹣.【解】:∵6x=192,32y=192,∴6x=192=32×6,32y=192=32×6,∴6x﹣1=32,32y﹣1=6,∴(6x﹣1)y﹣1=6,∴(x﹣1)(y﹣1)=1,∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=﹣8.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=2【解】:(a﹣2017)(a﹣2018)=﹣=﹣=2.9.分解因式:x4+y4+(x+y)4﹣2=2(x2+xy+y2﹣1)(x2+xy+y2+1).【解】:x4+y4+(x+y)4﹣2,=(x2+y2)2﹣2x2y2+(x2+2xy+y2)2﹣2,=(x2+y2)2﹣2x2y2+(x2+y2)2+4xy(x2+y2)+4x2y2﹣2,=2(x2+y2)2+2x2y2+4xy(x2+y2)﹣2,=2[(x2+y2)2+x2y2+2xy(x2+y2)﹣1],=2[(x2+xy+y2)2﹣1],=2(x2+xy+y2﹣1)(x2+xy+y2+1).10.已知a2+b2=4,则(a﹣b)2的最大值为8.【解】:∵a2+b2≥2|ab|,∴2|ab|≤4,∴﹣4≤﹣2ab≤4,∵(a﹣b)2=a2﹣2ab+b2=4﹣2ab,∴0≤4﹣2ab≤8,∴(a﹣b)2的最大值8.11.已知x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,则(a+b+c)2=16.【解】:∵x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,∴(x﹣1)2=0,解得:x=1,即x=1是方程x4﹣5x3+ax2+bx+c=0的解,∴1﹣5+a+b+c=0,∴a+b+c=4,∴(a+b+c)2=42=16.12.已知5x=30,6y=30,则等于1.【解】:∵5x=30,6y=30,∴5xy=(5x)y=30y=(5×6)y=5y×6y,∴=5xy﹣y=6y=30=5x,∴5xy﹣y﹣x=1=50∴xy﹣y﹣x=0,∴xy=x+y,∴=1.13.a2+a+=(a+)2.【解】:∵a=2וa,∴这两个数是a和,三.解答题(共23小题)14.如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于m﹣n.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①(m+n)2﹣4mn;方法②(m﹣n)2.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:(m+n)2﹣4mn=(m﹣n)2.(4)若a+b=6,ab=5,则求a﹣b的值.【解】:(1)图②中的阴影部分的小正方形的边长=m﹣n;(2)方法①(m+n)2﹣4mn;方法②(m﹣n)2;(3)这三个代数式之间的等量关系是:(m﹣n)2=(m+n)2﹣4mn;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=5,∴(a﹣b)2=36﹣20=16,∴a﹣b=±4.故答案为m﹣n;(m+n)2﹣4mn(m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.15.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y)得:x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.16.(1)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2(用式子表达).(2)运用你所得到的公式,计算(a+2b﹣c)(a﹣2b﹣c).【解】:(1)(a+b)(a﹣b)=a2﹣b2;(2)(a+2b﹣c)(a﹣2b﹣c)=[(a﹣c)+2b][(a﹣c)﹣2b]=(a﹣c)2﹣(2b)2,=a2﹣2ac+c2﹣4b2.17.已知22n+2﹣4n=192,求n的值.【解】:22n+2﹣4n=192,22(n+1)﹣4n=43×3,4n+1﹣4n=43×3,4n(4﹣1)=43×3,4n=43,∴n=3.18.(2x﹣3y)(4x2﹣9y2)(﹣2x﹣3y).【解】:原式=﹣(4x2﹣9y2)(4x2﹣9y2)=﹣16x4+72x2y2﹣81y4.19.因式分解(1)﹣2a3+12a2﹣18a (2)9a2(x﹣y)+4b2(y﹣x)(3)x3+x2y﹣xy2﹣y3.(4)n(m+1)2+2mn+3n.(5)2x2+4x+2﹣2y2;(6)ax2+bx2﹣ax﹣bx+a+b.(7)(b2+a2﹣c2)2﹣4a2b2 (8)﹣12x2y+x3+36xy2【解】:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).(3原式=(x3+x2y)﹣(xy2+y3)=x2(x+y)﹣y2(x+y)=(x+y)2(x﹣y).(4)原式=n[(m+1)2+2m+3]=m[(m+1)2+2(m+1)+1]=m(m+2)2.(5)2x2+4x+2﹣2y2=2(x2+2x+1﹣y2)=2(x+1)2﹣y2=2(x+1+y)(x+1﹣y);(6)ax2+bx2﹣ax﹣bx+a+b=x2(a+b)﹣x(a+b)+(a+b)=(a+b)(x2﹣x+1).(7)(b2+a2﹣c2)2﹣4a2b2,=(b2+a2﹣c2+2ab)(b2+a2﹣c2﹣2ab),=[(b+a)2﹣c2][(b﹣a)2﹣c2],=(b+a+c)(b+a﹣c)(b﹣a+c)(b﹣a﹣c).(8)原式=x(﹣12xy+x2+36y2)=x(x﹣6y)2;20.在实数范围内分解因式(1)x4﹣9(2)y2﹣2y+3.(3)(x2y2+3)(x2y2﹣7)+25【解】:(1)原式=(x2+3)(x2﹣3)=(x2+3)(x+)(x﹣);(2)原式=(y﹣)2.(3)(x2y2+3)(x2y2﹣7)+25=(x2y2)2﹣4x2y2+4=(x2y2﹣2)2=(xy+)2(xy﹣)2.21.计算:12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042.﹣2009010【解】:12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042=﹣[(22﹣12)+(42﹣32)+(62﹣52)+…+(20022﹣20012)+(20042﹣20032)],利用平方差公式12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042=﹣[(22﹣12)+(42﹣32)+(62﹣52)+…+(20022﹣20012)+(20042﹣20032)]=﹣[(2﹣1)(2+1)+(4﹣3)(4+3)+(6﹣5)(6+5)+…+(2002﹣2001)(2002+2001)+(2004﹣2003)(2004+2003)]=﹣(1+2+3+4+…+2002+2003+2004)=﹣=﹣2 009 010.22.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(x﹣1)(x99+x98+…+x+1)=x100﹣1.(2)请你利用上面的结论计算:299+298+…+2+1.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(x﹣1)(x99+x98+…+x+1)=x100﹣1;(2)299+298+…+2+1=(2﹣1)×(299+298+…+2+1)=2100﹣1.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;x100﹣123.已知:x、y满足:(x+y)2=5,(x﹣y)2=41;求x3y+xy3的值.【解】:∵(x+y)2=5,(x﹣y)2=41,∴(x+y)2+(x﹣y)2=46,则x2+2xy+y2+x2﹣2xy+y2=46,2(x2+y2)=46,故x2+y2=23,(x+y)2﹣(x﹣y)2=﹣36,则x2+2xy+y2﹣x2+2xy﹣y2=﹣36,故4xy=﹣36,则xy=﹣9,x3y+xy3=xy(x2+y2)=﹣9×23=﹣207.24.已知a、b、c是△ABC的三边,a、b使等式a2+b2﹣4a﹣8b+20=0成立,且c是偶数,求△ABC的周长.【解】:∵a2+b2﹣4a﹣8b+20=0,∴(a2﹣4a+4)+(b2﹣8b+16)=0,∴(a﹣2)2+(b﹣4)2=0,解得:a=2,b=4,∵a、b、c是△ABC的三边,且c是偶数,∴c=4.故△ABC的周长长为:2+4+4=10.25.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解】:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,即△ABC为直角三角形或等腰三角形.26.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,试判断△ABC的形状.【解】:a4+b4﹣2a2b2=0,(a2﹣b2)2=0,(a+b)2(a﹣b)2=0,∵三角形的边长为a、b,∴a+b≠0,∴a﹣b=0,∴a=b,∵∠A=60°,∴△ABC是等边三角形,即△ABC的形状是等边三角形.27.若a,b,k均为整数且满足等式(x+a)(x+b)=x2+kx+36,写出两个符合条件的k的值.【解】:∵(x+a)(x+b)=x2+kx+36,∴x2+(a+b)x+ab=x2+kx+36,∴(1)∵ab=36,∴当a=1,b=36时,k=a+b=1+36=37.(2)∵ab=36,∴当a=2,b=18时,k=a+b=2+18=20.综上,可得符合条件的k的值是37、20(答案不唯一).28.已知x2﹣x﹣5=0,求x5+2x4﹣6x3﹣19x2﹣8x+18的值.【解】:∵x2﹣x﹣5=0,∴x5+2x4﹣6x3﹣19x2﹣8x+18=x3(x2﹣x﹣5)+3x2(x2﹣x﹣5)+2x(x2﹣x﹣5)﹣2(x2﹣x﹣5)+8=8.29.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.【解】:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.30.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.【解】:(Ⅰ)∵a2﹣b﹣1=0,∴a2﹣b=1,a2=b+1,(a2﹣1)(b+2)<a2b,a2b+2a2﹣b﹣2<a2b,a2+a2﹣b﹣2<0,a2+1﹣2<0,a2<1,∴b+1<1,∴b<0.(或者:把a2=b+1代入原不等式:解得b<0)∵a2=b+1,∵a2≥0,∴b+1≥0,b≥﹣1.答:b的取值范围为﹣1≤b<0.(Ⅱ)a4﹣2b﹣2=0,a4﹣2(b+1)=0,∵a2=b+1,∴a4﹣2a2=0,解得a2=0或a2=2,∵a2<1,∴a2=0,∴b+1=0,∴b=﹣1.(或者:把a2=b+1代入原等式:解得b=±1,1舍去)答:b的值为﹣1.31.以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)252(2x+1)(3x﹣2)6﹣1﹣2(ax+b)(mx+n)am an+bm bn (2)已知(x+3)2(x2+mx+n)既不含二次项,也不含一次项,求m+n的值.(3)多项式M与多项式x2﹣3x+1的乘积为2x4+ax3+bx2+cx﹣3,则2a+b+c的值为﹣4.【解】:(1)(2x+1)(x+2)=2x2+5x+2,(2x+1)(3x﹣2)=6x2﹣x﹣2(ax+b)(mx+n)=amx2+(an+bm)x+bn故答案为5、﹣1、an+bm.(2)(x+3)2(x2+mx+n)=(x2+6x+9)(x2+mx+n)=x4+(m+6)x3+(6m+n+9)x2+(9m+6n)x+9n ∵既不含二次项,也不含一次项,∴6m+n+9=0,9m+6n=0解得:m=﹣2,n=3∴m+n=1.答m+n的值为1.(3)∵多项式M与多项式x2﹣3x+1的乘积为2x4+ax3+bx2+cx﹣3,∴设多项式M=2x2+mx﹣3,(2x2+mx﹣3)(x2﹣3x+1)=2x4﹣6x3+2x2+mx3﹣3mx2+mx﹣3x2+9x﹣3=2x4+(m﹣6)x3+(2﹣3m﹣3)x2+(m+9)x﹣3=2x4+ax3+bx2+cx﹣3,∴a=m﹣6,b=﹣3m﹣1,c=m+9∴2a+b+c=2m﹣12﹣3m﹣1+m+9=﹣4.32.(1)若a2+ab=7+m,b2+ab=9﹣m.求a+b的值.(2)若实数x≠y,且x2﹣2x+y=0,y2﹣2y+x=0,求x+y的值.【解】:(1)∵a2+ab=7+m,b2+ab=9﹣m,∴a2+ab+b2+ab=7+m+9﹣m,∴(a+b)2=16,∴a+b=±4;(2)∵x2﹣2x+y=0,y2﹣2y+x=0,∴x2﹣2x+y﹣(y2﹣2y+x)=0,∴(x+y)(x﹣y)﹣3(x﹣y)=0∴(x+y﹣3)(x﹣y)=0,∵x≠y,∴x+y﹣3=0,则x+y=3.33.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.【解】∵(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=(x﹣y)2+(z﹣y)2+2y2﹣2xy﹣2yz+2xz=(x﹣y)2+(z﹣y)2+2y(y﹣x)﹣2z(y﹣x)=(x﹣y)2+(z﹣y)2+2(y﹣x)(y﹣z)=0=[(x﹣y)+(z﹣y)]2=0,即x﹣y+z﹣y=0,∴x+z=2y,又∵x+y+z=48,∴2y+y=48,即3y=48,则y=16.34.m取什么值时,x3+y3+z3+mxyz(xyz≠0)能被x+y+z整除?【解】:当x3+y3+z3+mxyz能被x+y+z整除时,它含有x+y+z因式,令x+y+z=0,得x=﹣(y+z),代入原式其值必为0,即[﹣(y+z)]3+y3+z3﹣myz(y+z)=0,把左边因式分解,得﹣yz(y+z)(m+3)=0,∵xyz≠0,∴x≠0,∵x=﹣(y+z),∴(y+z)≠0,∴当m+3=0时等式成立,∴当m=﹣3时,x,y,z不论取什么值,原式都能被x+y+z整除.。

