单链表 队列 数据结构实验报告 及结果

合集下载

单链表的实验报告

单链表的实验报告

单链表的实验报告单链表的实验报告引言:单链表是一种常用的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

在本次实验中,我们将学习如何使用单链表来实现一些基本的操作,并通过实验验证其功能和效率。

一、实验目的本次实验的主要目的是掌握单链表的基本概念和操作方法,包括插入、删除、查找等操作,并通过实际操作来验证其正确性和效率。

二、实验过程1. 单链表的定义和初始化首先,我们需要定义一个单链表的结构,并初始化一个空链表。

链表的结构可以使用C语言中的结构体来表示,其中包含一个数据域和一个指向下一个节点的指针。

2. 插入操作在已有链表中插入一个新的节点,可以分为两种情况:在链表头部插入和在链表中间插入。

我们可以通过修改指针的指向来实现插入操作。

3. 删除操作删除链表中的一个节点,同样可以分为两种情况:删除头节点和删除中间节点。

删除操作需要注意指针的重新连接,以防止链表断裂。

4. 查找操作在链表中查找指定的元素,可以通过遍历链表的方式来实现。

从链表头开始,依次比较节点的数据域,直到找到目标元素或者遍历到链表尾部。

5. 其他操作在实际应用中,还可以对链表进行排序、逆序、合并等操作,这些操作都可以通过适当的算法来实现。

三、实验结果通过实际操作,我们验证了单链表的各种操作方法的正确性和效率。

在插入、删除和查找操作中,链表的时间复杂度为O(n),其中n为链表的长度。

而在其他操作中,时间复杂度则根据具体算法的实现方式而定。

四、实验总结通过本次实验,我们深入了解了单链表的结构和操作方法,并通过实际操作来验证了其功能和效率。

单链表作为一种常用的数据结构,在实际应用中具有广泛的用途,例如链表可以用来实现栈、队列等其他数据结构,也可以用于解决一些实际问题,如链表的反转、环的检测等。

总之,掌握单链表的基本概念和操作方法对于学习和理解数据结构具有重要意义。

通过实验的方式,我们不仅能够加深对单链表的理解,还能够提高编程能力和解决实际问题的能力。

数据结构实验报告--单链表

数据结构实验报告--单链表

数据结构实验报告--单链表数据结构实验报告--单链表1.引言1.1 研究目的本实验旨在通过实践的方式,深入了解单链表的数据结构以及相关操作,提升对数据结构的理解和应用能力。

1.2 实验内容本实验主要包括以下几个方面的内容:●单链表的基本定义和实现●单链表的插入、删除、遍历操作●单链表的逆置操作●单链表的查找和修改操作2.理论基础2.1 单链表的定义单链表是一种常见的线性数据结构,它由一系列的节点组成,每个节点包含数据和指向下一个节点的指针。

2.2 单链表的基本操作①单链表的插入操作在单链表中,可以通过插入操作在指定位置插入一个新节点,该操作主要包括以下步骤:●创建一个新的节点,并为其赋值●将新节点的next指针指向插入位置的后一个节点●将插入位置的前一个节点的next指针指向新节点②单链表的删除操作在单链表中,可以通过删除操作删除指定位置的节点,该操作主要包括以下步骤:●将删除位置的前一个节点的next指针指向删除位置的后一个节点●释放删除节点的内存③单链表的遍历操作单链表的遍历操作主要是依次访问链表中的每一个节点,并执行相应的操作。

④单链表的逆置操作单链表的逆置操作可以将一个单链表中的节点顺序进行颠倒。

⑤单链表的查找操作在单链表中,可以通过查找操作找到指定值的节点。

⑥单链表的修改操作在单链表中,可以通过修改操作修改指定位置的节点的值。

3.实验过程3.1 实验环境本次实验使用C语言进行编程,需要先安装相应的编程环境,如gcc编译器。

3.2 实验步骤①单链表的创建和初始化首先创建一个空链表,并初始化链表的头指针。

②单链表的插入操作按照需求,在链表的指定位置插入一个新节点。

③单链表的删除操作按照需求,删除链表中的指定位置的节点。

④单链表的遍历操作依次访问链表中的每一个节点,并输出其值。

⑤单链表的逆置操作将单链表中的节点顺序进行逆置。

⑥单链表的查找操作按照需求,在链表中查找指定值的节点。

3.2.7 单链表的修改操作按照需求,修改链表中指定位置的节点的值。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告实验目的:掌握单链表的基本操作,学会使用单链表实现各种算法。

实验内容:实现单链表的基本操作,包括创建、插入、删除、访问等。

利用单链表完成以下算法:- 单链表逆序- 查找单链表中的中间节点- 删除单链表中的倒数第K个节点- 合并两个有序单链表为一个有序单链表实验步骤:1. 创建单链表在创建单链表时,先定义一个结构体Node来表示链表中的节点,节点包括数据域和指针域,指针域指向下一个节点。

