初中数学圆的技巧及练习题附解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】C
【解析】
【分析】
【详解】
解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,
∴OA⊥CA,OB⊥BC,
又∵∠C=90°,OA=OB,
∴四边形AOBC是正方形,
∴OA=AC=4,故A,B正确;
∴ 的长度为: =2π,故C错误;
S扇形OAB= =4π,故D正确.
故选C.
【点睛】
本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.
6.如图, 是 的直径, 是 上一点( 、 除外), ,则 的度数是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据平角得出 的度数,进而利用圆周角定理得出 的度数即可.
【详解】
解: ,
,
,
故选: .
【点睛】
本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的度数的一半是解答此题的关键.
A.130°B.100°C.20°D.10°
【答案】A
【解析】
【分析】
先求出∠ABC的大小,根据内接四边形角度关系,得到∠ADC的大小,从而得出∠C的大小,最后利用圆周角与圆心角的关系得∠AOD的大小.
【详解】
∵∠CBE=50°
∴∠ABC=130°
∵四边形ABCD是内接四边形
∴∠ADC=50°
∵AD=DC
2.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=2 ,BD=1,则sin∠ABD的值是()
A.2 B. C. D.3
【答案】C
【解析】
【分析】
先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD
3.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()
A.圆形铁片的半径是4cmB.四边形AOBC为正方形
C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
【详解】
解:∵AB=5,BC=4,AC=3,
∴AB2=BC2+AC2,
∴△ABC为直角三角形,
∴△ABC的内切圆半径= =1,
∴S△ABC= AC•BC= ×4×3=6,
S圆=π,
∴小鸟落在花圃上的概率= ,
故选B.
【点睛】
本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.
A.2 B.4C. D.2
【答案】D
【解析】
【分析】
连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.
A.2πB.3πC.6πD.8π
【答案】B
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.
【详解】
解:圆锥的侧面积为: ×2π×1×3=3π,
故选:B.
【点睛】
此题考查圆锥的计算,解题关键在于掌握运算公式.
14.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()
A.50cm2B.50πcm2C.25 cm2D.25 πcm2
【答案】D
【解析】
【分析】
根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
7.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()
A.54°B.27°C.36°D.46°
【答案】C
【解析】
【分析】
先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.
【详解】
解:∵OA=OB,
∴∠OBA=∠OAB=54°,
∴∠AOB=180°﹣54°﹣54°=72°,
∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积= ×10π×5 =25 πcm2,
故选:D.
【点睛】
本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.
16.如图,四边形 内接于圆 , , , 的大小为()
∴∠ACB= ∠AOB=36°.
故答案为C.
【点睛】
本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.
8.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
【点睛】
主要考察轴对称图形,弧长的求法即对于新概念的理解.
11.如图, 中,若 ,则 的度数为()
A.33°B.56°C.57°D.66°
【答案】A
【解析】
【分析】
根据垂径定理可得 ,根据圆周角定理即可得答案.
【详解】
∵OA⊥BC,
∴ ,
∵∠AOB=66°,∠AOB和∠ADC分别是 和 所对的圆心角和圆周角,
∴在△ADC中,∠C=∠DAC=65°
∴∠AOD=2∠C=130°
故选:A
【点睛】
本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.
17.如图,在圆O中,直径AB平分弦CD于点E,且CD=4 ,连接AC,OD,若∠A与∠DOB互余,则EB的长是()
初中数学圆的技巧及练习题附解析
一、选择题
1.如图, 是一块绿化带,将阴影部分修建为花圃.已知 , , ,阴影部分是 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为().
A. B.
C. D.
【答案】B
【解析】
【分析】
由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径= =1,求得直角三角形的面积和圆的面积,即可得到结论.
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD•sin60°= ,
∴图中阴影部分的面积=菱形ABCD的面积 扇形DEFG的面积
= .
故选:C.
【点睛】
本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.
15.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为( )
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
A. B. C. D.
【答案】A
【解析】
【分析】
根据同弧和等弧所对的圆周角相等,则 弧所对的圆周角 , 和 是对顶角,所以 .
【详解】
解: ,
,
故选: .
【点睛】
考查相似三角形的判定定理:两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.
13.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )
A. B. C. D.
【答案】C
【解析】
【分析】
由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积 扇形DEFG的面积,根据面积公式计算即可.