因式分解过关集训(提高篇)

因式分解过关集训(提高篇)

22. 分解因式: (x2 x 4)2 8x(x2 x 4) 15x2 23. 分解因式: 2(x2 6x 1)2 5(x2 6x 1)(x2 1) 2(x2 1)2 24. 分解因式: (a b)x2 2ax a b 25. 分解因式: x2 2(a b)x 3a2 10ab 3b2
第 11 页 / 共 15 页
82. 分解因式: (x 1)(2x 1)(3x 1)(4x 1) 6x4
83. 分解因式: a2 a 1 a2 6a 1 12a2 84. 分解因式: x2 5x 4 x2 x 2 72
85. 分解因式:1 12x2 y2 48x4 y4 64x6 y6 86. 分解因式: 3x16 5x8 y2 28y4
第 9 页 / 共 15 页
69. 分解因式: x3 5x2 3x 9 70. 分解因式: x3 2x2 5x 6 71. 分解因式: x3 6x2 9x 4 72. 分解因式: x3 x2 x 10 73. 分解因式: x3 48x 7 74. 分解因式: 2x4 x3 6x2 x 2 75. 分解因式: 4x3 31x 15
第 14 页 / 共 15 页
97. 已知关于 x 、 y 的二次式 x2 7xy my2 5x 43y 24 可分解为两个一次因式的乘积,求 m 的 值.
98. 多项式 x2 axy by2 5x y 6 的一个因式是 x y 2 ,试确定 a b 的值. 99. 已知 x2 2x 5 是 x4 ax2 b 的一个因式,求 a b 的值. 100. 若多项式 x4 5x3 11x2 mx n 能被 (x 1)2 整除,求 m n 的值.
第 7 页 / 共 15 页
54. 分解因式: x4 51x2 1 55. 分解因式: m4 4n4 56. 分解因式: x4 2x2 4ax 1 a2 57. 分解因式: a2 8ax 40xy 25y2 58. 分解因式: a2 ax xy y2 59. 分解因式: x2 mx2 mx 3x 2

因式分解提高题(5篇)

因式分解提高题(5篇)

因式分解提高题(5篇)以下是网友分享的关于因式分解提高题的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一一、填空:1. 若x 2+2(m -3) x +16是完全平方式,则m 的值等于_____。

2. x 2+x +m =(x -n ) 2则m n 若x m -y n =(x +y 2)(x -y 2)(x 2+y 4) ,则m=_______,n=_________。

x 2+(_____)x +2=(x +2)(x +_____)223. 4. 5. 若x +4x -4的值为0,则3x +12x -5的值是________。

22若x +y =4, x +y =6则xy = 6.二、选择题:1、多项式-a (a -x )(x -b ) +ab (a -x )(b -x ) 的公因式是()A 、-a 、B 、-a (a -x )(x -b )C 、a (a -x )D 、-a (x -a ) 222、若mx +kx +9=(2x -3) ,则m ,k 的值分别是()A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=-12、3、下列名式:x -y , -x +y , -x -y , (-x ) +(-y ) , x -y 中能用平方差公式分解因式的有()A 、1个B 、2个C 、3个D 、4个4、计算(1-[1**********]111)(1-) (1-)(1-) 的值是()232223910A 、11111, C . , D . ,B 、2010202三、分解因式:1 、x -2x -35x2 、3x -3x223 、x -4xy -1+4y 4、x -1 3432625、ax -bx -bx +ax +2b -2a6、x -18x +81四、代数式求值1、2、3、五、计算:22222已知a +b =2,求(a -b ) -8(a +b ) 的值2242已知2x -y =1,xy =2,求2x 4y 3-x 3y 4的值。

2022-2023学年人教版八年级数学上册《14-3因式分解》解答题专题提升训练(附答案)

2022-2023学年人教版八年级数学上册《14-3因式分解》解答题专题提升训练(附答案)

2022-2023学年人教版八年级数学上册《14.3因式分解》解答题专题提升训练(附答案)1.分解因式:(1)5x2﹣5y2;(2)m3+6m2+9m.2.因式分解:(1)2a2b﹣a3﹣ab2;(2)9(a﹣b)2﹣(a+b)2.3.分解因式:(1)a2(b﹣2)+(2﹣b);(2)2x2+2x+.4.把下列各式因式分解:(1)﹣6x2+4xy;(2)3a2+12a+12;(3)2x(a﹣2)﹣y(2﹣a);(4)4a4﹣16a2.5.因式分解(1)a3﹣2a2b+ab2(2)4(m+n)2﹣(m﹣n)2(3)x2﹣2x﹣15(4)1﹣a2﹣4b2+4ab6.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.7.(1)因式分解:2a2(a﹣b)﹣8(a﹣b);(2)利用因式分解简化计算:2002﹣400×199+1992.8.观察下面的因式分解过程:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)利用这种方法解决下列问题:(1)因式分解:2a+6b﹣3am﹣9bm(2)△ABC三边a,b,c满足a2﹣ac﹣ab+bc=0,判断△ABC的形状.9.下面是某同学对多项式(x2﹣3x+4)(x2﹣3x+6)+1进行因式分解的过程.解:设x2﹣3x=m原式=(m+4)(m+6)+1(第一步)=m2+10m+25(第二步)=(m+5)2(第三步)=(x2﹣3x+5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式;B.平方差公式;C.完全平方公式(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+6)+9进行因式分解.(3)因式分解:(x2﹣4x+6)(x2﹣4x+2)+4=(在横线处直接写出因式分解的结果).10.△ABC三边a、b、c满足a2+c2+2b2﹣2ab﹣2bc=0,判断△ABC的形状,并说明理由.11.常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)已知:x+y=7,x﹣y=5.求:x2﹣y2﹣2y+2x的值.(3)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.12.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=a,则原式=(a+2)(a+6)+4(第一步)=a2+8a+16(第二步)=(a+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若彻底,直接跳到第(3)问;若不彻底,请先直接写出因式分解的最后结果:.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.13.甲、乙两个同学因式分解x2+ax+b时,甲看错了a,分解结果为(x+4)(x﹣8),乙看错了b,分解结果为(x﹣2)(x+6).求多项式x2+ax+b分解因式的正确结果.14.阅读下面材料完成分解因式.x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+P)(x+q)这样,我们得到x2+(p+q)x+pq=(x+p)(x+q).利用上式可以将某些二次项系数为1的二次三项式分解因式例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.解:x2+3x+2=x2+(1+2)x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式,(1)x2+10x+24;.(2)3a2﹣3ab﹣36b2.15.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x =1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.16.把下列各多项式因式分解:(1)﹣3x3y2+6x2y3﹣3xy4;(2)3x(a﹣b)﹣6y(b﹣a);(3)18b(a﹣b)2+12(b﹣a)3;(4)(x2+16y2)2﹣64x2y2;(5)(m2﹣5)2+8(m2﹣5)+16;(6)16x4﹣72x2y2+81y4.17.先阅读,再分解因式x3﹣1=x3﹣x2+x2﹣1=x2(x﹣1)+(x+1)(x﹣1)=(x﹣1)(x2+x+1)参考上述做法,将下列多项式因式分解(1)a3+1(2)a4+4.18.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你写出下列因式分解的结果:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2=;(2)因式分解:25(a﹣1)2﹣10(a﹣1)+1=;(3)因式分解:(y2﹣4y)(y2﹣4y+8)+16=.19.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试将一个多项式分组后,再运用提取公因式或运用乘法公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)(1)根据上面的知识,我们可以将下列多项式进行分解:ax﹣ay﹣bx+by=()﹣()=()();x2﹣y2+x﹣y=()+()=()()(2)分解下列因式:①ab﹣ac+b﹣c;②﹣4b2+9a2﹣6ac+c2.20.现有足够多的甲、乙、丙三种卡片,如图1所示.(1)选用其中若干张卡片拼成一个长方形(图2).①请用两种不同的方法表示长方形(图2)的面积(用含有a,b的代数式表示).②若b=a,且长方形(图2)的面积是35,求一张乙卡片的面积.(2)若从中取若干张卡片拼成一个面积为4a2+4ab+b2的正方形,求出拼成的正方形的边长.参考答案1.解:(1)原式=5(x2﹣y2)=5(x+y)(x﹣y);(2)原式=m(m2+6m+9)=m(m+3)2.2.解:(1)2a2b﹣a3﹣ab2=﹣a(a2﹣2ab+b2)=﹣a(a﹣b)2;(2)9(a﹣b)2﹣(a+b)2=[3(a﹣b)+(a+b)][3(a﹣b)﹣(a+b)]=(3a﹣3b+a+b)(3a﹣3b﹣a﹣b)=(4a﹣2b)(2a﹣4b)=4(2a﹣b)(a﹣2b).3.解:(1)a2(b﹣2)+(2﹣b)=(b﹣2)(a2﹣1)=(b﹣2)(a+1)(a﹣1);(2)2x2+2x+=(4x2+4x+1)=(2x+1)2.4.解:(1)﹣6x2+4xy=﹣2x(3x﹣2y);(2)3a2+12a+12=3(a2+4a+4)=3(a+2)2;(3)2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y);(4)4a4﹣16a2=4a2(a2﹣4)=4a2(a+2)(a﹣2).5.解:(1)原式=a(a2﹣2ab+b2)=a(a﹣b)2;(2)原式=[2(m+n)+(m﹣n)][2(m+n)﹣(m﹣n)]=(2m+2n+m﹣n)(2m+2n﹣m+n)=(3m+n)(m+3n);(3)原式=(x+3)(x﹣5);(4)原式=1﹣(a2﹣4ab+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b).6.解:a3b+2a2b2+ab3=a3b+a2b2+a2b2+ab3=a2b(a+b)+ab2(a+b)=(a2b+ab2)(a+b)=ab(a+b)(a+b)∵a+b=,ab=﹣,∴原式=﹣××=﹣;∴代数式a3b+2a2b2+ab3的值是﹣.7.解:(1)2a2(a﹣b)﹣8(a﹣b)=2(a﹣b)(a2﹣4)=2(a﹣b)(a+2)(a﹣2);(2)2002﹣400×199+1992=2002﹣2×200×199+1992=(200﹣199)2=1.8.解:(1)2a+6b﹣3am﹣9bm=(2a+6b)﹣(3am+9bm)=2(a+3b)﹣3m(a+3b)=(a+3b)(2﹣3m);或2a+6b﹣3am﹣9bm=(2a﹣3am)+(6b﹣9bm)=a(2﹣3m)+3b(2﹣3m)=(2﹣3m)(a+3b);(2)∵a2﹣ac﹣ab+bc=0,∴(a2﹣ac)﹣(ab﹣bc)=0,∴a(a﹣c)﹣b(a﹣c)=0,∴(a﹣c)(a﹣b)=0,∴a﹣c=0或a﹣b=0,∴a=c或a=b,∴△ABC是等腰三角形.9.解:(1)该同学第二步到第三步运用了因式分解的完全平方公式.故答案为:C;(2)设x2+2x=y,原式=y(y+6)+9=y2+6y+9=(y+3)2=(x2+2x+3)2;(3)设x2﹣4x+2=z,原式=z(z+4)+4=z2+4z+4=(z+2)2=(x2﹣4x+2+2)2=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)4.故答案为:(x﹣2)4.10.解:∵a2+c2+2b2﹣2ab﹣2bc=(a﹣b)2+(b﹣c)2=0,∴a=b=c,∴△ABC是等边三角形.11.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)x2﹣y2﹣2y+2x=(x2﹣y2)+(2x﹣2y)=(x﹣y)(x+y+2)∵x+y=7,x﹣y=5,∴原式=(x﹣y)(x+y+2)=5×(7+2)=45;(3)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=(a﹣b)(a﹣c)=0,∴a=b或a=c,∴△ABC是等腰三角形.12.解:(1)从第二步到第三步是两个数和的完全平方式,故选:C.(2)分解因式必须分解到每一个多项式都不能再分解为止,而(x2﹣4x+4)2=(x﹣2)4,故答案为:不彻底,(x﹣2)4.(3)设x2﹣2x=a,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2﹣2x+1)2=(x﹣1)4.13.解:∵甲看错了a,分解结果为(x+2)(x+4),但b是正确的,(x+4)(x﹣8)=x2﹣4x﹣32,∴b=﹣32,∵(x﹣2)(x+6)=x2+4x﹣12,乙看错了b,但a是正确的,∴a=4,∴x2+ax+b=x2+4x﹣32=(x+8)(x﹣4).14.解:(1)x2+10x+24=(x+4)(x+6);(2)3a2﹣3ab﹣36b2=3(a2﹣ab﹣12b2)=3(a﹣4b)(a+3b).15.解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x ∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)16.解:(1)﹣3x3y2+6x2y3﹣3xy4=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2;(2)3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(3)18b(a﹣b)2+12(b﹣a)3=18b(a﹣b)2﹣12(a﹣b)3=6(a﹣b)2[3b﹣2(a﹣b)]=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);(4)(x2+16y2)2﹣64x2y2;=(x2+16y2)2﹣(8xy)2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2;(5)(m2﹣5)2+8(m2﹣5)+16=(m2﹣5+4)2=(m2﹣1)2=[(m+1)(m﹣1)]2=(m+1)2(m﹣1)2;(6)16x4﹣72x2y2+81y4=(4x2﹣9y2)2=[(2x+3y)(2x﹣3y)]2=(2x+3y)2(2x﹣3y)2.17.解:(1)原式=a3+a2﹣a2﹣1=a2(a+1)﹣(a+1)(a﹣1)=(a+1)(a2﹣a+1);(2)原式=a4+4a2+4﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a).18.解:(1)设x﹣y=a,原式=1﹣2a+a2=(1﹣a)2;将x﹣y=a代入,原式=(1﹣x+y)2;(2)设a﹣1=m,原式=25m2﹣10m+1=(5m﹣1)2;a﹣1=m代入,原式=(5a﹣6)2;(3)设y2﹣4y=a,原式=a(a+8)+16=a2+8a+16=(a+4)2,将y2﹣4y=a代入,原式=(y2﹣4y+4)2=(y﹣2)4.故答案分别为:(1﹣x+y)2;(5a﹣6)2;(y﹣2)4.19.解:(1)ax﹣ay﹣bx+by=(ax﹣ay)﹣(bx﹣by)=(a﹣b)(x﹣y);x2﹣y2+x﹣y=(x﹣y)(x+y)+x﹣y=(x+y+1)(x﹣y)故答案为:ax﹣ay;bx﹣by;(a﹣b);(x﹣y);x2﹣y2;x﹣y;(x+y+1);(x﹣y).(2)①ab﹣ac+b﹣c=a(b﹣c)+(b﹣c)=(a+1)(b﹣c);②﹣4b2+9a2﹣6ac+c2=9a2﹣6ac+c2﹣4b2=(3a﹣c)2﹣(2b)2=(3a﹣c+2b)(3a﹣c﹣2b)20.解:(1)①大长方形的长是(2a+b),宽是(a+b),面积为(2a+b)(a+b);大长方形面积等于图中6个图形的面积和为2a2+3ab+b2;②根据题意得,(2a+b)(a+b)=35,∵b=a,∴a(a+a)=35,∴a=2或﹣2(舍弃)∴b=3,∴ab=6,∴一张乙卡片的面积为6;(2)∵4a2+4ab+b2=(2a+b)2,∴拼成的正方形的边长为2a+b.。

