六年级奥数—分数的简便计算
六年级分数简便计算
1.分数的四则运算:对于加法和减法,将分母相同的分数直接相加或
相减即可;对于乘法,将分子相乘得分子,分母相乘得分母;对于除法,
将除号变为乘号,分子乘除以分母的倒数,然后进行乘法运算即可。
例如:计算1/2+3/4-2/5:
首先需要找到一个公共分母,这里可以选择20;
将1/2转化为10/20,3/4转化为15/20,2/5转化为8/20;
然后相加得到:10/20+15/20-8/20=17/20。
2.约分:将一个分数化简为最简分数。
通过将分子和分母同时除以相
同的数,将分数化简为最简形式。
例如:将24/36约分:
首先找到24和36的最大公约数,可以发现它们的最大公约数是12;
将24和36同时除以12,得到2/3,即为最简分数。
3.分数的大小比较:对于同一分母的分数,比较它们的分子的大小即可。
例如:比较5/6和3/6的大小:
由于分母相同,只需要比较分子的大小即可,5>3,所以5/6大于
3/6
4.分数转化为小数:将分子除以分母即可得到小数。
例如:将3/4转化为小数:
3除以4等于0.75,所以3/4等于0.75
5.万分数的换算:将百分数除以100,即为相应的万分数。
例如:将35%转化为万分数:
35除以100等于0.35,所以35%等于0.35万分之1。
小学六年级奥数-简便运算(三)整理
<日期/时间>
<页脚>
第2讲 简便运算(三)
【例题5】
计算:(1)166又1/20÷41 解: (1)原式=(164+2又1/20)÷41
=164÷41+41/20÷41
=4+1/20
=4又1/20
<日期/时间>
<页脚>
第2讲 简便运算(三)
【例题5】 (2) 1998÷1998又1998/1999
<日期/时间>
<页脚>
第2讲 简便运算(三)
二、精讲精练 练习2
计算下面各题:
1. 64又1/17×1/9
2. 22×1/21
3. 1/7×57又1/6
4. 41又1/3×3/4+51又1/4×4/5
<日期/时间>
<页脚>
第2讲 简便运算(三)
二、精讲精练 【例题3】
计算:1/5×27+3/5×41
<日期/时间>
<页脚>
第2讲 简便运算(三)
练习1
用简便方法计算下面各题:
1. 14/15×8
2. 2/25×126
3. 35×11/36
4. 73×74/75
5. 1997/1998×1999
<日期/时间>
<页脚>
第2讲 简便运算(三)
二、精讲精练 【例题2】 计算:73又1/15×1/8 原式=(72+16/15)×1/8 =72×1/8+16/15×1/8 =9+2/15 =9又2/15
原式=3/5×9+3/5×41 =3/5×(9+41) =3/5×50 =30
六年级数学奥数第三讲-分数的速算与巧算
第三讲 分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791 (2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201 【举一反三】 计算:(1)64178÷8 (2)14575÷12 (3)5452÷17 (4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧! 12006⨯÷+20042006原式=20042005 1200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】 计算:(5)2000÷200020012000+20021 (6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。
小学六年级奥数-简便运算(四)
二、精讲精练
红气球:(62-24)÷(1+3/5÷2/3)=20(只) 黄气球:62-24 -20=18(只)
解法二:将条件“红气球的3/5等于黄气球的2/3”转化为“红气球的 只数是黄气球的(2/3÷3/5)=10/9”。先求黄气球的只数,再求出红 气球的只数。
黄气球:(62-24)÷(1+2/3÷3/5)=18(只) 红气球:62-24 -18=20(只)
3.某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的 学生的3/4是男生,那么全校女生的几分之几想当医生?
二、精讲精练
【例题4】仓库里的大米和面粉共有2000袋。大米运走2/5,面粉运作1/10后, 仓库里剩下大米和面粉正好相等。原来大米和面粉各有多少袋?