然后,用指针p指向链表的头节点,将头节点的指针域初始化为NULL。

2. 插入节点在单链表中插入节点的操作分为两种情况:- 在链表头插入节点- 在链表中间或尾部插入节点无论是哪种情况,先将新节点的指针域指向要插入的位置的下一个节点,再将要插入的位置的指针域指向新节点即可。

3. 删除节点删除链表节点的操作同样分为两种情况:- 删除头节点- 删除中间或尾部节点要删除头节点,先用一个指针将头节点指向的下一个节点保存起来,再将头节点释放掉。

要删除中间或尾部节点,先用一个指针指向要删除节点的前一个节点,然后将指向要删除节点的前一个节点的指针域指向要删除节点的下一个节点,最后将要删除的节点释放掉。

4. 单链表逆序单链表逆序可以使用三个指针来完成,分别为pre指针、cur指针和next指针。

首先将pre指针和cur指针指向NULL,然后循环遍历链表,将cur指针指向当前节点,将next指针指向当前节点的下一个节点,然后将当前节点的指针域指向pre指针,最后将pre指针和cur指针向前移动一个节点,继续进行循环。

5. 查找单链表中的中间节点查找单链表中的中间节点可以使用双指针法,将两个指针p1和p2都指向链表头,然后p1每次向前移动一个节点,而p2每次向前移动两个节点,当p2指向了链表尾部时,p1指向的节点即为中间节点。

6. 删除单链表中的倒数第K个节点删除单链表中的倒数第K个节点可以使用双指针法,在链表中定义两个指针p1和p2,p1指向链表头,p2指向第K个节点,然后p1和p2同时向前移动,直到p2指向链表尾部,此时p1指向的节点即为要删除的节点。

单链表的实验报告总结

单链表的实验报告总结

单链表的实验报告总结单链表是一种常用的数据结构,它由一系列节点组成,每个节点包含了数据和指向下一个节点的指针。

在实验中,我们对单链表进行了操作和实现,通过此次实验,我深刻理解了单链表的特点和应用。

以下是我对此次实验的总结和体会。

在实验中我们实现了单链表的创建和初始化。

通过创建一个头节点,并将头节点的指针指向空,我们成功地初始化了一个空的单链表。

这为后续的操作打下了基础。

接着,我们实现了单链表的插入操作。

通过指定要插入的位置和值,我们可以在单链表的任意位置插入一个新的节点。

这个操作非常灵活,让我感受到了单链表的动态性和可变性。

通过插入操作,我们可以在单链表中任意位置插入新的元素,从而灵活地调整单链表的结构和内容。

在实验中,我们还实现了单链表的删除操作。

通过指定要删除的节点位置,我们可以将该节点从单链表中删除。

这个操作也非常重要,可以帮助我们对单链表中的数据进行动态管理。

通过删除操作,我们可以方便地删除单链表中的某个元素,从而保持单链表的整洁和有序。

除了插入和删除操作,我们还实现了单链表的查找操作。

通过指定要查找的值,我们可以在单链表中查找到对应的节点。

这个操作非常实用,可以帮助我们快速定位和访问单链表中的数据。

通过查找操作,我们可以方便地获取单链表中特定元素的值,从而满足我们对数据的需求。

在实验中,我们还实现了单链表的修改操作。

通过指定要修改的节点位置和新的值,我们可以将单链表中某个节点的值进行修改。

这个操作也非常有用,可以帮助我们对单链表中的数据进行更新和改进。

通过修改操作,我们可以方便地对单链表中的某个元素进行数值的调整,从而满足我们对数据的要求。

通过本次实验,我对单链表的原理和操作有了更深入的理解。

单链表是一种非常灵活和实用的数据结构,可以应用于各种场景和问题。

它的特点是插入和删除操作的效率很高,但查找和修改操作的效率较低。

因此,在实际应用中,我们需要根据具体的需求和场景选择合适的数据结构。

数据队列实验报告总结(3篇)

数据队列实验报告总结(3篇)