完整)因式分解练习题精选(含提高题)

完整)因式分解练习题精选(含提高题)

完整)因式分解练习题精选(含提高题)因式分解题精选一、填空:(30分)1、若 $x+2(m-3)x+16$ 是完全平方式,则 $m$ 的值等于$\underline{7}$。

2、$x+x+m=(x-n)$ 则 $m=$ $\underline{-2}$,$n=$ $\underline{3}$。

3、$2xy$ 与 $12xy$ 的公因式是 $\underline{2xy}$。

4、若 $x-y=(x+y)(x-y)(x+y)$,则 $m=$ $\underline{-3}$,$n=$ $\underline{1}$。

5、在多项式 $m+n,-a-b,x+4y,-4s+9t$ 中,可以用平方差公式分解因式的有 $\underline{x^2-4y^2}$,其结果是$\underline{(x-2y)(x+2y)}$。

6、若 $x+2(m-3)x+16$ 是完全平方式,则$m=$ $\underline{7}$。

7、$x+(\underline{2m})x+2=(x+2)(x+\underline{m})$8、已知 $1+x+x^2+。

+x^{}=\frac{x^{}-1}{x-1}$,则$x^{2006}=$ $\underline{1}$。

9、若 $16(a-b)+M+25$ 是完全平方式,则$M=$ $\underline{9}$。

10、$x+6x+(\underline{9})=(x+3)$,$x+(\underline{6})+9=(x-3)$。

11、若 $9x+k+y$ 是完全平方式,则 $k=$ $\underline{6}$。

12、若 $x+4x-4$ 的值为 $0$,则 $3x+12x-5$ 的值是$\underline{3}$。

13、若$x-ax-15=(x+1)(x-15)$,则$a=$ $\underline{16}$。

14、若 $x+y=4,x-y=6$,则 $xy=$ $\underline{-5}$。

整式乘除与因式分解提高训练

整式乘除与因式分解提高训练

整式乘除与因式分解提高训练一、幂的运算性质例1 .已知32=a,62=b,122=c,则a 、b 、c 的关系是( ) A. c a b +<2 B. c a b +=2 C. c a b +>2 D. c b a >+变式1.计算:1998200020002000200073153735+⎛⎫⨯ ⎪+⎝⎭变式2 :已知999999=x ,909911=y ,试比较,x y 的大小?二、整式的乘除(乘法公式)①()()a b a b +-= ;②2()a b ±= ③ 2()a b c ++= ; ④3()a b += ;例2.已知如果1=+y x ,222=+y x ,那么44y x +的值为( )A. 4B. 3C. 27D. 25变式1:如果1=+y x ,322=+y x ,那么33y x +的值为( )A. 2B. 3C. 4D. 5变式2:已知a 、b 、x 、y 满足3=+by ax ,5=-by ax ,则()()2222y x b a ++= 。

变式3:已知0≠abc ,且0=++c b a ,则代数式abc ca b bc a 222++的值为( ) A. 3 B. 2 C. 1 D. 0例3.已知()01222=+--+y x y x ,求999)(y x +的值/变式1: 若a 、b 为有理数,且0442222=+++-a b ab a ,则22ab b a +=( ) A. -8 B. -16 C. 8 D. 16变式2: 已知a 、b 满足等式2022++=b a x ,()a b y -=24,则x 、y 的大小关系是( )A. y x ≤B. y x ≥C. y x <D. y x >例4 . 已知2009201a x=+,20092011b x =+,20092012c x =+,则多项式ca bc ab c b a ---++222的值为变式1:已知53=-=-c b b a ,1222=++c b a ,则ca bc ab ++的值等于 。

因式分解 专项提升训练(原卷)

因式分解 专项提升训练(原卷)

4.1 因式分解专项提升训练一.选择题1.(2021秋•建安区期末)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x2+2x+4=(x+1)2+32.(2022•沙坪坝区校级开学)下列从左到右的变形中,属于因式分解的是()A.x2﹣1=(x+1)(x﹣1)B.2xy2=2x•yC.(﹣x﹣1)2=x2+2x+1 D.x2+2x+2=x(x+2)+23.(2021秋•南阳期末)下列等式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣8x+16=(x﹣4)2C.x2﹣2x+1=x(x﹣1)+1 D.x2﹣4y2=(x+4y)(x﹣4y)4.(2021秋•青神县期末)下列各式:①x2﹣x2y4=(x﹣xy2)(x+xy2),②x2﹣1+2x=(x﹣1)(x+1)+2x,③﹣a2+2ab ﹣b2=﹣(a﹣b)2,④.属于正确的因式分解的有()A.1个B.2个C.3个D.4个5.(2021秋•东莞市期末)下列各式由左边到右边的变形中,是因式分解的是()A.10x2﹣5x=5x(2x﹣1)B.x2﹣4x+4=x(x﹣4)+4C.a(x+y)=ax+ay D.x2﹣16+3x=(x+4)(x﹣4)+3x6.(2021秋•莱州市期末)已知多项式ax2+bx+c因式分解的结果为(x﹣1)(x+4),则abc为()A.12 B.9 C.﹣9 D.﹣127.(2021秋•洪洞县期中)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是乘法运算,②是因式分解D.①是因式分解,②是乘法运算8.(2021•碑林区校级开学)若2x﹣5是多项式4x2+mx﹣5(m为系数)的一个因式,则m的值是()A.8 B.﹣6 C.﹣8 D.﹣109.(2021春•永年区期末)对于等式12xy2=3xy•4y有下列两种说法:①从左向右是因式分解;②从右向左是整式乘法,关于这两种说法正确的是()A.①、②均正确B.①正确,②错误C.①错误,②正确D.①、②均错误10.(2022春•新华区月考)若x2+kx+25=(x﹣5)2,那么()A.k=10,从左到右是因式分解B.k=﹣10,从左到右是因式分解C.k=10,从左到右是乘法运算D.k=﹣10,从左到右是乘法运算二.填空题11.(2021秋•钢城区期末)多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.12.(2021春•锦江区校级期中)下列由左边到右边的变形,是因式分解的有.(填序号)①a(x+y)=ax+ay;②10x2﹣5x=5x(2x﹣1);③y2﹣4y+4=(y﹣2)2;④t2﹣16+3t=(t﹣4)(t+4)+3t.13.(2021春•崂山区期末)若x2+ax+b=(x+3)(x﹣4),则a=,b=.14.(2020•乳山市一模)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=.15.(2021春•安丘市期末)下列从左到右的变形,是因式分解的是.A.x2﹣9=(x+3)(x﹣3)B.(y+1)(y﹣3)=(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣zy)+zD.﹣8x2+8x﹣2=﹣2(2x﹣1)2三.解答题16.(2021秋•奉贤区期中)小红准备完成题目:计算(x2x+2)(x2﹣x).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x2+3x+2)(x2﹣x);(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?17.(2021秋•洛阳期末)阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a的值.解:设另一个因式是(2x+b),根据题意,得2x2+x+a=(x+2)(2x+b).展开,得2x2+x+a=2x2+(b+4)x+2b.所以,,解得所以,另一个因式是(2x﹣3),a的值是﹣6.请你仿照以上做法解答下题:已知二次三项式3x2+10x+m有一个因式是(x+4),求另一个因式以及m的值.18.若2x2+mx﹣1能分解为(2x+1)(x﹣1),求m的值.19.已知多项式2x2+3xy﹣2y2﹣x+8y﹣6可分解为(x+2y+m)(2x﹣y+n)的形式.试求:m、n的值?。

《因式分解法》同步提升训练

《因式分解法》同步提升训练

《因式分解法》提升训练1.一元二次方程(3)30x x x -+-=的根是( )和3 和22.已知等腰三角形的腰和底边的长分别是一元二次方程2680x x -+=的两根,则该三角形的周长为( )或103.方程2||x x =的根是 .4.若分式2562x x x +++的值为0,则x 的值为 . 5.若正数a 是一元二次方程25=0x x m -+的一个根,-a 是一元二次方程2x 50x m +-=的一个根,则a 的值是 .6.已知2215500(0)x xy y xy -+=≠,则x y的值是 . 7.用因式分解法解下列方程:(1)222(3)9x x -=-;(2)22(32)40x x +-=;(3)5(23)1015x x x -=-. 8.【类比思想】(滨州中考)(1)根据要求,解答下列问题:①方程2210x x -+=的解为 ;②方程2320x x -+=的解为 ;③方程2430x x -+=的解为 ....(2)根据以上方程特征及其解的特征,请猜想:①方程2980x x -+=的解为 ;②关于x 的方程的解为11x =,2x n =;(3)请用配方法解方程2980x x -+=,以验证猜想结论的正确性.【微专题4】运用十字相乘法解一元二次方程【注重阅读理解】阅读下列材料:(1)将2235x x +-分解因式,我们可以按下面的方法解答: 解:步骤:①竖分二次项与常数项:2x x x =⋅,35(5)(7)-=-⨯+.②交叉相乘,验中项:.③横向写出两因式:2235(7)(5)x x x x +-=+-.我们将这种用十字交叉相乘分解因式的方法叫做十字相乘法.(2)根据乘法原理:若0ab =,则=0a 或0b =.试用上述方法和原理解下列方程(1)2540x x ++=;(2)2670x x --=;(3)2680x x -+=;(4)2260x x +-=.参考答案:,±14.-3或107.(1)解:13x =,29x =.(2)解:125x =-,22x =-.(3)解:11x =,232x =. 8.(1)121x x == 11x =,22x = 11x =,23x =(2)①11x =,28x = ②2(1)0x n x n -++=(3)解:由298x x -=-,配方,得2949()24x -=,即9722x -=±,所以11x =,28x =. 微专题4(1)解:11x =-,24x =-.(2)解:17x =,21x =-.(3)解:12x =,24x =(4)解:132x =,22x =-.。