解法一:将大米的袋数看作单位“1” (1-2/5)÷(1-1/10)=2/3 2000÷(1+2/3)=1200(袋) 2000- 1200=800(袋) 解法二:将面粉的袋数看作单位“1” (1-1/10)÷(1-2/5)=3/2 2000÷(1+3/2)=800(袋) 2000-800 =1200(袋)
【例题5】
二、精讲精练
练习5
二、精讲精练
练习5
第6讲 转化单位“1”(一)
一、ቤተ መጻሕፍቲ ባይዱ识要点
把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a/b,乙是丙的c/d,则甲是丙的ac/bd;如果甲是乙的a/b,则乙 是甲的b/a;如果甲的a/b等于乙的c/d,则甲是乙的c/d÷a/b=bc/ad,乙是甲 的a/b÷c/d=ad/bc。
第7讲 转化单位“1”(二)
一、知识要点
我们必须重视转化训练。通过转化训练,既可理解数量关系的实质, 又可拓展我们的解题思路,提高我们的思维能力。
六年级分数简便运算奥数题及答案
六年级分数简便运算奥数题及答案(1)1/1*3+1/2*4+1/3*5+1/4*6+1/5*7......1/98*100+1/99*101=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……+1/98-1/100+1/99-1/101)÷2=(1+1/2-1/100-1/101)÷2=15049/10100÷2=15049/20200(2)6分之1+12分之1+24分之1+48分之1+96分之1+192分之1=1/6×(1+1/2+1/4+1/8+1/16+1/32)=1/6×(1-1/32)=1/6-1/192=31/192(3)1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+4/(1×2×3×4×5)+5/(1×2×3×4×5×6)+6/(1×2×3×4×5×6×7)= 1-1/(1×2)+1/(1×2)-1/(1×2×3)+1/(1×2×3)-1/(1×2×3×4)+1/(1×2×3×4)-1/(1×2×3×4×5)+1/(1×2×3×4×5)-1/(1×2×3×4×5×6)+1/(1×2×3×4×5×6)-1/(1×2×3×4×5×6×7)=1-1/(1×2×3×4×5×6×7)=1-1/5040=5039/5040(4)6360/39)/(1600/39)=6360/1600=3.975一、工程问题甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时开启甲乙两水管,5小时后,再开启排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
分数巧算六年级奥数题
分数巧算六年级奥数题分数巧算六年级奥数题作为小学数学中的重要组成部分,分数一直是让学生头疼的难题。
今天,我们就来挑战一组六年级奥数题,通过巧妙计算让分数的运算变得轻松愉快。
1、1/3 + 2/9 = ?解题思路:想要让这两个分数相加,需要先找到它们的通分。
1/3是3的倍数,2/9是9的倍数,所以我们可以将2/9化成3的倍数再进行运算,即2/9 = 2/9 * 3/3 = 6/27。
现在,两个分数分别为9分之3和27分之6,可以进行相加,结果为9分之5。
2、5/8 - 3/16 = ?解题思路:同样需要先找到这两个分数的通分。
5/8是8的倍数,3/16是16的倍数,可以将5/8化成16的倍数,即5/8 * 2/2 = 10/16。
现在,两个分数分别为16分之10和16分之3,可以进行相减,结果为16分之7。
3、2/5 × 5/7 = ?解题思路:分数乘法可以直接将分子相乘,分母相乘。
2/5 × 5/7 =10/35。
但需要注意,分数应该尽量化简,所以我们可以将10/35化简为2/7,这就是最简分数形式的答案。
4、3/4 ÷ 6/5 = ?解题思路:在进行除法运算时,需要将除号转化成乘号,即3/4 ÷ 6/5 = 3/4 × 5/6。
现在,我们可以直接相乘,结果为15/24。
同样需要化简,所以可以将15/24化简为5/8。
5、8 1/6 ÷ 2 1/2 = ?解题思路:在整数与分数的运算中,需要将整数转化成分数,并将除号转化成乘号。
8 1/6可以转化成49/6,2 1/2可以转化成5/2。
所以,81/6 ÷ 2 1/2 = 49/6 × 2/5 = 49/15。
通过这几道奥数题,我们可以发现,分数的运算并不难,只需要耐心地找到通分、化简、转化运算符号,再进行计算,就能得出正确的答案。
相信在以后的数学学习中,我们都可以运用这些巧妙的计算方法,轻松解决分数的运算难题。
六年级奥数分数巧算类型
六年级奥数分数巧算类型六年级奥数分数巧算类型 1
学好分数速算巧算除了掌握好整数运算涉及到的要点:
1、交换律、结合律;