第1篇一、实验背景数据结构是计算机科学中一个重要的基础学科,其中队列作为一种常用的数据结构,在计算机科学和实际应用中具有广泛的应用。

队列是一种先进先出(FIFO)的线性表,它允许在表的一端进行插入操作,在另一端进行删除操作。

本实验旨在通过实现队列的基本操作,加深对队列数据结构概念和特性的理解,并掌握其在实际应用中的运用。

二、实验目的1. 理解队列数据结构的概念和特性。

2. 掌握队列的存储结构,包括顺序存储和链式存储。

3. 熟悉队列的基本操作,如入队、出队、队列长度、队列状态判断等。

4. 通过实际编程,提高数据结构应用能力。

三、实验内容1. 队列的顺序存储结构实现:- 定义队列结构体,包含队列长度、队列最大长度、队列首尾指针等。

- 实现队列的初始化、入队、出队、判断队列是否为空、判断队列是否已满等操作。

2. 队列的链式存储结构实现:- 定义队列节点结构体,包含队列数据、指针等。

- 实现队列的初始化、入队、出队、判断队列是否为空、判断队列是否已满等操作。

3. 队列的实际应用:- 使用队列实现广度优先搜索(BFS)算法。

- 使用队列实现单链表反转。

- 使用队列实现表达式求值。

四、实验步骤1. 创建队列结构体,定义队列的基本属性和操作函数。

2. 实现队列的顺序存储结构,包括队列的初始化、入队、出队、判断队列是否为空、判断队列是否已满等操作。

3. 实现队列的链式存储结构,包括队列的初始化、入队、出队、判断队列是否为空、判断队列是否已满等操作。

4. 通过实际编程,验证队列的基本操作是否正确。

5. 使用队列实现实际应用,验证队列在解决问题中的应用价值。

五、实验结果与分析1. 顺序存储结构实现:- 队列的初始化、入队、出队、判断队列是否为空、判断队列是否已满等操作均能正常进行。

- 队列的顺序存储结构在插入和删除操作时,需要移动队列中的元素,因此时间复杂度为O(n)。

2. 链式存储结构实现:- 队列的初始化、入队、出队、判断队列是否为空、判断队列是否已满等操作均能正常进行。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告数据结构单链表实验报告一、实验目的本次实验的主要目的是通过实现单链表数据结构,加深对链表的理解,并通过实际操作掌握链表的基本操作。

二、实验环境1.操作系统:Windows 102.开发环境:C/C++语言3.开发工具:Visual Studio 2019三、实验内容本次实验的内容包括以下几个方面:1.单链表的定义与初始化1.1 单链表的结构定义1.2 创建一个空链表1.3 判断链表是否为空2.单链表的基本操作2.1 在链表头部插入节点2.3 在指定位置插入节点2.4 删除链表的指定节点2.5 查找链表中指定位置的节点2.6 修改链表中指定位置的节点2.7 输出链表中的所有节点3.单链表的应用示例3.1 操作链表实现栈3.2 操作链表实现队列3.3 链表逆置四、实验步骤与结果1.实验步骤1.1 定义一个节点结构体,包含数据域和指针域 1.2 创建一个空链表1.3 插入节点到链表的指定位置1.4 删除链表中的指定节点1.5 修改链表中的指定节点1.7 实现链表的应用示例2.实验结果经过以上步骤的操作,我们成功实现了单链表的各种基本操作,并实现了链表作为栈和队列的应用示例。

五、实验总结通过本次实验,我们深入理解了单链表的原理和基本操作,掌握了链表的插入、删除、查找等操作方法。

同时,我们还学会了如何应用链表来实现栈和队列等数据结构。

通过实际操作,巩固了对数据结构的理解和应用能力。

附件:无法律名词及注释:1.数据结构:是计算机存储、组织数据的方式,是指一组数据的表达方式,以及定义在该组数据上的一组操作。

2.链表:链表是一种常见的数据结构,用于存储有序的元素集合。

每个节点包含一个元素和一个指向下一个节点的指针。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告范本:数据结构单链表实验报告一、引言本实验旨在掌握数据结构中单链表的基本概念、操作和应用。