因式分解( 能力提升练)-【单元测试】 七年级数学下册分层训练AB卷(湘教版)(解析版)

  因式分解( 能力提升练)-【单元测试】 七年级数学下册分层训练AB卷(湘教版)(解析版)

班级姓名学号分数第3章因式分解(B 卷·能力提升练)(时间:120分钟,满分:150分)一、单选题(共40分)1.(本题4分)下列从左到右的变形,属于因式分解的是()A .222()x y x y B .2(1)x x x xC .26(3)(2)x x x x D .22()()x y x y x y【答案】C【分析】因式分解是把一个多项式化为几个整式的积的形式.根据因式分解的定义分析判断即可.【详解】解:A.222()y y x x ,原变形错误,不符合题意;B.2(1)x x x x ,是单项式乘多项式,不是因式分解,故不符合题意;C.26(3)(2)x x x x ,是因式分解,故符合题意;D.22()()x y x y x y ,是多项式乘多项式,不是因式分解,故不符合题意.故选:C .【点睛】本题主要考查了因式分解,理解因式分解的定义是解题关键.2.(本题4分)下列因式分解正确的是()A .222x xy y x y B . 25623x x x x C .3244x x x x D .22943232m n m n m n 【答案】D【分析】根据因式分解的方法进行逐一判断即可.【详解】解:A 、22x xy y 不能进行因式分解,不符合题意;B 、 25661x x x x ,原因式分解错误,不符合题意;C 、 324422x x x x x x x ,原因式分解错误,不符合题意;D 、 22943232m n m n m n ,因式分解正确,符合题意;故选D .【点睛】本题主要考查了因式分解,熟知因式分解的方法是解题的关键.3.(本题4分)将下列多项式因式分解,结果中不含因式(2)x 的是()A .224x xB .2312x C .26x x D .2(2)8(2)16x x 【答案】C【分析】将四个选项的式子分别进行因式分解,即可作出判断.【详解】A 、2242(2)x x x x ,故该选项不符合题意;B 、223123(4)3(2)(2)x x x x ,故该选项不符合题意;C 、26(2)(3)x x x x ,故该选项符合题意;D 、222(2)8(2)16242x x x x ,故该选项不符合题意.故选:C .【点睛】本题考查了因式分解,涉及提公因式法、公式法、十字相乘法,熟练掌握因式分解的方法是解决本题的关键.4.(本题4分)一次数学课上,老师出了下面一道因式分解的题目:41x ,请问正确的结果为()A . 2211x x B .2211x x C .2111x x x D .311x x 【答案】C【分析】根据平方差公式分解因式即可.【详解】解:4222111111x x x x x x ,故C 正确.故选:C .【点睛】本题主要考查了分解因式,解题的关键是熟练掌握平方差公式,注意分解因式要分解到最后结果.5.(本题4分)已知23a b ,224311a ab b ,则222a b ab 的值为()A .3B .6C .8D .11【答案】B【分析】将23a b 变形为23a b ,同时将224311a ab b 化为 2211a b ab ,可得出ab 的值,再将222a b ab 分解因式,最后将ab 和2a b 的值代入即可求解.【详解】解:∵23a b ,∴23a b ,∵224311a ab b ,∴224411b a a b a b ,即 2211a b ab ,∴2311ab ,∴2ab ,∴222a b ab2ab a b 236 .故选:B .【点睛】本题考查因式分解的应用,求代数式的值,运用完全平方分式变形求值.灵活运用所学知识进行恒等变形是解题的关键.6.(本题4分)已知1xy ,2x y ,则32231122x y x y xy ()A .2 B .2C .4D .4【答案】A【分析】先对所求的式子进行因式分解,再整体代入计算即可.【详解】解:1xy ∵,2x y ,32231122x y x y xy 22122xy x xy y 212xy x y211222 .故选:A .【点睛】本题考查了整式的因式分解、代数式求值,熟练掌握提公因式法与公式法的综合运用是解决本题的关键..本题分若22m 的值为()A .1B .1C .1D .2【答案】C【分析】首先设原式 x y a x y b ,进而求出即可.【详解】解:原式x y a x y b 22x y a b x a b y ab故a b m ,5a b ,6ab ,解得:2a ,3b ,1m 或3a ,2b ,1m ,∴1m .故选C .【点睛】此题主要考查了分组分解法分解因式,正确得出等式是解题关键.8.(本题4分)在日常生活中,如取款、上网等都需要密码,有一种利用“因式分解”法生成的密码,方便记忆.如:对于多项式44x y ,因式分解的结果是 22x y x y x y ,若取9x ,9y 时,则各个因式的值是: 0x y , 18x y , 22162x y ,于是就可以把“018162”作为一个六位数的密码.对于多项式329x xy ,取10x ,1y 时,用上述方法生成的密码可以是()A .101001B .1307C .1370D .10137【答案】D【分析】首先对多项式提公因式,再利用平方差公式分解因式,然后把数值代入计算,即可确定出密码.【详解】解:329x xy229x x y 33x x y x y ,当10x ,1y 时,10x ,310313x y ,31037x y ,∴上述方法生成的密码可以是10137.故选:D【点睛】本题考查了因式分解的应用,涉及分解因式的方法有:提公因式法,以及平方差公式法,属于阅读型的新定义题,其中根据阅读材料得出产生密码的方法是解本题的关键.9.(本题4分)已知120212022a x,120222022b x,120232022c x ,那么,代数式222a b c ab bc ac 的值是()A .2022B .2022C .3D .3【答案】D【分析】先求解1a b ,1b c ,2a c ,再把原式化为22212a b b c a c,再代入求值即可.【详解】解:∵120212022a x,120222022b x ,120232022c x ,∴1a b ,1b c ,2a c ,∴222a b c ab bc ac22212222222a b c ab bc ac22212a b b c a c111423 ;故选D .【点睛】本题考查的是利用完全平方公式分解因式,因式分解的应用,求解代数式的值,掌握“完全平方公式的应用”是解本题的关键.10.(本题4分)将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式.例如,由图(1)可得等式: 2x p q x pq x p x q .将图(2)所示的卡片若干张进行拼图,可以将二次三项式2232a ab b 分解因式为()A . 2a b a bB . 3a b a bC . 2a b a bD .3a b a b 【答案】C【分析】画出图形,根据图形因式分解即可.【详解】解:如下图:22322a ab b a b a b ,故选:C .【点睛】本题考查了因式分解的应用,能够根据所给的单项式画出几何图形,利用等积法进行因式分解是解题的关键.二、填空题(共32分)11.(本题4分)因式分解3222472x x x ______.【答案】226x x 【分析】先提公因式,然后利用完全平方公式继续分解即可【详解】解:3222472x x x 221236x x x 226x x .故答案为: 226x x .【点睛】本题考查提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.灵活运用因式分解的方法是解题的关键.12.(本题4分)已知多项式4x mx n 能分解为 2223x px q x x ,则p ______,q ______.【答案】2 ;7.【分析】把 2223x px q x x 展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.【详解】解:∵2223x px q x x 432322222333x px qx x px qx x px q 432223233x p x q p x q p x q4x mx n .∴展开式乘积中不含3x 、2x 项,∴20230p q p,解得:27p q .故答案为:2 ,7.【点睛】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.13.(本题4分)已知长方形两条邻边的长分别为x 和y ,其周长为14,面积为10,其代数式22x y xy 的值为______.【答案】70【分析】根据长方形的周长及面积得到7x y ,10xy ,将代数式利用提公因式法分解因式后代入计算即可.【详解】解:∵长方形两条邻边的长分别为x 和y ,其周长为14,面积为10,∴ 214,10x y xy ,∴7x y ,∴ 2210770xy x x y xy y ,故答案为:70.【点睛】此题考查了提公因式法分解因式,已知式子的值求代数式的值,正确掌握因式分解的方法及长方形的周长、面积计算公式是解题的关键.14.(本题4分)若多项式2x ax b 因式分解的结果是 23x x ,则a b ______.【答案】5【分析】此题主要考查了多项式乘法,正确利用多项式乘以多项式运算法则将原式展开是解题关键.首先利用多项式乘法将原式展开,进而得出a ,b 的值,即可得出答案.【详解】解:∵多项式2x ax b 分解因式的结果为(2)(3)x x ,∴22(2)(+3)6 x ax b x x x x ,故1a ,6b ,则5a b .故答案为:5 .【点睛】本题考查了因式分解,整式的乘方运算,熟练掌握多项式乘多项式法则是解本题的关键.15.(本题4分)已知 2237x ay x by x xy y ,则22a b ab 的值为________________.【答案】21【分析】根据多项式乘以多项式进行计算,根据等式得出系数相等,进而求得37a b ab,将代数式因式分解然后整体代入即可求解.【详解】解:∵ 22x ay x by x a b xy aby , 2237x ay x by x xy y ,∴37a b ab∴22a b ab 3721ab a b ,故答案为:21.【点睛】本题考查了多项式乘以多项式,因式分解,正确的计算是解题的关键.16.(本题4分)甲、乙两个同学分解因式2x mx n 时,甲看错了m ,分解结果为(9)(2)x x ;乙看错了n ,分解结果为(5)(2)x x ,则正确的分解结果为_____.【答案】(6)(3)x x 【分析】根据题意分别运算(9)(2)x x 和(5)(2)x x ,确定m 、n 的值,然后进行因式分解即可.【详解】解:∵甲看错了m ,分解结果为(9)(2)x x ,∴由2(9)(2)718x x x x ,可知18n ,又∵乙看错了n ,分解结果为(5)(2)x x ,∴由2(5)(2)310x x x x ,可知3m ,∴22318x mx n x x ,∵ 231863x x x x ,∴正确的分解结果为(6)(3)x x .故答案为:(6)(3)x x .【点睛】本题主要考查了整式乘法运算以及因式分解的知识,解决本题的关键是理解题意,求出m 、n 的值.17.(本题4分)若a ,b 都是有理数,且满足22542 a b a b ,则2022()a b _____________.【答案】1【分析】由22542 a b a b ,可得 22210,a b 可得2a ,1b =-,再代入求解即可.【详解】解:∵22542 a b a b ,∴2244210a a b b ,∴ 22210a b ,∴20a ,10b ,解得:2a ,1b =-,∴ 20222022()21 1.a b 故答案为:1.【点睛】本题考查的是非负数的性质,因式分解的应用,乘方运算的符号的确定,求解2,1a b 是解本题的关键.18.