2、提取公因数;
3、凑整。
首先要掌握好分数运算基础:
1、分数加减法:同分母分数加减法,异分母分数加减法;
2、分数乘除法:分数乘分数,整数乘分数,分数除法
接下来我们看几道题
1.分组、同分母分数加法
分组求和中往往涉及到等差数列相关内容
2.凑整、同分母分数加减法
这个问题的直接计算会比较复杂。
我们可以从每个数字的华颂的整数十中减去另一个数字,然后计算它。
这个问题就简单多了。
这是四舍五入的概念。
3.分数除法
一般来说,分数除法要先把除法变成乘法,这个题目也可以应用除法的思想。
这题可以注意到5/3其实就是1又2/3,那么被除数就可以分拆成(50+5/3)
4.提取公因数
这题乍看之下完全没有思路,但是其实我们观察一下可以发现,6×4014是3×4014的两倍,1/2是1/4 的两倍,那么中间9×4016是不是可以变换一下形式呢?然后就可以利用提取公因数思想来解题。
六年级奥数分数乘法的巧算
六年级奥数分数乘法的巧算Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】分数乘法的巧算(一)一、拆分因数,使计算简便。
1、拆分分数:一个分数接近单位“1”(小于单位“1”或大于单位“1”)例:1. 计算 3334 × 27 2. 计算2322 × 17练习1:4850 × 13 4341 × 13 3334 × 13 3938 × 252、拆分整数:整数接近分数的分母或接近分母的倍数例: 1. 计算2010 × 1232009 2. 计算 93 × 2346练习2:52 × 3750 1001 × 1011002 199 × 8999 4365 × 129二、先分拆分数,然后运用乘法分配律进行简便运算。
1、分母相同的,拆分成一个分数与另一个因数的积的形式,再运用乘法分配律进行计算例:1. 计算 34 × 27 + 14 × 39 2. 计算 57 × 27- 27 × 29练习3:16 × 45 + 56 × 15 57 × 19 — 8 × 472、将一个带分数拆分成整数加分数的形式,再运用乘法分配律进行计算例:计算 15311 × 17 4457 ×49练习4:2137 × 15 2915 × 56 3429 × 911 2916 × 67作业(一)2728 × 15 1002 × 1001001 35 × 31 + 15 × 7 2623 × 15作业(二)22311 × 17 3842 × 43 13 × 45 + 23 × 15 3940 × 13 131 × 3865 57 × 9 — 47 ×6作业(四)1738 × 37 103 × 15104 57 × 5 + 47 × 6 2517 × 78二、乘法分配律的进一步运用例1:计算527 ×5 + 457 ×923练习1:335 ×25 25 + 37910 ×625 338 ×4+ 558 ×535 1049 ×4 — 249 ×712例2:计算22×17 + 11×27 + 337 ×211练习2:39×14 + 25×34 + 264 ×313 9×38 + 15×18 — 54 ×35×149 +234 × 15 + × 59 + 14 × 15 9×35 + 24×15 — 115 ×38作业(一)(325 + 523 +635 + 613 )×(3 — 311 ) 1614 ×45 + 1717 ×78 + 1315 ×56 625 ×7 + 335 ×1013 22×15 + 11×25 + 335 ×211作业(二)(449 + 856 + 759 + 716 )×(3 — 314 ) 1915 ×56 + 1919 ×89 — 2513 ×34 425 ×1025 +17910 ×535 39×17 + 25×37 + 267 ×313作业(三)(1227 — 235 — 325 +1757 )×(8 — 38 ) 715 ×56 +13 12 ×23 + 2225 ×57 758 ×4+ 438 ×535 9×313 + 15×113 — 1013 ×35专题训练:例1:计算12 + 14 + 18 + 116 + 132 + 164 + 1128巩固练习:12 + 14 + 18 + 116 + 132 + 164 12 + 14 + 18 + 116 + 132 + 164 + 1128 + 1256 分数乘法的巧算综合作业:计算下面各题1.4950× 123839× 4058× 15 +38× 23 2.978×8+ 867× 7+ 756×6+ 645×579617×59 +119×517 + 50×19999+1002×10001001×1002—32001×20032002 + 2002×20042003 +40052002×2003。
六年级奥数分数裂差与简便计算
公式推导1
公析2
例题2
小试牛刀
小学 六年级 奥数
爱解答 系 列 课 程
谢谢观看!