通过实际操作,理解单链表的结构与实现,提高数据结构的编程能力和问题解决能力。

二、实验目的1. 理解单链表的概念和特点;2. 掌握单链表的基本操作,包括插入、删除、遍历;3. 学会使用单链表解决实际问题。

三、实验内容1. 单链表的定义和结构设计;2. 单链表的基本操作的实现,包括插入节点、删除节点、遍历;3. 针对具体的问题,设计相应的单链表操作。

四、实验步骤1. 单链表的定义和结构设计:(1)定义单链表的结构体,包含数据域和指针域;(2)实现单链表的初始化函数;(3)实现单链表的销毁函数。

2. 单链表的基本操作的实现:(1)实现单链表的插入节点操作;(2)实现单链表的删除节点操作;(3)实现单链表的遍历操作。

3. 针对具体问题的单链表操作:(1)根据具体需求,设计并实现相应的操作函数;(2)利用单链表解决具体问题。

五、实验结果与分析1. 在实验过程中,成功实现了单链表的定义和结构设计,包括数据域和指针域的正确设置。

2. 实验中实现了插入节点、删除节点和遍历等基本操作。

3. 针对具体问题,通过单链表操作解决了相应的问题。

六、实验总结通过本次实验,加深了对单链表的理解和掌握。

掌握了单链表的基本操作和应用实现,提高了数据结构的编程能力和问题解决能力。

附件:1. 本文所涉及的代码文件;2. 实验过程中所用到的数据文件。

法律名词及注释:1. 数据结构:指的是一组数据的表示方法和相应的操作。

在计算机科学中,数据结构是计算机中存储、组织数据的方式。

2. 单链表:是一种链式存储结构,每个节点包含数据域和指针域。

数据域用于存储数据,指针域用于指向下一个节点。

数据结构的实训报告结果

数据结构的实训报告结果

一、实训目的本次数据结构实训旨在通过实践操作,加深对数据结构理论知识的理解,提高解决实际问题的能力。

通过实训,使学生能够熟练掌握各种基本数据结构及其操作方法,并能够将这些知识应用于解决实际问题。

二、实训环境1. 操作系统:Windows 102. 编程语言:C语言3. 开发环境:Visual Studio 20194. 实训教材:《数据结构》(C语言版)三、实训内容本次实训主要内容包括线性表、栈、队列、树、图等基本数据结构的创建、操作和应用。

1. 线性表(1)单链表的创建、插入、删除和查找操作(2)双向链表的创建、插入、删除和查找操作(3)循环链表的创建、插入、删除和查找操作2. 栈(1)栈的创建、入栈、出栈和判断栈空操作(2)应用栈实现括号匹配3. 队列(1)队列的创建、入队、出队和判断队列空操作(2)应用队列实现广度优先搜索4. 树(1)二叉树的创建、插入、删除和遍历操作(2)二叉查找树的创建、插入、删除和查找操作5. 图(1)图的创建、添加边、删除边和遍历操作(2)图的深度优先遍历和广度优先遍历四、实训过程1. 线性表首先,我们学习了单链表、双向链表和循环链表的基本概念和创建方法。

通过编写代码,实现了链表的插入、删除和查找操作。

在实训过程中,我们遇到了一些问题,如链表插入操作时指针的移动、删除操作时避免内存泄漏等。

通过查阅资料和与同学讨论,我们逐步解决了这些问题。

2. 栈接着,我们学习了栈的基本概念和操作方法。

通过编写代码,实现了栈的创建、入栈、出栈和判断栈空操作。

在实训过程中,我们遇到了栈空和栈满的情况,通过设置标志位和循环队列的方法解决了这些问题。

此外,我们还学习了应用栈实现括号匹配,加深了对栈的应用理解。

3. 队列然后,我们学习了队列的基本概念和操作方法。

通过编写代码,实现了队列的创建、入队、出队和判断队列空操作。

在实训过程中,我们遇到了队列空和队列满的情况,通过设置标志位和循环队列的方法解决了这些问题。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告一、实验目的本实验的目的是通过设计和实现单链表数据结构,加深对于单链表的理解和掌握,并能够灵活应用单链表解决实际问题。

二、实验内容1·理解单链表的概念和基本操作2·设计并实现单链表数据结构3·实现单链表的创建、插入、删除和查找操作4·应用单链表解决实际问题三、实验步骤1·理解单链表的概念和基本操作单链表是一种常见的线性链表结构,它由多个节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

单链表的基本操作包括创建链表、插入节点、删除节点和查找节点等。

2·设计并实现单链表数据结构首先,定义单链表节点的结构,包含数据元素和指向下一个节点的指针。

然后,定义一个链表结构,包含头节点和尾节点的指针。

3·实现单链表的创建、插入、删除和查找操作●创建链表:通过依次插入节点的方式创建一个空的链表。

●插入节点:根据插入位置,将新节点插入到链表中的适当位置。

●删除节点:根据节点的值或位置,删除链表中的对应节点。

●查找节点:根据节点的值或位置,在链表中查找对应节点。

4·应用单链表解决实际问题通过设计和实现单链表数据结构,应用单链表解决实际问题,如实现一个通讯录、一个待办事项列表等。

四、实验结果根据实验步骤,我们成功设计并实现了单链表数据结构,并应用单链表解决了实际问题。

经过测试,单链表的创建、插入、删除和查找操作均正常工作。

五、实验总结通过本次实验,我们深入学习了单链表的概念和基本操作。

通过设计和实现单链表数据结构,并应用单链表解决实际问题,加深了对于单链表的理解和掌握。

六、附件本实验报告涉及的附件包括实验代码和测试数据。

七、法律名词及注释1·数据结构:数据结构是计算机存储、组织数据的方式,是程序设计和算法设计的基础。

2·单链表:单链表是一种常见的线性链表结构,它由多个节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

单链表实验报告总结

单链表实验报告总结

单链表实验报告总结‎单链表实验报告总结‎‎篇一:‎单链表实验报告‎实验一线性表基本操‎作的编程实现 --线‎性表在链表存储下的主‎要操作实现班级:T‎523-1 姓名:王‎娟学号:33 完成‎日期:201X.0‎ 4.04 地点‎:5502 学时:2‎学时一‎、需求分析【实验目‎的】通过本次实验,‎对课堂上线性表的知识‎进行巩固,进一步熟悉‎线性表的链接存储及‎相应的基本操作;并熟‎练掌握VC++‎6.0操作平台,学‎会调试程序,以及编写‎电子实验报告【实验‎要求】编写线性表的‎基本操作,有构造线性‎表,线性表的遍历,插‎入,删除,查找,求‎表长等基本功能,在此‎基础上能够加入DS下‎的图形界面以及学会文‎件的操作等功能,为以‎后的学习打下基础。