(本题4分)如图,边长为4的正方形ABCD 中放置两个长宽分别为a ,b 的长方形AEFG 与长方形CHIJ ,如图阴影部分的面积之和记为1S ,长方形AEFG 的面积记为2S ,若123544S S ,:3:2a b ,则长方形AEFG 的周长为________.【答案】253【分析】根据:3:2a b 可设a =3x ,b =2x ,由此可表示出相关线段长,进而可表示出S 1=38x 2-80x +48,S 2=6x 2,再根据123544S S 即可列出等式化简整理可得(6x -5)2=0,由此可求得x =56,最后根据长方形的周长公式即可求得答案.【详解】解:∵:3:2a b ,∴设a =3x ,b =2x ,则AG =EF =CJ =HI =3x ,AE =FG =CH =IJ =2x ,∵正方形ABCD 的边长为4,∴AB =BC =CD =AD =4,∴BH =BE =4-2x ,DG =DJ =4-3x ,IP =IQ =3x -(4-2x )=5x -4,∴S 1=S 正方形BEPH +S 正方形IPFQ +S 正方形DGQJ=(4-2x )2+(5x -4)2+(4-3x )2=16-16x +4x 2+25x 2-40x +16+16-24x +9x 2=38x 2-80x +48,S 2=ab =3x ·2x =6x 2,又∵123544S S ,∴3(38x 2-80x +48)+5×6x 2=44,∴114x 2-240x +144+30x 2=44,∴144x 2-240x +100=0,∴36x 2-60x +25=0,∴(6x -5)2=0,解得:x =56,∴C 长方形AEFG =2(a +b )=2(3x +2x )=10x=10×56=253,故答案为:253.【点睛】本题考查了整式的混合运算以及用完全平方公式进行因式分解的应用,熟练掌握完全平方公式是解决本题的关键.三、解答题(共78分)19.(本题8分)因式分解(1) 2294a x y b y x (2) 2222214x y x y 【答案】(1)3232a b a b x y (2) 2211xy xy 【分析】(1)先提取公因式 x y ,然后利用平方差公式分解因式即可;(2)先利用平方差公式分解因式,再利用完全平方公式分解因式即可.【详解】(1)解:2294a x y b y x2294a x y b x y2294a b x y 3232a b a b x y ;(2)解: 2222214x y x y22221212x y xy x y xy 2211xy xy .【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.20.(本题8分)利用因式分解计算(1)2900894906(2)2.6815.731.415.7 1.32【答案】(1)36(2)31.4【分析】(1)先将894906 变形为()()a b a b 的形式,再利用平方差公式求解;(2)先提取公因式15.7,再进行计算即可.【详解】(1)解:2900894906222222290090(9006)(9006)(9006)9609000630 (2)解:2.6815.731.415.7 1.3215.7(2.682 1.32)15.7231.4【点睛】本题考查通过因式分解进行简化计算,解题关键是提取公因式或根据数字特点将所求式子进行变形后利用公式求解.21.(本题8分)下面是乐乐同学把多项式22164my mx 分解因式的具体步骤:22164my mx 22416mx my ……第一步22416m x y ……第二步22(2)(4)m x y ……第三步(24)(24)m x y x y ……第四步(1)事实上,乐乐的解法是错误的,造成错误的原因是________.(2)请给出这个问题的正确解法.【答案】(1)分解因式不彻底,没有把公因式提尽(意思对即可)(2)422m x y x y 【分析】(1)观察同学的解法,找出错误原因即可;(2)写出正确解法即可.【详解】(1)解:造成错误的原因是:分解因式不彻底,没有把公因式提尽;(2)解:22164my mx 22416mx my2244m x y 2242m x y422m x y x y .【点睛】本题主要考查因式分解,熟练掌握分解因式的方法是解题的关键.22.(本题10分)已知:x 、y 满足:(x+y )2=5,(x ﹣y )2=41;求x3y+xy3的值.【答案】-207【详解】试题分析:直接利用已知将原式变形得出x 2+y 2=23,xy=-9,进而求出答案.试题解析:∵(x+y )2=5,(x ﹣y )2=41,∴(x+y )2+(x ﹣y )2=46,则x2+2xy+y2+x2﹣2xy+y2=46,2(x2+y2)=46,故x2+y2=23,(x+y )2﹣(x ﹣y )2=﹣36,则x2+2xy+y2﹣x2+2xy ﹣y2=﹣36,故4xy=﹣36,则xy=﹣9,x3y+xy3=xy (x2+y2)=﹣9×23=﹣207.23.(本题10分)试说明: 2275n n (n 为正整数)能被24整除.【答案】见解析【分析】利用平方差公式分解因式,得出 2275241n n n ,即可证明 2275n n 能被24整除.【详解】解:2275n n7575n n n n 2212n 241n ,∵n 为正整数,∴1n 为正整数,∴ 241n 能被24整除,∴ 2275n n 能被24整除.【点睛】本题主要考查了因式分解的应用,解题的关键是熟练掌握平方差公式22a b a b a b .24.(本题10分)常用的分解因式的方法有提取公因式法、运用公式法.有些多项式分解因式时,需要先分组,然后再提取公因式或运用公式.如分解因式:2222424424x y x y x y x y 2222222x y x y x y x y x y 这种分解因式的方法叫分组分解法.利用这种方法解决以下问题:ABC 三边,,a b c 满足20a ab ac bc ,判断ABC 的形状.【答案】等腰三角形【分析】根据分组分解法对整式20a ab ac bc 的左边进行因式分解,由此可确定ABC 的三边的关系.【详解】解:由20a ab ac bc ,得20a ab ac bc ,∴ 0a a b c a b , 0a b a c ,∴0a b ,或者0a c ,即a b ,或者a c ,∴ABC 是等腰三角形.【点睛】本题主要考查因式分解的方法,理解题目中分组分解法进行因式分解是解题的关键.25.(本题12分)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如: 2222222424222x xy y x xy y x y x y x y .②拆项法:例如: 22222321412121213x x x x x x x x x .仿照以上方法分解因式:(1)22441x x y ;(2)268x x .【答案】(1)()()2121x y x y +++-(2)24x x 【分析】(1)采用分组法,结合完全平方公式和平方差公式分解因式即可;(2)将原式先变形为2268691x x x x ,再按照完全平方公式和平方差公式分解因式即可.【详解】(1)解:22441x x y 22441x x y =++- 2221x y ()()2121x y x y =+++-;(2)解:268x x 2691x x 231x ()()3131x x =-+-- 24x x .【点睛】本题主要考查了因式分解,解题的关键是理解分组分解法,熟练掌握平方差公式,完全平方公式.26.(本题12分)(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式 20ax bx c a 分解因式呢?我们已经知道:2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c .反过来,就得到: 2121221121122a a x a c a c x c c a x c a x c .我们发现,二次三项式 20ax bx c a 的二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c ,如果1221a c a c 的值正好等于2ax bx c 的一次项系数b ,那么2ax bx c 就可以分解为 1122a x c a x c ,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x 分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111 ,把常数项6 也分解为两个因数的积,即 623 ;然后把1,1,2,3 按图2所示的摆放,按对角线交叉相乘再相加的方法,得到 13121 ,恰好等于一次项的系数1 ,于是26x x 就可以分解为 23x x .请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x __________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:①2257x x __________;②22672x xy y __________.(3)【探究与拓展】对于形如22ax bxy cy dx ey f 的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq np b ,pk pj e ,mk nj d ,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式 mx py j nx qy k ,请你认真阅读上述材料并尝试挑战下列问题:①分解因式2235294x xy y x y __________;②若关于x ,y 的二元二次式22718524x xy y x my 可以分解成两个一次因式的积,求m 的值.【答案】(1)(3)(2)x x (2)(27)(1)x x (2)(32)x y x y(3)(34)(21)x y x y ②43或78【分析】(1)首先把二次项的系数1分解为两个因数的积,即111 ,把常数项6 也分解为两个因数的积,即63 (-2),写出结果即可.(2)①把二次项系数2写成212 ,常数项写成717 ,满足17(1)25 ,写出分解结果即可.②把2x 项系数6写成623 ,把2y 项系数2写成221(),满足22(1)37 ,写出分解结果即可.(3)①把2x 项系数3写成313 ,把2y 项系数-2写成221 (),常数项-4写成41 ()4满足条件,写出分解结果即可.②把2x 项系数1写成111 ,把2y 项系数-18写成1829 ,常数项-24写成243( 8)或243 ()8满足条件,写出分解结果,计算即可.【详解】(1)首先把二次项的系数1分解为两个因数的积,即111 ,把常数项6 也分解为两个因数的积,即63 (-2),所以26x x (3)(2)x x .故答案为:(3)(2)x x .(2)①把二次项系数2写成212 ,717 ,满足17(1)25 ,所以2257x x (27)(1)x x .故答案为:(27)(1)x x .②把2x 项系数6写成623 ,把2y 项系数2写成212(),满足22(1)37 ,所以22672x xy y (2)(32)x y x y .故答案为:(2)(32)x y x y .(3)①把2x 项系数3写成313 ,把2y 项系数-2写成221 (),常数项-4写成41 ()4满足条件,所以2235294x xy y x y (34)(21)x y x y .故答案为:(34)(21)x y x y .②把2x 项系数1写成111 ,把2y 项系数-18写成1829 ,常数项-24写成243( 8)或248 ()3满足条件,所以m =39(2)(8)43 或m =9(8)(2)378 ,故m 的值为43或-78.【点睛】本题考查了因式分解的十字相乘法,读懂阅读材料,理解其中的内涵是解题的关键.。