小学 六年级 奥数
爱解答 系 列 课 程
分数裂差与简便计算
主讲:杨老师
知识要点
将算式中的项进行拆分,使拆分后的项可前后抵消 ,这种拆项计算称为裂项法 。裂项分为分数裂项和 整数裂项,常见的裂项方法是将数字分拆成两个或 多个数字单位的和或差。 遇到裂项的计算题时, 要 仔细的观察每项的分子和分母, 找出每项分子分母 之间具有的相同的关系, 找出共有部分, 裂项的题 目无需复杂的计算, 一般都是中间部分消去的过程 , 这样的话, 找到相邻两项的相似部分, 让它们消 去才是最根本的。
六年级奥数分数的速算与巧算
六年级奥数分数的速算与巧算介绍本文档旨在介绍六年级奥数中分数的速算与巧算方法。
通过掌握这些方法,学生可以更高效地解决分数相关的计算题目。
分数的基本概念分数由分子和分母组成,表示部分与整体之间的比例关系。
例如,1/2表示将一个整体分成两个相等的部分,其中一个部分为1。
分子表示部分的数量,分母表示整体被分成的块数。
分数的速算方法相同分母的分数相加当两个分数的分母相同,我们只需要将分子相加,分母不变即可。
例如:1/4 + 2/4 = (1+2)/4 = 3/4。
相同分母的分数相减同样,当两个分数的分母相同,我们只需要将分子相减,分母不变即可。
例如:3/4 - 1/4 = (3-1)/4 = 2/4。
不同分母的分数相加与相减当两个分数的分母不同,我们需要找到它们的最小公倍数作为通分的分母。
然后将分子按照最小公倍数进行转换,并进行相应的计算。
例如:1/3 + 1/4 = 4/12 + 3/12 = 7/12。
分数的乘法分数的乘法可以直接将分子相乘,分母相乘得到结果。
例如:2/3 * 3/4 = (2*3)/(3*4) = 6/12。
分数的除法分数的除法可以转换为乘法的倒数计算。
即,将第二个分数的分子与分母交换位置,然后进行乘法计算。
例如:2/3 ÷ 1/4 = 2/3 * 4/1 = 8/3。
分数的巧算方法取整当分子比分母大于等于1时,分数可以通过取整来近似计算。
例如:7/4 可以近似为 2。
转化为小数可以将分数转化为小数进行计算。
例如:1/2 可以转化为 0.5。
分数的倍数关系分数之间存在倍数关系时,可以利用这种关系来进行巧算。
例如:1/2 + 1/4 = 2/4 + 1/4 = 3/4。
约分将分数约分至最简形式,可以更方便进行计算。
例如:4/8 可以约分为 1/2。
结论通过掌握以上分数的速算与巧算方法,六年级的奥数学生可以更快速、准确地解决分数相关的计算题目。
同时,这些方法也可在实际生活中应用到日常计算中。
小学六年级奥数-简便运算(四)
答:甲数是乙数的3/4,乙数是甲数的1又1/3。
二、精讲精练
练习5:
1.甲数的3/4于乙数的2/5,甲数是乙数的几分之几?乙数是甲数的几分之几?
2.甲数的1又2/3倍等于乙数的5/6,甲数是乙数的几分之几?乙数是甲乙两数和的几分 之几?
3.甲数是丙数的3/4,乙数是丙数的2/5,甲数是乙数的几分之几?乙数是甲数的几分 之几?(想一想:这题与第一题有什么不同?)
第7讲 转化单位“1”(二)
一、知识要点
我们必须重视转化训练。通过转化训练,既可理解数量关系的实质, 又可拓展我们的解题思路,提高我们的思维能力。
二、精讲精练
【例题1】甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙的和是 216,甲、乙、丙各是多少?
解法一:把丙数看所单位“1”那么甲数就是丙数的3/4×2/3=1/2,
丙:216÷(1+3/4+3/4×2/3)=96 乙:96×3/4=72 甲: 72×2/3=48
二、精讲精练
解法二:可将“乙数是丙数的3/4”转化成“丙数是乙数的4/3”,把 乙数看作单位“1”。 乙:216÷(2/3+1+4/3)=72 甲: 72×2/3=48 丙:72÷3/4=96
解法三:将条件“甲数是乙数的2/3”转化为“乙数是甲数的3/2”, 再将条件“乙数是丙数的3/4”转化为“丙数是乙数的4/3”,以甲数为 单位“1”。
二、精讲精练
【例题2】修一条8000米的水渠,第一周修了全长的1/4,第二周修的相当于 第一周的4/5,第二周修了多少米?
解一:8000×1/4×4/5=1600(米)
解二:8000×(1/4×4/5)=1600(米)