‎【实验任务】‎(1).线性表基本操‎作的编程实现,掌握线‎性表的建立、遍历、插‎入、删除等基本操作的‎编程实现,也可以进一‎步编程实现查找、逆序‎、排序等操作,存储结‎构可以在顺序结构或链‎表结构中任选,可以完‎成部分主要功能,也可‎以用菜单进行管理完成‎大部分功能。

还鼓励学‎生利用基本操作进行一‎些更实际的应用型程序‎设计。

(2)‎.用菜单管理,把线性‎表的顺序存储和链表存‎储的数据插入、删除运‎算进行程序实现。

建‎议实现键盘数据输入实‎现改实验的通用性。

为‎了体现功能的正常性,‎至少要编制遍历数据的‎函数.(3)‎.注意事项:开发语言‎使用C++,尽量使用‎面向对象的思想和实现‎方法,可以改编成应用‎软件. 【实验类型】‎验证型实验‎二、概要设计需要实‎现线性表的以下功能:‎1、创建单链‎表2、删除链‎表中的某个结点‎3、输出单链表(遍‎历)4、释放‎结点所占空间‎5、查找第i个结点‎6、插入一个结‎点7、求链表‎的长度二、详‎细设计(1)‎.数据结构线性表的‎线性结构觉决定了它的‎性质:数据元‎素之间是一种线性关系‎,数据元素一个接一‎个的排列,除了最后一‎个数据,其他的数据面‎临的下一个数据有且仅‎有一个。

数据结构实验报告单链表

数据结构实验报告单链表

数据结构实验报告_单链表数据结构实验报告——单链表一、实验目的1.掌握单链表的基本概念和原理。

2.了解单链表在计算机科学中的应用。

3.掌握单链表的基本操作,如插入、删除、遍历等。

4.通过实验,加深对理论知识的理解,提高编程能力。

二、实验内容1.实验原理:单链表是一种线性数据结构,由一系列节点组成,每个节点包含数据域和指针域。

其中,指针域指向下一个节点,最后一个节点的指针域指向空。

单链表的主要操作包括插入、删除、遍历等。

2.实验步骤:(1)创建一个单链表。

(2)实现插入操作,即在链表的末尾插入一个新节点。

(3)实现删除操作,即删除链表中的一个指定节点。

(4)实现遍历操作,即输出链表中所有节点的数据。

3.实验代码:下面是使用Python语言实现的单链表及其基本操作的示例代码。

class Node:def __init__(self, data):self.data = dataself.next = Noneclass LinkedList:def __init__(self):self.head = Nonedef insert(self, data):new_node = Node(data)if self.head is None:self.head = new_nodeelse:current = self.headwhile current.next is not None:current = current.nextcurrent.next = new_nodedef delete(self, data):if self.head is None:returnif self.head.data == data:self.head = self.head.nextreturncurrent = self.headwhile current.next is not None and current.next.data != data:current = current.nextif current.next is None:returncurrent.next = current.next.nextdef traverse(self):current = self.headwhile current is not None:print(current.data)current = current.next4.实验结果:通过运行上述代码,我们可以看到单链表的基本操作得到了实现。

数据结构-单链表实验报告

数据结构-单链表实验报告

数据结构-单链表实验报告数据结构单链表实验报告一、实验目的本次实验的主要目的是深入理解和掌握单链表这一数据结构的基本概念、操作原理以及在实际编程中的应用。

通过编写和调试相关程序,提高对数据结构的理解和编程能力,培养解决实际问题的思维和方法。

二、实验环境本次实验使用的编程语言为C++,编程环境为Visual Studio 2019。

三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。

数据域用于存储节点的数据信息,指针域用于指向下一个节点。

通过这种方式,节点依次连接形成链表。

单链表的基本操作包括创建链表、插入节点、删除节点、查找节点、遍历链表等。

在实现这些操作时,需要特别注意指针的操作,避免出现空指针异常和内存泄漏等问题。

四、实验内容(一)创建单链表创建单链表的过程就是依次为每个节点分配内存空间,并将节点连接起来。

以下是创建单链表的代码实现:```cppinclude <iostream>using namespace std;//定义链表节点结构体struct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};//创建单链表ListNode createList(){ListNode head = NULL;ListNode tail = NULL;int num;cout <<"请输入链表节点的值(输入-1 结束):";cin >> num;while (num!=-1) {ListNode newNode = new ListNode(num);if (head == NULL) {head = newNode;tail = newNode;} else {tail>next = newNode;tail = newNode;}cin >> num;}return head;}```(二)插入节点插入节点可以分为在表头插入、在表尾插入和在指定位置插入三种情况。