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)

中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列因式分解结果正确的是( ) A .32(1)x x x x -=-B .229(9)(9)x y x y x y -=+-C .232(3)2x x x x -+=-+D .()()22331x x x x --=-+2.分式 212x x x ---有意义, 则( ) A .2x ≠ B .1x ≠- C .2x ≠或1x ≠- D .2x ≠且1x ≠- 3.下列多项式中是多项式243x x -+的因式的是( )A .1x -B .xC .2x +D .3x +4.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-5.将下列各式分解因式,结果不含因式()2x +的是( )A .22x x +B .24x -C .()()21211x x ++++D .3234x x x -+ 6.甲、乙两位同学在对多项式2x bx c ++分解因式时甲看错了b 的值,分解的结果是()()45x x -+,乙看错了c 的值,分解的结果是()()34x x +-,那么2x bx c ++分解因式正确的结果为( )A .()()54x x --B .()()45x x +-C .()()45x x -+D .()()45x x ++ 7.如果多项式432237x x ax x b -+++能被22x x +-整除,那么:a b 的值是( )A . 2-B . 3-C .3D .6 8.若分解因式()()2153x mx x x n +-=--则m 的值为( )A .5-B .5C .2-D .2二、填空题9.因式分解26a a +-的结果是 .三、解答题21424x x -+ 解:24(2)(12)=-⨯- (2)(12)14-+-=-21424(2)(12)x x x x ∴-+=-- 解:原式222277724x x =-⋅⋅+-+2(7)4924x =--+2(7)25x =-- (75)(75)x x =-+--(2)(12)x x =-- (1)按照材料一提供的方法分解因式:22075x x -+;(2)按照材料二提供的方法分解因式:21228x x +-.20.利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式221112x x ++的二项式系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:2627x x +-;(2)用十字相乘法分解因式:2673x x --;(3)结合本题知识,分解因式:220()7()6x y x y +++-.参考答案: 1.D【分析】本题考查了因式分解;根据因式分解-十字相乘法,提公因式法与公式法的综合运用,进行分解逐一判断即可. 【详解】解:A 、()()32(1)11x x x x x x x -=-=+-故本选项不符合题意;B 、229(3)(3)x y x y x y -=+-故本选项不符合题意;C 、()()23221x x x x -+=--故本选项不符合题意;D 、223(3)1)x x x x --=-+(故本选项符合题意; 故选:D .2.D【分析】本题考查的是分式有意义的条件,利用十字乘法分解因式,根据分式有意义的条件:分母不为零可得 ²20x x --≠,再解即可. 【详解】解:由题意得: ²20x x --≠ 210x x解得: 2x ≠且1x ≠-故选: D .3.A【分析】本题考查的是利用十字乘法分解因式,掌握十字乘法是解本题的关键.【详解】解:()()24313x x x x -+=--;∴1x -是多项式243x x -+的因式;故选A4.D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∴甲与乙相乘的积为29(3)(3)x x x -=+-,乙与丙相乘的积为()262(3)x x x x +-=-+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数 ∴甲为3x -,乙为3x +,丙为2x则甲与丙相减的差为:()(3)21x x ---=-;故选:D5.D【分析】本题主要考查了分解因式,正确把每个选项中的式子分解因式即可得到答案.【详解】解:A 、()222x x x x +=+故此选项不符合题意;B 、()()2422x x x -=+-故此选项不符合题意;C 、()()()()2221211112x x x x ++++=++=+故此选项不符合题意;D 、()()323441x x x x x x =+-+-故此选项符合题意; 故选:D .6.B【分析】本题主要考查了多项式乘以多项式以及因式分解,根据甲分解的结果求出c ,根据乙分解的结果求出b ,然后代入利用十字相乘法分解即可.【详解】解:∴()()24520x x x x -+=+-∴20c =-∴()()23412x x x x +-=--∴1b∴2x bx c ++220x x =--()()45x x =+-故选:B .7.A【分析】由于()()2221+-=+-x x x x ,而多项式432237x x ax x b -+++能被22x x +-整除,则432237x x ax x b -+++能被()()21x x +-整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x -+++=+-,则2x =-和1x =时4322370x x ax x b -+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值.【详解】解:∴()()2221+-=+-x x x x∴432237x x ax x b -+++能被()()21x x +-整除设商是A .则()()43223721x x ax x b A x x -+++=+-则2x =-和1x =时右边都等于0,所以左边也等于0.当2x =-时43223732244144420x x ax x b a b a b -+++=++-+=++= ∴当1x =时43223723760x x ax x b a b a b -+++=-+++=++= ∴-①②,得3360a +=∴12a =-∴66b a =--=.∴:12:62a b =-=-故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =-和1x =时原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.8.D【分析】已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:已知等式整理得:()()()2215333x mx x x n x n x n +-=--=+--+可得3m n =-- 315n =-解得:2m = 5n =-故答案为:D .【点睛】此题考查了因式分解-十字相乘法,熟练掌握运算法则是解本题的关键. 9.(3)(2)a a +-【分析】解:本题考查了公式法进行因式分解,掌握2()()()x p q x pq x p x q +++=++进行因式分解是解题的关键.【详解】26(3)(2)a a a a +-=+-故答案为:(3)(2)a a +-.10.(2)(3)y y y --【分析】本题考查提公因式法,十字相乘法,掌握提公因式法以及2()()()x p q x pq x p x q +++=++是正确解答的关键.先提公因式y ,再利用十字相乘法进行因式分解即可.【详解】解:原式2(56)y y y =-+(2)(3)y y y =--.故答案为:(2)(3)y y y --.11.()()21a a a --/()()12a a a --【分析】先去括号合并后,直接提取公因式a ,再利用十字相乘法分解因式即可.本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止【详解】解:2(3)2a a a -+3232a a a -+=()232a a a =-+(2)(1)a a a =--.故答案为:(2)(1)a a a --.12.1±或5±【分析】此题考查因式分解—十字相乘法,解题关键在于理解()()()2x a b x ab x a x b +++=++.把6-分成3和2-,3-和2,6和1-,6-和1,进而得到答案.【详解】解:当()()2632x mx x x +-=+-时()321m =+-=当()()2632x mx x x +-=-+时321m =-+=-当()()2661x mx x x +-=-+时615m =-+=-当()()2661x mx x x +-=+-时615m =-=综上所述:m 的取值是1±或5±故答案为:1±或5±.13.6±【分析】本题考查十字相乘法进行因式分解,根据5可以分成15⨯或()()15-⨯-即可求解.【详解】解:155⨯= ()()155-⨯-=()()21565x x x x ++=++ ()()26515x x x x =---+∴如果关于x 的二次三项式25x kx ++可以用十字相乘法进行因式分解,那么整数k 等于6±. 故答案为:6±.14.()()21x x +-【分析】本题主要考查了根与系数的关系、十字相乘法因式分解的知识点,先根据根与系数的关系确定b 、c 的值,然后再运用十字相乘法因式分解即可.【详解】解:∴关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2- 根据根与系数的关系可得:()12b -=+- ()12c =⨯-∴1b = 2c =-∴()()22221x bx c x x x x ++=+-=+-故答案为:()()21x x +-.15.()()211x x --【分析】本题考查了一元二次方程的解及因式分解,将1x =代入原方程,求出m 的值,然后再进行因式分解是解决问题的关键.【详解】解:∴关于x 的一元二次方程2210x mx ++=有一个根是1∴把1x =代入,得210m ++=解得:3m =-.则()()2221231211x mx x x x x ++=-+=--故答案为:()()211x x --.16.()()23x x +-【分析】根据一元二次方程的根与系数的关系求出p q ,,再进行因式分解即可.【详解】解:∴方程20x px q ++=的两个根分别是2和3-∴23p -=- ()23q ⨯-=∴1,6p q ==-∴()()2623x x x x --=+-;故答案为()()23x x +-.【点睛】本题主要考查一元二次方程根与系数的关系,因式分解,熟练掌握一元二次方程根与系数的关系是解题的关键.17.(1)()()322x x x +-(2)()23y x y --(3)()()26x x +-【分析】本题考查因式分解的知识,解题的关键是掌握因式分解的方法:提公因式法,公式法和十字相乘法,即可.(1)先提公因式3x ,然后根据()()22a b a b a b -=+-,即可; (2)先提公因式y -,再根据()2222a b a ab b ±=±+,即可;(3)根据十字相乘法,进行因式分解,即可.【详解】(1)3312x x -()234x x =- ()()322x x x =+-;(2)22369xy x y y --()2269y xy x y =--++()2296y x xy y =--+ ()23y x y =--; (3)2412x x --()()26x x =+-.18.3a b += 2ab =.【详解】解:因为()()()2x a x b x a b x ab ++=+++,且232x x ++因式分解的结果是()()x a x b ++所以3a b += 2ab =.19.(1)(5)(15)x x --(2)(14)(2)x x +-【分析】本题考查了因式分解,解答本题的关键是理解题意,明确题目中的分解方法. (1)仿照题目中的例子进行分解即可得出答案;(2)仿照题目中的例子进行分解即可得出答案.【详解】(1)解:75(5)(15)=-⨯- (5)(15)20-+-=-22075(5)(15)x x x x ∴-+=--;(2)解:原式222266628x x =+⋅⋅+--2(6)3628x =+--2(6)64x =+-(68)(68)x x =+++-(14)(2)x x =+-.20.(1)()()39x x -+(2)()()2331x x -+(3)()()443552x y x y +++-【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:2627x x +-第 11 页 共 11 页 ()()39x x =-+;(2)解:2673x x -- ()()2331x x =-+;(3)解:220()7()6x y x y +++- ()()4352x y x y ⎡⎤⎡⎤=+++-⎣⎦⎣⎦ ()()443552x y x y =+++-.。

(完整)初二数学因式分解提高版(附答案)

(完整)初二数学因式分解提高版(附答案)

初二数学因式分解提高版(附答案)1. 有一个因式是 , 另一个因式是( )A. B. C. D.2、把a4-2a2b2+b4分解因式, 结果是( )A.a2(a2-2b2)+b4B.(a2-b2)2C.(a -b)4D.(a +b)2(a -b)23.若a2-3ab-4b2=0,则 的值为( )A.1B.-1C.4或-1D.- 4或14.已知 为任意整数, 且 的值总可以被 整除, 则 的值为( )A. 13B. 26C. 13或26D. 13的倍数5.把代数式 分解因式, 结果正确的是A. B.C. D.6.把x2-y2-2y -1分解因式结果正确的是( )。

A. (x +y +1)(x -y -1)B. (x +y -1)(x -y -1)C. (x +y -1)(x +y +1)D. (x -y +1)(x +y +1)7、分解因式: 的结果是( )A.B. C. D. 8、因式分解: 9x2-y2-4y -4=__________.9、若 = , 则m=_______, n=_________。

10、已知,01200520042=+++++x x x x 则.________2006=x11.若 则 ___。

12.计算 的值是( )13、22414y xy x +--14、811824+-x x15.16、24)4)(3)(2)(1(-++++x x x x17、1235-+-x x x18、)()()(23m n n m n m +--+19、3)2(2)2(222-+-+a a a a20、已知 , , 求 的值。

21.已知 , 求 的值22.已知 , 求 的值;23.已知 , 求 的值;24.已知 , , 求(1) ;(2)25、已知 , 求x+y 的值;26、2222224)(b a b a c ---27、先分解因式, 然后计算求值: (本题6分)(a2+b2-2ab )-6(a -b )+9, 其中a=10000, b=9999。

因式分解的能力提升训练题(培优卷)

因式分解的能力提升训练题(培优卷)

因式分解的能力提升训练题(培优卷)1、计算()2013×1.52012×(-1)2014的结果是( )A、B、C、-D、-2、下列多项式乘法中可以用平方差公式计算的是()A、B、C、D、3 把代数式ax²-4ax+4a²分解因式,下列结果中正确的是()A、a(x-2) 2B、a(x+2) 2C、a(x-4)2D、a(x-2) (x+2)4、在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是()。

A、a2+b2=(a+b)(a-b)B、(a+b)2=a2+2ab+b2C、(a-b)2=a2-2ab+b2D、a2-b2=(a-b)25、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.B.C.D.6 分解因式(1)(a-b)2+4ab(2) 4xy2-4x2y-y2(3)4a2bc-3a2c2+8abc-6ac2;(4)(y2+3y)-(2y+6)2.(5)a(x-y)+b(y-x)+c(x-y) (6)(7)(m 2+3m )2-8(m 2+3m )-20;7.已知a +b =2,ab =2,求12a 3b +a 2b 2+12ab 3的值.8.先因式分解,然后计算求值:(1)9x 2+12xy +4y 2,其中x =43,y =−12;(2)(a+b 2)2﹣(a−b 2)2,其中a =−18,b =2.9.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x 2﹣2xy +y 2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x 2﹣2xy +y 2﹣16=(x ﹣y )2﹣16=(x ﹣y +4)(x ﹣y ﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a 2+4b 2﹣25m 2﹣n 2+12ab +10mn ;(2)已知a 、b 、c 分别是△ABC 三边的长且2a 2+b 2+c 2﹣2a (b +c )=0,请判断△ABC 的形状,并说明理由.10.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.11.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.12.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.13.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.14.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.15.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。

因式分解》提升训练

因式分解》提升训练

因式分解》提升训练4.1 因式分解同步训练一、选择题1.选B。

将8x2-10x+2分解为2(4x2-5x+1),而2x+2是4x2-4x的因式,因此选B。

2.选D。

x2-xy+y2可分解为(x-y)2,而其他三个多项式不能分解。

3.选B。

将x2-5x+6分解为(x-2)(x-3),而其他三个选项是已知的等式或错误的因式分解。

4.选C。

x2+6x+9可分解为(x+3)2,而其他三个选项是正确的因式分解。

5.选B。

将x2-px-6分解为(x-3)(x+p),因此p=5.6.选D。

将x2+3x+c分解为(x+1)(x+2),则c=-2.7.选A。

(3a-y)(3a+y)可分解为9a2-y2,而其他三个选项是错误的因式分解。

8.选A。

___同学的其他三个题都分解得很完整,只有x3-x=x(x2-1)没有继续分解。

9.选C。

m2-n不能因式分解,m2-m+1可写成(m-1)2+1,m2-2m+1可分解为(m-1)2,而m2-2m+1也可写成(m-1)(m-1)。

二、填空题10.n=211.b=-212.a=513.x2y-ax=y(x2-ay)14.k=615.m=100.n=-2三、解答题略。

1)已知$x-y=2+a$,$y-z=2-a$,且$a^2=7$,求$x^2+y^2+z^2-xy-yz-zx$的值。

解:将$x^2+y^2+z^2-xy-yz-zx$化简得$(x-y)^2+(y-z)^2+(z-x)^2$,代入已知条件得$(x-y)^2+(y-z)^2+(z-x)^2=2(a^2+4)=30$,所以$x^2+y^2+z^2-xy-yz-zx=30$。

2)已知对多项式$2x^3-x^2-13x+k$进行因式分解时有一个因式是$2x+3$,求$4k^2+4k+1$的值。

解:由因式定理可知$2x+3$是$2x^3-x^2-13x+k$的一个因式,则$2x^3-x^2-13x+k=(2x+3)(ax^2+bx+c)$,将$x=-\frac{3}{2}$代入得$k=-\frac{27}{4}-\frac{9}{2}a+b$,将$x=1$代入得$k=2+a+b+c$,将$x=-\frac{1}{2}$代入得$k=-\frac{1}{4}-\frac{1}{2}a+\frac{1}{4}b-\frac{1}{2}c$,解得$a=-\frac{1}{2}$,$b=5$,$c=-\frac{7}{2}$,代入得$4k^2+4k+1=441$。

因式分解提升题

因式分解提升题

因式分解提升题1.阅读例题,回答问题:例题:已知二次三项式:x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n.∴∴∴另一个因式为x﹣7,m=21.仿照以上方法解答下面的问题:已知二次三项式2x2+3x+k有一个因式是2x﹣5,求另一个因式以及k的值.3.先阅读下面的村料,再分解因式.要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得am+an+bm+bn=a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)中又有公困式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b),因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2=a(b﹣c)﹣b(b﹣c)(请你完成分解因式下面的过程)=(2)m2﹣mn+mx﹣nx;3)x2y2﹣2x2y﹣4y+8,4.如图,把一个边长为a的大正方形,剪去一个边长为b的小正方形,即图①称之为“前世”,然后再剪拼成一个新长方形如图②称之为“今生”,请你解答下面的问题:(1)“前世”图①的面积与“今生”图②新长方形的面积;(2)根据图形面积的和差关系直接写出“前世”图①的面积为:,标明“今生”图②新长方形的长为、宽为,面积为:.(3)“形缺数时少直观,数缺形式少形象”它体现了数学的数形结合思想,由(1)和(2)图形面积的计算,形象的验证了代数中的一个乘法公式为:.(4)请你根据(3)题中乘法公式,计算:2.001×1.999.5.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.6.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c 满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.7.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.(2)x2﹣2xy+y2﹣9.8.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.9.如图,四边形ABCD与四边形DEFG都是正方形,设AB=a,DE=b(a>b).(1)写出AG的长度(用含字母a,b的代数式表示);(2)观察图形,当用不同的方法表示图形中阴影部分的面积时,你能获得一个因式分解公式,请将这个公式写出来;(3)如果正方形ABCD的边长比正方形DEFG的边长多16cm,它们的面积相差960cm2,试利用(2)中的公式,求a,b的值.10.【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.11.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.12.右侧练习本上书写的是一个正确的因式分解,但其中部分一次式被墨水污染看不清了.(1)求被墨水污染的一次式;(2)若被墨水污染的一次式的值不小于2,求x的取值范围.13.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出三个)(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可);(3)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.。