【详解】
解:∵四边形ABCD是菱形,∠DAB=60°,
∴AD=AB=8,∠ADC=180° 60°=120°,
②若a=1,则 =a是真命题,逆命题是假命题;
③内错角相等是假命题,逆命题是假命题;
④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;
其中原命题与逆命题均为真命题的个数是1个;
故选A.
点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
9.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )
【详解】连接AI、BI,
∵点I为△ABC的内心,
∴AI平分∠CAB,
∴∠CAI=∠BAI,
由平移得:AC∥DI,
∴∠CAI=∠AID,
∴∠BAI=∠AID,
∴AD=DI,
同理可得:BE=EI,
∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,
即图中阴影部分的周长为4,
故选B.
【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.
∴∠ADC= ∠AOB=33°,
故选:A.
【点睛】
本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握相关定理是解题关键.
12.如图,已知 和 都 是的内接三角形, 和 相交于点 ,则与 的相似的三角形是()
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A到 上任意一点的距离都是DE,故正确;
勒洛三角形上任意一点到等边三角形DEF的中心 的距离都不相等, 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3× ,圆的周长= ,故说法正确.
故选C.
4.已知下列命题:
①若a>b,则ac>bc;
②若a=1,则 =a;
③内错角相等;
④90°的圆周角所对的弦是直径.
其中原命题与逆命题均为真命题的个数是( )
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
先对原命题进行判断,再判断出逆命题的真假即可.
【详解】
解:①若a>b,则ac>bc是假命题,逆命题是假命题;
【详解】
解:∵弦CD⊥AB,AB过O,
∴AB平分CD,
∴BC=BD,
∴∠ABC=∠ABD,
∵BD=1,
∴BC=1,
∵AB为⊙O的直径,
∴∠ACB=90°,
由勾股定理得:AB= ,
∴sin∠ABD=sin∠ABC=
故选:C.
【点睛】
本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解
5.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )
A.4.5B.4C.3D.2
【答案】B
பைடு நூலகம்【解析】
【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.
A. B.
C. D.
【答案】D
【解析】
解:如右图,
连接OP,由于OP是Rt△AOB斜边上的中线,
所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
故选D.
10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.
【解析】
【分析】
【详解】
解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,
∴OA⊥CA,OB⊥BC,
又∵∠C=90°,OA=OB,
∴四边形AOBC是正方形,
∴OA=AC=4,故A,B正确;
∴ 的长度为: =2π,故C错误;
S扇形OAB= =4π,故D正确.
故选C.
【点睛】
本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.
6.如图, 是 的直径, 是 上一点( 、 除外), ,则 的度数是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据平角得出 的度数,进而利用圆周角定理得出 的度数即可.
【详解】
解: ,
,
,
故选: .
【点睛】
本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的度数的一半是解答此题的关键.
A.130°B.100°C.20°D.10°
【答案】A
【解析】
【分析】
先求出∠ABC的大小,根据内接四边形角度关系,得到∠ADC的大小,从而得出∠C的大小,最后利用圆周角与圆心角的关系得∠AOD的大小.
【详解】
∵∠CBE=50°
∴∠ABC=130°
∵四边形ABCD是内接四边形
∴∠ADC=50°
∵AD=DC
2.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=2 ,BD=1,则sin∠ABD的值是()
A.2 B. C. D.3
【答案】C
【解析】
【分析】
先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD
3.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()
A.圆形铁片的半径是4cmB.四边形AOBC为正方形
C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
【详解】
解:∵AB=5,BC=4,AC=3,
∴AB2=BC2+AC2,
∴△ABC为直角三角形,
∴△ABC的内切圆半径= =1,
∴S△ABC= AC•BC= ×4×3=6,
S圆=π,
∴小鸟落在花圃上的概率= ,
故选B.
【点睛】
本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.
A.2 B.4C. D.2
【答案】D
【解析】
【分析】
连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.
A.2πB.3πC.6πD.8π
【答案】B
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.
【详解】
解:圆锥的侧面积为: ×2π×1×3=3π,
故选:B.
【点睛】
此题考查圆锥的计算,解题关键在于掌握运算公式.
14.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()
A.50cm2B.50πcm2C.25 cm2D.25 πcm2
【答案】D
【解析】
【分析】
根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
7.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()
A.54°B.27°C.36°D.46°
【答案】C
【解析】
【分析】
先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.