数据结构实验报告队列的表示与实现

数据结构实验报告队列的表示与实现
//从队头到队尾依次对队列Q中的每个元素调用函数visit()。
一旦visit失败, 则操作失败。
链队列:
//单链队列-—队列的链式存储结构
typedef struct QNode{
QElemType data;
struct QNode *next;
}QNode,*QueuePtr;
typedef struct{
if(! Q.front )exit(OVERFLOW); //存储分配失败
Q.front —〉next =NULL;
return OK;}
Status DestoryQueue(LinkQueue &Q){//销毁队列Q, Q不再存在
while(Q.front){
Q。rear=Q.front —〉next;
DestoryQueue(&Q)//初始条件:队列Q已存在
//操作结果: 队列Q被销毁, 不再存在
ClearQueue(&Q)//初始条件:队列Q已存在
//操作结果: 将Q清为空队列
QueueEmpty(Q)//初始条件: 队列Q已存在
//操作结果:若队列Q为空队列, 则返回TRUE, 否则FALSE
QueuePtr front;//队头指针
QueuePtr rear;//队尾指针
}LinkQueue;
//—---—单链队列的基本操作的算法描述—-————
status INitQueue(LinkQueue &Q){//构造一个空队列Q
Q.front=Q。rear=(QueuePtr)malloc(sizeof(QNode));
数据结构实验报告
姓名
学号

实验地点
数学楼

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告数据结构单链表实验报告1. 引言数据结构是计算机科学中的重要基础,它研究数据的组织、存储和管理方式。

单链表是一种基本的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

本实验旨在通过实践操作单链表,加深对数据结构的理解。

2. 实验目的本实验的主要目的是掌握单链表的基本操作,包括创建链表、插入节点、删除节点和遍历链表。

通过实践操作,加深对链表的理解,提高编程能力和解决问题的能力。

3. 实验环境和工具本实验使用C语言进行编程实现,可以选择任何C语言开发环境,如Dev-C++、Code::Blocks等。

在编程过程中,可以使用任何文本编辑器编写代码。

4. 实验步骤4.1 创建链表首先,需要定义一个节点结构体,包含数据和指向下一个节点的指针。

然后,通过动态内存分配来创建链表的第一个节点,并将其地址赋给头指针。

接下来,可以通过输入数据的方式,逐个创建链表的其他节点。

4.2 插入节点在链表中插入节点是一种常见的操作。

可以在链表的任意位置插入一个新节点,只需要修改相应节点的指针即可。

首先,需要找到插入位置的前一个节点,然后将新节点的指针指向原来的下一个节点,再将前一个节点的指针指向新节点。

4.3 删除节点删除链表中的节点也是一种常见的操作。

可以根据节点的值或位置来删除节点。

首先,需要找到要删除的节点的前一个节点,然后将前一个节点的指针指向要删除节点的下一个节点,最后释放要删除节点的内存空间。

4.4 遍历链表遍历链表是一种查看链表中所有节点的操作。

可以通过循环遍历链表中的每个节点,输出节点的值或进行其他操作。

需要注意的是,遍历链表时需要使用一个临时指针来指向当前节点,以便于移动到下一个节点。

5. 实验结果与分析通过实验,我们成功实现了单链表的创建、插入、删除和遍历操作。

在实际应用中,单链表可以用于实现各种数据结构和算法,如栈、队列和图等。

它具有灵活性和高效性的特点,可以方便地进行节点的插入和删除操作。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告实验目的:本实验的目的是通过实现单链表数据结构,加深对数据结构的理解,并掌握单链表的基本操作和算法。