14.3 因式分解 人教版数学八年级上册专项能力提升训练及答案(2份)

14.3 因式分解 人教版数学八年级上册专项能力提升训练及答案(2份)

【14.3因式分解】专项能力提升训练(一)一.选择题1.关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是()A.﹣6B.±6C.12D.±122.下列各式中,没有公因式的是()A.3x﹣2与6x2﹣4x B.ab﹣ac与ab﹣bcC.2(a﹣b)2与3(b﹣a)3D.mx﹣my与ny﹣nx3.将多项式16m2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A.﹣2B.﹣15m2C.8m D.﹣8m4.下列多项式中不能用公式分解的是()A.a2+a+B.﹣a2﹣b2﹣2ab C.﹣a2+25b2D.﹣4﹣b25.多项式x2+mx+6可因式分解为(x﹣2)(x﹣3),则m的值为()A.6B.±5C.5D.﹣56.已知a﹣2b=10,ab=5,则a2+4b2的值是()A.100B.110C.120D.1257.已知三角形的三边a,b,c满足(b﹣a)(b2+c2)=ba2﹣a3,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.等腰三角形或直角三角形8.课堂上老师在黑板上布置了如框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?()用平方差公式分解下列各式:(1)a2﹣b2(2)49x2﹣y2z2(3)﹣x2﹣y2(4)16m2n2﹣25p2A.第1道题B.第2道题C.第3道题D.第4道题9.对于正整数m,若m=pq(p≥q>0,且p,q为整数),当p﹣q最小时,则称pq为m 的“最佳分解”,并规定f(m)=(如:12 的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f(12)=.若关于正整数n的代数式,也有同样的最佳分解,f(n2+3n)则下列结果不可能的是()A.1B.C.D.10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=.给出下列关于F(n)的说法:①F(2)=;②F(24)=;③F(27)=3;④若n是一个整数的平方,则F(n)=1.其中正确说法的有()A.①②B.①③C.①④D.②④二.填空题11.因式分解:x(x﹣2)﹣x+2=.12.若x2+5x+a=(x﹣3)(x+b),则a+b=.13.已知x2+kx+12=(x+a)(x+b),x2+kx+15=(x+c)(x+d),其中a,b,c,d均为整数.则k=.14.多项式4a2﹣9b n(其中n是小于10的自然数,b≠0)可以分解因式,则n能取的值共有种.15.已知a,b,c为三角形的三边,且满足a2c2﹣b2c2=a4﹣b4,那么它的形状是.三.解答题16.把下列各式因式分解(1)﹣4a2x2+8ax﹣4;(2)9(2a+3b)2﹣4(3a﹣2b)2.17.(1)已知a+b=10,ab=6,求a2b+ab2的值.(2)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,求∠EAC的度数.18.解答下列问题(1)一正方形的面积是a2+6ab+9b2(a>0,b>0),则表示该正方形的边长的代数式是.(2)求证:当n为正整数时,(2n+1)2﹣(2n﹣1)2能被8整除.19.如图,把一个长方形纸板剪切成图示的9块,其中有2块边长是a的大正方形,2块是b的小正方形,还有5块长、宽分别是a和b的长方形,且a>b.(1)通过观察图形,把多项式2a2+5ab+2b2分解因式.(2)若4个正方形的面积和是58,每块长是a宽是b的小长方形的面积是10,求下面代数式的值.①a+b;②a2b+ab2.20.先阅读下面的解法,然后解答问题.例:已知多项式3x3﹣x2+m分解因式的结果中有一个因式是(3x+1),求实数m.解:设3x3﹣x2+m=(3x+1)•K(K为整式)令(3x+1)=0,则x=﹣,得3(﹣)3﹣(﹣)2+m=0,∴m=.这种方法叫特殊值法,请用特殊值法解决下列问题.(1)若多项式x2+mx﹣8分解因式的结果中有一个因式为(x﹣2),则实数m=;(2)若多项式x3+3x2+5x+n分解因式的结果中有一个因式为(x+1),求实数n的值;(3)若多项式x4+mx3+nx﹣14分解因式的结果中有因式(x+1)和(x﹣2),求m,n的值.参考答案一.选择题1.解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴a=±12.故选:D.2.解:A、6x2﹣4x=2x(3x﹣2),3x﹣2与6x2﹣4x有公因式(3x﹣2),故本选项不符合题意;B、ab﹣ac=a(b﹣c)与ab﹣bc=b(a﹣c)没有公因式,故本选项符合题意;C、2(a﹣b)2与3(b﹣a)3有公因式(a﹣b)2,故本选项不符合题意;D、mx﹣my=m(x﹣y),ny﹣nx=﹣n(x﹣y),mx﹣my与ny﹣nx有公因式(x﹣y),故本选项不符合题意.故选:B.3.解:A、16m2+1﹣2=16m2﹣1=(4m+1)(4m﹣1),不符合题意;B、16m2+1﹣15m2=m2+1,不能分解,符合题意;C、16m2+1+8m=(4m+1)2,不符合题意;D、16m2+1﹣8m=(4m﹣1)2,不符合题意.故选:B.4.解:A、原式=(a+)2,不符合题意;B、原式=﹣(a2+b2+2ab)=﹣(a+b)2,不符合题意;C、原式=(﹣a+5b)(a+5b),不符合题意;D、原式不能分解,符合题意.故选:D.5.解:根据题意得:x2+mx+6=(x﹣2)(x﹣3)=x2﹣5x+6,则m的值为﹣5.故选:D.6.解:∵a﹣2b=10,ab=5,∴a2+4b2=(a﹣2b)2+4ab=102+4×5=120.故选:C.7.解:(b﹣a)(b2+c2)=ba2﹣a3,(b﹣a)(b2+c2)=a2(b﹣a),(b﹣a)(b2+c2)﹣a2(b﹣a)=0,(b﹣a)(b2+c2﹣a2)=0,则b﹣a=0或b2+c2﹣a2=0,则b=a或b2+c2=a2,故△ABC是等腰三角形或直角三角形.故选:D.8.解:由题意可知:a2﹣b2=(a+b)(a﹣b),49x2﹣y2z2=(7x+yz)(7x﹣yz),﹣x2﹣y2无法用平方差公式因式分解,16m2n2﹣25p2=(4mn+5p)(4mn﹣5p),故第3道题错误.故选:C.9.解:∵n2+3n=n(n+3),n2+3n=1×(n2+3n),其中n(n+3)是n2+3n的最佳分解,∴f(n2+3n)=,A、当时,n=n+3,1=3,出现矛盾,则A不可能存在;B、当时,2n=n+3,n=3,则B可能存在;C、当时,n=1,则C可能存在;D、当时,n=6,则D可能存在;故选:A.10.解:①∵2=1×2,∴F(2)=是正确的;故①正确;②∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故②是错误的;③∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故③是错误的;④∵n是一个整数的平方,∴n能分解成两个相等的数,则F(n)=1,故④是正确的.∴正确的有①④.故选:C.二.填空题11.解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).12.解:(x﹣3)(x+b)=x2+(b﹣3)x﹣3b,∵x2+5x+a=(x﹣3)(x+b),∴x2+5x+a=x2+(b﹣3)x﹣3b,∴a=﹣3b,b﹣3=5,解得a=﹣24,b=8,所以a+b=﹣24+8=﹣16.故答案为:﹣16.13.解:∵x2+kx+12=(x+a)(x+b),∴x2+kx+12=x2+(a+b)x+ab,∴a+b=k,ab=12;∵x2+kx+15=(x+c)(x+d),∴x2+kx+15=x2+(c+d)x+cd,∴c+d=k,cd=15;∵a,b,c,d均为整数,∴k=±8;故答案为±8.14.解:多项式4a2﹣9b n(其中n是小于10的自然数,b≠0)可以分解因式,则n能取的值为0,2,4,6,8,共5种,故答案为:515.解:∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.三.解答题16.解:(1)原式=﹣4(a2x2﹣2ax+1)=﹣4(ax﹣1)2;(2)原式=[3(2a+3b)+2(3a﹣2b)][3(2a+3b)﹣2(3a﹣2b)]=13b(2a+5b).17.解:(1)∵a+b=10,ab=6,∴a2b+ab2=ab(a+b)=6×10=60;(2)∵BD平分∠ABC,∴∠ABD=∠DBC,∵AE∥BD,∴∠ABD=∠BAE,∠DBC=∠E.∴∠BAE=∠E=35°,∴∠ABC=70°.∵AB=AC,∴∠ACB=∠ABC=70°,∴∠BAC=180°﹣70°×2=40°,∴∠EAC=40°+35°=75°.18.(1)解:∵a2+6ab+9b2=(a+3b)2,∴表示该正方形的边长的代数式是a+3b.故答案为:a+3b;(2)证明:∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n×2=8n,∴原式能被8整除.19.解:(1)2a2+5ab+2b2=(2a+b)(a+2b)(2)由题意知:2a2+2b2=58,ab=10,∵a2+2ab+b2=(a+b)2,∴29+2×10=(a+b)2,又∵a+b>0,∴①a+b=7;②a2b+ab2=ab(a+b)=10×7=70.20.解:(1)由题意得,x2+mx﹣8=(x﹣2)•K(K为整式),令x﹣2=0,则x=2,把x=2代入x2+mx﹣8=0,得,m=2,故答案为:2;(2)设:x3+3x2+5x+n=(x+1)•A(A为整式),若x3+3x2+5x+n=(x+1)•A=0,则x+1=0或A=0,当x+1=0时,x=﹣1.则x=﹣1是方程x3+3x2+5x+n=0的解,∴(﹣1)3+3×(﹣1)2+5×(﹣1)+n=0,即﹣1+3﹣5+n=0,解得,n=3;(3)设x4+mx3+nx﹣14=(x+1)(x﹣2))•B(B为整式),若x4+mx3+nx﹣14=(x+1)(x﹣2))•B=0,则x+1=0,x﹣2=0,C=0,当x+1=0时,即x=﹣1,∴(﹣1)4+m•(﹣1)3+n•(﹣1)﹣14=0,即m+n=﹣13①,当x﹣2=0时,即x=2,∴24+m•23+n•2﹣14=0,即4m+n=﹣1②,联立①②解方程组得:.【14.3因式分解】专项能力提升训练一.选择题1.因式分解(x+y)2﹣2(x2﹣y2)+(x﹣y)2的结果为()A.4(x﹣y)2B.4x2C.4(x+y)2D.4y22.多项式6ab2+18a2b2﹣12a3b2c的公因式是()A.6ab2c B.ab2C.6ab2D.6a3b2c3.将(x+2y)2﹣(x﹣2y)2分解因式的结果是()A.﹣8x2B.﹣8x(x﹣2y)C.16(x+y)D.8xy4.下列各多项式中,能用平方差公式分解因式是()A.﹣x2+16B.x2+9C.﹣x2﹣4D.x2﹣2y5.二次三项式x2﹣mx﹣12(m是整数),在整数范围内可分为两个一次因式的积,则m的所有可能值有()个.A.4B.5C.6D.86.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2017的值为()A.2019B.﹣2019C.2020D.﹣20207.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2019的值为()A.﹣2019B.﹣2020C.﹣2022D.﹣20218.下列各式中,能用平方差公式分解因式的有()①x2+y2;②x2﹣y2;③﹣x2+y2;④﹣x2﹣y2;⑤;⑥x2﹣4A.3个B.4个C.5个D.6个9.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p ≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=,例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=,则F(36)的值是()A.B.C.1D.10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.因式分解:﹣5a3+10a2﹣15a=.12.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a﹣b的值为.13.已知二次三项式x2+px+q因式分解的结果是(x﹣3)(x﹣5),则(2p+q)2020.14.因式分解:x2﹣6xy+9y2=.15.若m2=n+2020,n2=m+2020(m≠n),那么代数式m3﹣2mn+n3的值.三.解答题16.因式分解:(1)﹣2x2﹣8y2+8xy;(2)(p+q)2﹣(p﹣q)217.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.18.解答下列问题(1)一正方形的面积是a2+6ab+9b2(a>0,b>0),则表示该正方形的边长的代数式是.(2)求证:当n为正整数时,(2n+1)2﹣(2n﹣1)2能被8整除.19.