【详解】
解:∵OA=OB,
∴∠OBA=∠OAB=54°,
∴∠AOB=180°﹣54°﹣54°=72°,
∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积= ×10π×5 =25 πcm2,
故选:D.
【点睛】
本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.
16.如图,四边形 内接于圆 , , , 的大小为()
∴∠ACB= ∠AOB=36°.
故答案为C.
【点睛】
本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.
8.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
【点睛】
主要考察轴对称图形,弧长的求法即对于新概念的理解.
11.如图, 中,若 ,则 的度数为()
A.33°B.56°C.57°D.66°
【答案】A
【解析】
【分析】
根据垂径定理可得 ,根据圆周角定理即可得答案.
【详解】
∵OA⊥BC,
∴ ,
∵∠AOB=66°,∠AOB和∠ADC分别是 和 所对的圆心角和圆周角,
∴在△ADC中,∠C=∠DAC=65°
∴∠AOD=2∠C=130°
故选:A
【点睛】
本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.
17.如图,在圆O中,直径AB平分弦CD于点E,且CD=4 ,连接AC,OD,若∠A与∠DOB互余,则EB的长是()
初中数学圆的技巧及练习题附解析
一、选择题
1.如图, 是一块绿化带,将阴影部分修建为花圃.已知 , , ,阴影部分是 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为().
A. B.
C. D.
【答案】B
【解析】
【分析】
由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径= =1,求得直角三角形的面积和圆的面积,即可得到结论.
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD•sin60°= ,
∴图中阴影部分的面积=菱形ABCD的面积 扇形DEFG的面积
= .
故选:C.
【点睛】
本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.
15.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为( )
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
A. B. C. D.
【答案】A
【解析】
【分析】
根据同弧和等弧所对的圆周角相等,则 弧所对的圆周角 , 和 是对顶角,所以 .
【详解】
解: ,
,
故选: .
【点睛】
考查相似三角形的判定定理:两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.
13.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )
A. B. C. D.
【答案】C
【解析】
【分析】
由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积 扇形DEFG的面积,根据面积公式计算即可.
【详解】
解:∵四边形ABCD是菱形,∠DAB=60°,
∴AD=AB=8,∠ADC=180° 60°=120°,
②若a=1,则 =a是真命题,逆命题是假命题;
③内错角相等是假命题,逆命题是假命题;
④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;
其中原命题与逆命题均为真命题的个数是1个;
故选A.
点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
9.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )
【详解】连接AI、BI,
∵点I为△ABC的内心,
∴AI平分∠CAB,
∴∠CAI=∠BAI,
由平移得:AC∥DI,
∴∠CAI=∠AID,
∴∠BAI=∠AID,
∴AD=DI,
同理可得:BE=EI,
∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,
即图中阴影部分的周长为4,
故选B.
【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.
∴∠ADC= ∠AOB=33°,
故选:A.
【点睛】
本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握相关定理是解题关键.
12.如图,已知 和 都 是的内接三角形, 和 相交于点 ,则与 的相似的三角形是()
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A到 上任意一点的距离都是DE,故正确;
勒洛三角形上任意一点到等边三角形DEF的中心 的距离都不相等, 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3× ,圆的周长= ,故说法正确.
故选C.
4.已知下列命题:
①若a>b,则ac>bc;
②若a=1,则 =a;
③内错角相等;
④90°的圆周角所对的弦是直径.
其中原命题与逆命题均为真命题的个数是( )
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
先对原命题进行判断,再判断出逆命题的真假即可.
【详解】
解:①若a>b,则ac>bc是假命题,逆命题是假命题;
【详解】
解:∵弦CD⊥AB,AB过O,
∴AB平分CD,
∴BC=BD,
∴∠ABC=∠ABD,
∵BD=1,
∴BC=1,
∵AB为⊙O的直径,
∴∠ACB=90°,
由勾股定理得:AB= ,
∴sin∠ABD=sin∠ABC=
故选:C.
【点睛】
本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解
5.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )
A.4.5B.4C.3D.2
【答案】B
பைடு நூலகம்【解析】
【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.
A. B.
C. D.
【答案】D
【解析】
解:如右图,
连接OP,由于OP是Rt△AOB斜边上的中线,
所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
故选D.
10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.