实验内容:1、单链表的定义单链表由若干个节点组成,每个节点包含数据域和指针域,数据域存储具体数据,指针域指向下一个节点。

单链表的头指针指向链表的第一个节点。

2、单链表的基本操作2.1 初始化链表初始化链表时,将头指针置空,表示链表为空。

2.2 插入节点插入节点可以分为头插法和尾插法。

- 头插法:将新节点插入链表头部,新节点的指针域指向原头节点,头指针指向新节点。

- 尾插法:将新节点插入链表尾部,新节点的指针域置空,原尾节点的指针域指向新节点。

2.3 删除节点删除节点可以分为按位置删除和按值删除两种方式。

- 按位置删除:给定要删除节点的位置,修改前一节点的指针域即可。

- 按值删除:给定要删除节点的值,遍历链表找到对应节点,修改前一节点的指针域即可。

2.4 遍历链表遍历链表即按顺序访问链表的每个节点,并输出节点的数据。

2.5 查找节点查找节点可以分为按位置查找和按值查找两种方式。

- 按位置查找:给定节点的位置,通过遍历链表找到对应节点。

- 按值查找:给定节点的值,通过遍历链表找到第一个匹配的节点。

实验步骤:1、根据实验目的,定义单链表的结构体和基本操作函数。

2、实现初始化链表的函数,将头指针置空。

3、实现头插法或尾插法插入节点的函数。

4、实现按位置删除节点的函数。

5、实现按值删除节点的函数。

6、实现遍历链表的函数,输出节点的数据。

7、实现按位置查找节点的函数。

8、实现按值查找节点的函数。

9、设计实验样例,测试单链表的各种操作。

实验结果与分析:通过测试实验样例,我们可以验证单链表的各种操作是否正确。

如果出现异常情况,可通过调试找出问题所在,并进行修改。

单链表的操作时间复杂度与操作的位置有关,对于查找操作,时间复杂度为O(n);对于插入和删除操作,时间复杂度也为O(n)。

附件:1、单链表的定义和基本操作的源代码文件。

数据结构实验报告_单链表

数据结构实验报告_单链表

数据结构实验报告_单链表【实验目的】1、顺序表的基本操作及c语言实现【实验要求】1、用c语言建立自己的线性表结构的程序库,实现顺序表的基本操作。

2、对线性表表示的集合,集合数据由用户从键盘输入(数据类型为整型),建立相应的顺序表,且使得数据按从小到大的顺序存放,将两个集合的并的结果存储在一个新的线性表集合中,并输出。

【实验内容】1、根据教材定义的顺序表机构,用c语言实现顺序表结构的创建、插入、删除、查找等操作;2、利用上述顺序表操作实现如下程序:建立两个顺序表表示的集合(集合中无重复的元素),并求这样的两个集合的并。

【实验结果】[实验数据、结果、遇到的问题及解决]一.statusinsertorderlist(sqlist&va,elemtypex){}二.statusdeletek(sqlist&a,inti,intk){//在非递减的顺序表va中插入元素x并使其仍成为顺序表的算法inti;if(v==ze)return(overflow);for(i=v;i>0,x }//注意i的编号从0开始intj;if(i<0||i>-1||k<0||k>-i)returninfeasible;for(j=0;j<=k;j++)[j+i]=[j+i+k];=-k;returnok;三.//将合并逆置后的结果放在c表中,并删除b表statuslistmergeoppose_l(linklist&a,linklist&b,linklist& c){linklistpa,pb,qa,qb;pa=a;pb=b;qa=pa;qb=pb;//保存pa的前驱指针//保存pb的前驱指针pa=pa->next;pb=pb->next;a->next=null;c=a;while(pa&&pb){}whi le(pa){}qa=pa;pa=pa->next;qa->next=a->next;a->next=qa;if(pa ->datadata){}else{}qb=pb;pb=pb->next;qb->next=a->next;//将当前最小结点插入a表表头a->next=qb;qa=pa;pa=pa->next;qa->next=a->next;//将当前最小结点插入a表表头a->next=qa;}}pb=b;free(pb);returnok;qb=pb;pb=pb->next;qb->next=a->n ext;a->next=qb;顺序表就是把线性表的元素存储在数组中,元素之间的关系直接通过相邻元素的位置来表达。

单链表实验报告

单链表实验报告

单链表实验报告第一篇:单链表实验报告《数据结构》实验报告二分校:学号:日期:班级:姓名:程序名: L2311.CPP一、上机实验的问题和要求:单链表的查找、插入与删除。

设计算法,实现线性结构上的单链表的产生以及元素的查找、插入与删除。

具体实现要求:1.从键盘输入20个整数,产生带表头的单链表,并输入结点值。

2.从键盘输入1个整数,在单链表中查找该结点。

若找到,则显示“找到了”;否则,则显示“找不到”。

3.从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插入在对应位置上,输出单链表所有结点值,观察输出结果。

4.从键盘输入1个整数,表示欲删除结点的位置,输出单链表所有结点值,观察输出结果。

5.将单链表中值重复的结点删除,使所得的结果表中个结点值均不相同,输出单链表所有结点值,观察输出结果。

6.删除其中所有数据值为偶数的结点,输出单链表所有结点值,观察输出结果。

7.把单链表变成带表头结点的循环链表,输出循环单链表所有结点值,观察输出结果。

8.(★)将单链表分解成两个单链表A和B,使A链表中含有原链表中序号为奇数的元素,而B链表中含有原链表中序号为偶数的元素,且保持原来的相对顺序,分别输出单链表A和单链表B的所有结点值,观察输出结果。