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n,(以上长度单位:cm)(1)观察图形,发现代数式2m2+5mn+2n2可以因式分解,请写出因式分解的结果;(2)若每块小矩形的面积为7cm2,四个正方形的面积和为100cm2,试求图中所有裁剪线(虚线部分)长之和.20.1637年笛卡儿(R.Descartes,1596﹣1650)在其《几何学》中,首次应用待定系数法最早给出因式分解定理.关于笛卡尔的“待定系数法”原理,举例说明如下:分解因式:x3+2x2﹣3.观察知,显然x=1时,原式=0,因此原式可分解为(x﹣1)与另一个整式的积.令:x3+2x2﹣3=(x﹣1)(x2+bx+c),而(x﹣1)(x2+bx+c)=x3+(b﹣1)x2+(c﹣b)x﹣c,因等式两边x同次幂的系数相等,则有:,得,从而x3+2x2﹣3=0.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.(2)若多项式3x4+ax3+bx﹣34含有因式x+1及x﹣2,求a,b的值.参考答案一.选择题1.解:原式=[(x+y)﹣(x﹣y)]2,=(x+y﹣x+y)2,=4y2,故选:D.2.解:系数的最大公约数是6,相同字母的最低指数次幂是ab2,∴公因式为6ab2.故选:C.3.解:原式=[(x+2y)+(x﹣2y)][(x+2y)﹣(x﹣2y)],=2x•4y,=8xy,故选:D.4.解:﹣x2+16=(4+x)(4﹣x),故选:A.5.解:若x2﹣mx﹣12(m为常数)可分解为两个一次因式的积,m的值可能是﹣1,1,﹣4,4,11,﹣11.共有6个.故选:C.6.解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,2x3﹣7x2+4x﹣2017=2x3﹣4x2﹣3x2+4x﹣2017=2x(x2﹣2x)﹣3x2+4x﹣2017=6x﹣3x2﹣2017=﹣3(x2﹣2x)﹣2017=﹣3﹣2017=﹣2020.故选:D.7.解:∵x2﹣2x﹣1=0∴x2﹣2x=1∴2x3﹣7x2+4x﹣2019=2x3﹣4x2﹣3x2+4x﹣2019=2x(x2﹣2x)﹣3x2+4x﹣2019=6x﹣3x2﹣2019=﹣3(x2﹣2x)﹣2019=﹣3﹣2019=﹣2022故选:C.8.解:①x2+y2不能分解;②x2﹣y2=(x+y)(x﹣y),能;③﹣x2+y2=(y+x)(y﹣x),能;④﹣x2﹣y2不能分解;⑤1﹣a2b2=(1+ab)(1﹣ab),能;⑥x2﹣4=(x+2)(x﹣2),能,故选:B.9.解:1×36=2×18=3×12=4×9=6×636﹣1>18﹣2>12﹣3>9﹣4>6﹣6F(36)=故选:C.10.解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.解:原式=﹣5a(a2﹣2a+3).故答案是:﹣5a(a2﹣2a+3).12.解:根据题意得:x2+ax+b=(x+1)(x﹣2)=x2﹣x﹣2,则a=﹣1,b=﹣2,所以a﹣b=﹣1﹣(﹣2)=﹣1+2=1,故答案为:1.13.解:根据题意得:(x﹣3)(x﹣5)=x2﹣8x+15=x2+px+q,∴p=﹣8,q=15,则(2p+q)2020=(﹣16+15)2020=1.14.解:原式=x2﹣2•x•3y+(3y)2=(x﹣3y)2,故答案为:(x﹣3y)215.解:∵m2=n+2020,n2=m+2020,∴m2﹣n2=n﹣m,∴(m+n)(m﹣n)=n﹣m,∵m≠n,∴m+n=﹣1,∵m2=n+2020,n2=m+2020,∴m2﹣n=2020,n2﹣m=2020,∴原式=m3﹣mn﹣mn+n3=m(m2﹣n)+n(n2﹣m)=2020m+2020n=2020(m+n)=2020×(﹣1)=﹣2020.故答案为:﹣2020.三.解答题(共5小题)16.解:(1)﹣2x2﹣8y2+8xy(2)(p+q)2﹣(p﹣q)217.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.18.(1)解:∵a2+6ab+9b2=(a+3b)2,∴表示该正方形的边长的代数式是a+3b.故答案为:a+3b;(2)证明:∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n×2=8n,∴原式能被8整除.19.解:(1)观察图形,发现代数式2m2+5mn+2n2=(2m+n)(m+2n)(2)若每块小矩形的面积为7cm2,四个正方形的面积和为100cm2则mn=7cm2,2m2+2n2=100cm2∴m2+n2=50∴(m+n)2=50+7×2=64∴m+n=8∴图中所有裁剪线(虚线部分)长之和为6m+6n=6(m+n)=48(cm)∴图中所有裁剪线(虚线部分)长之和为48cm.20.解:(1)令x3+ax+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,∵等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+ax+1∴解得∴a的值为0,x3+1=(x+1)(x2﹣x+1)(2)(x+1)(x﹣2)=x2﹣x﹣2令3x4+ax3+bx﹣34=(x2﹣x﹣2)(3x2+cx+d),而(x2﹣x﹣2)(3x2+cx+d)=3x4+(c﹣3)x3+(d﹣c﹣6)x2﹣(2c+d)x﹣2d,∵等式两边x同次幂的系数相等,即3x4+(c﹣3)x3+(d﹣c﹣6)x2﹣(2c+d)x﹣2d=3x4+ax3+bx﹣34∴解得答:a、b的值分别为8、﹣39.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 因式分解同步训练姓名:_______________班级:_______________考号:_______________ 一.选择题(共9小题)1.下列四个选项中,哪一个为多项式8x2﹣10x+2的因式?()A.2x﹣2 B.2x+2 C.4x+1 D.4x+22.下列多项式能分解因式的是()A.x2+y2B.﹣x2﹣y2C.﹣x2+2xy﹣y2D.x2﹣xy+y23.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6 D.x2﹣5x+6=(x+2)(x+3)4.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)25.若关于x的多项式x2﹣px﹣6含有因式x﹣3,则实数p的值为()A.﹣5 B.5 C.﹣1 D.16.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2 B.3 C.﹣2 D.﹣37.(3a﹣y)(3a+y)是下列哪一个多项式因式分解的结果()A.9a2+y2B.﹣9a2+y2C.9a2﹣y2D.﹣9a2﹣y28.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)9.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1二.填空题(共6小题)10.若x2+4x+4=(x+2)(x+n),则n=_________.11.如果a、b是整数,且x2+x﹣1是ax3+bx+1的因式,则b的值为_________.12.多项式x4+4x3﹣ax2﹣4x﹣1被x+3除,余数为2,则a=_________.13.若Z=,分解因式:x3y2﹣ax=_________.14.若4a2+kab+9b2可以因式分解为(2a﹣3b)2,则k的值为_________.15.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m=_________,n=_________.三.解答题(共10小题)16.(1)已知x﹣y=2+a,y﹣z=2﹣a,且a2=7,试求x2+y2+z2﹣xy﹣yz﹣zx的值.(2)已知对多项式2x3﹣x2﹣13x+k进行因式分解时有一个因式是2x+3,试求4k2+4k+1的值.17.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.18.若x2+x+m=(x+n)2,求m,n的值.19.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x﹣4),请将原多项式分解因式.20.若多项式x2+ax+b可分解为(x+1)(x﹣2),试求a,b的值.21.已知二次三项式2x2+3x﹣k=(2x﹣5)(x+a),求a和k的值.22.已知关于x的二次三项式x2+mx+n有一个因式(x+5),且m+n=17,试求m、n的值.23.分解因式(x2+5x+3)(x2+5x﹣23)+k=(x2+5x﹣10)2后,求k的值.24.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.25.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.参考答案一.选择题(共9小题)1.A2.C3.B4.D5.D6.A7.C8.A9.D二.填空题(共6小题)10.n=211.﹣212.多项式x4+4x3﹣ax2﹣4x﹣1被x+3除,余数为2,则a=﹣2.13.若Z=,分解因式:x3y2﹣ax=x(xy+2)(xy﹣2).14.若4a2+kab+9b2可以因式分解为(2a﹣3b)2,则k的值为﹣12.15.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m=﹣20,n=2.三.解答题(共10小题)16.附加题:(1)已知x﹣y=2+a,y﹣z=2﹣a,且a2=7,试求x2+y2+z2﹣xy﹣yz﹣zx的值.(2)已知对多项式2x3﹣x2﹣13x+k进行因式分解时有一个因式是2x+3,试求4k2+4k+1的值.解:(1)∵x﹣y=2+a,y﹣z=2﹣a,∴x﹣z=4,∴(x﹣y)2+(y﹣z)2+(x﹣z)2=(2+a)2+(2﹣a)2+42,即x2﹣2xy+y2+y2﹣2yz+z2+x2﹣2xz+z2=4+4a+a2+4﹣4a+a2+16,整理得,2(x2+y2+z2﹣xy﹣yz﹣zx)=2(a2+12),∵a2=7,∴x2+y2+z2﹣xy﹣yz﹣zx=7+12=19;(2)设因式分解的另一个因式为x2+ax+b,则(2x+3)(x2+ax+b)=2x3+2ax2+2bx+3x2+3ax+3b=2x3+(2a+3)x2+(2b+3a)x+3b=2x3﹣x2﹣13x+k,所以,17.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)∴另一个因式为(x+4),k的值为20(9分)18.若x2+x+m=(x+n)2,求m,n的值.解:∵(x+n)2=x2+2nx+n2=x2+x+m,∴2n=1,n2=m,解得:m=,n=.19.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x﹣4),请将原多项式分解因式.解:设原多项式为ax2+bx+c(其中a、b、c均为常数,且abc≠0).∵2(x﹣1)(x﹣9)=2(x2﹣10x+9)=2x2﹣20x+18,∴a=2,c=18;又∵2(x﹣2)(x﹣4)=2(x2﹣6x+8)=2x2﹣12x+16,∴b=﹣12.∴原多项式为2x2﹣12x+18,将它分解因式,得2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.20.若多项式x2+ax+b可分解为(x+1)(x﹣2),试求a,b的值.解:由题意,得x2+ax+b=(x+1)(x﹣2).而(x+1)(x﹣2)=x2﹣x﹣2,所以x2+ax+b=x2﹣x﹣2.比较两边系数,得a=﹣1,b=﹣2.21.已知二次三项式2x2+3x﹣k=(2x﹣5)(x+a),求a和k的值.解:由2x2+3x﹣k=(2x﹣5)(x+a)得2x2+3x﹣k=2x2+(2a﹣5)x﹣5a,∴,解得:a=4,k=20.∴a的值为4,k的值为20.22.已知关于x的二次三项式x2+mx+n有一个因式(x+5),且m+n=17,试求m、n的值.解:设另一个因式是x+a,则有(x+5)•(x+a),=x2+(5+a)x+5a,=x2+mx+n,∴5+a=m,5a=n,这样就得到一个方程组,解得.∴m、n的值分别是7、10.23.分解因式(x2+5x+3)(x2+5x﹣23)+k=(x2+5x﹣10)2后,求k的值.解:k=(x2+5x﹣10)2﹣(x2+5x+3)(x2+5x﹣23),=(x2+5x)2﹣20(x2+5x)+100﹣(x2+5x)2+20(x2+5x)+69,=169.24.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.解:∵x的多项式3x2+x+m分解因式后有一个因式是3x﹣2,当x=时多项式的值为0,即3×=0,∴2+m=0,∴m=﹣2;∴3x2+x+m=3x2+x﹣2=(x+1)(3x﹣2);故答案为:m=﹣2,(x+1)(3x﹣2)25.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.解:设另一个因式为2x2﹣mx ﹣,∴(x﹣3)(2x2﹣mx ﹣)=2x3﹣5x2﹣6x+k,2x3﹣mx2﹣x﹣6x2+3mx+k=2x3﹣5x2﹣6x+k,2x3﹣(m+6)x2﹣(﹣3m)x+k=2x3﹣5x2﹣6x+k,∴6536 3mkm+=⎧⎪⎨-=⎪⎩解得:,∴k=9,∴另一个因式为:2x2+x﹣3.。

相关文档
最新文档