二、程序设计的基本思想,原理和算法描述:(包括程序的结构,数据结构,输入/输出设计,符号名说明等)三、源程序及注释:四、运行输出结果:五、调试和运行程序过程中产生的问题及采取的措施:六、对算法的程序的讨论、分析,改进设想,其它经验教训:七、对实验方式、组织、设备、题目的意见和建议:第二篇:北邮数据结构实验报告单链表北京邮电大学数据结构试验报告实验名称:实验一线性表学生姓名:班级:班内序号:学号:日期: 2014年1月3日实验目的⌝熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法⌝学习指针、模板类、异常处理的使用⌝掌握线性表的操作的实现方法⌝学习使用线性表解决实际问题的能力实验内容2.1题目1 根据线性表的抽象数据类型的定义,选择下面任一种链式结构实现线性表,并完成线性表的基本功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i=i+1;
}
if(p1!=NULL)
printf("\n the position is:%d",i+1);
else printf("\n x is not been found");
}
linklist *insert (linklist *head,linklist *stud)
{
linklist *p1,*p2,*p0;
return head;}
p1=head;
while (num!=p1->data&&p1->next!=NULL)
{p2=p1;p1=p1->next;}
if(num==p1->data)
{if (p1==head) head=p1->next;
else p2->next=p1->next;
printf("\n deletse:%d\n",num);
}
void main()
{ int i,t;
queuetype array[7];
queue queue1;
xinjian(&queue1);
printf("\n \n input 6 characters: ");
for(i=0;i<6;i++)
scanf("%c",&array[i]);
printf("\n ");
}
#include<stdio.h>
#include<string.h>
#define maxsize 16
typedef char queuetype ;
typedef struct
{ queuetype *base;
int front;
int rear;
}queue;
queue* xinjian(queue *q)
prinf(head);
printf("\n Input a data to query: ");
scanf("%d",&y);
chaxun(head,y);
printf("\n \n Input a data to delete: ");
scanf("%d",&t);
del(head,t);
prinf(head);
}
}
void print(queue *q)
{ int i,j,fr;
printf("\n \n queue: ");
fr=q->front;
i=queuelength(q);
for(j=0;j<i;j++)
{ printf("%c",q->base[fr]);
fr=(fr+1)%maxsize;
}
#include <stdio.h>
#define NULL 0
typedef struct lnode
{
int data;
struct lnode *next;
} linklist;
linklist *create(void)
{
linklist *head,*p1,*p2;
int n;
n=0;
p1=p2=(linklist *)malloc(sizeof(linklist));
return p;
}
}
int queuelength(queue *q)
{ return(q->rear-q->front+maxsize)%maxsize;
}
void rudui(queue *q , queuetype e)
{ if( (q->rear+1) % maxsize == q->front )
for(i=0;i<6;i++) printf("%c",array[i]);
for(i=0;i<6;i++)
rudui(&queue1,array[i]);
print(&queue1);
printf("\n \n how many characters to delete: ");
scanf("%d",&t);
p1=head;p0=stud;
if(head==NULL)
{ head=p0;
p0->next=NULL;
}
else
{ while ((p0->data>p1->data)&&(p1->next!=NULL))
{ p2=p1;
p1=p1->next;
}
if(p0->data<p1->data)
{ if(head==p1) head=p0;
if( (queuelength(&queue1)<t ) ||t<1 )
printf(" \n \n input error !");
else
{ for(i=0;i<t;i++)
chudui(&queue1);
print(&queue1);
}
}
}
}
void chudui(queue *q)
{ queuetype e;
if(q->front != q->rear)
{ e=q->base[q->front];
q->front=(q->front+1)%maxsize;
printf("\n \n %c chudui chenggon ",e);
linklist *stud;
head=create();
prinf(head);
printf("\n Input a data to insert: ");
stud=(linklist *)malloc(sizeof(linklist));
scanf("%d",&stud->data);
insert(head,stud);
{ printf(" \n \n the queue if full !");
}
else
{ q->base[q->rear]=e;
q->rear=(q->rear+1) % maxsize;
printf("\n\n rear = %d ",q->rear);
printf("\n %c rudui chenggon ",e);
return head;
} }
void prinf(linklist * head)
{ linklist *p;
p=head;
while(p!=NULL)
{ printf("%5d",p->data);
p=p->next;
}
printf("\n");
}
void main()
{
int x,y,t;
linklist *head=NULL;
printf("\\n input datas:");
scanf("%d",&p1->data);
head=NULL;
while (p1->data!=0)
{
n=n+1;
if(n==1) head=p1;
else p2->next=p1;
p2=p1;
p1=(linklist *) malloc(sizeof(linklist));
scanf("%d",&p1->data);
}
p2->next=NULL;
return head;
}
void chaxun(linklist *head,int x)
{
linklist *p1=head;
int i=0;
while(p1->data!=x&&p1!=NULL)
{
p1=p1->next;
else p2->next=p0;
p0->next=p1;
}
else
{ p1->next=p0;
p0->next=NULL;
}
}
return head;
}
linklist *del(linklist *head,int num)
{
linklist *p1,*p2;
if(head==NULL)
{printf("\n listnull!\n");
{ queue *p=q;
p->base=(queuetype *)malloc(maxsize*sizeof(queuetype));
if(!p->base)
{printf("\n \n overflow");
return 0;
}
else
{ p->front=0;
p->rear=p->front;
相关文档
最新文档