初二第一学期数学期中试题及答案

合集下载

北京师范大学附属实验中学2024-2025学年八年级上学期期中数学试题[含答案]

北京师范大学附属实验中学2024-2025学年八年级上学期期中数学试题[含答案]

北师大实验中学2024—2025学年度第一学期初二年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为110分.2.本试卷共8页,四道大题,28道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共8道小题,每小题2分,共16分)1.下列四届奥运会会徽中,是轴对称图形的是()A .B .C .D .2.下列计算,错误的是( )A .()3328a a =B .358a a a ×=C .624a a a ¸=D .()236a a -=-3.如图,ABC CDA △△≌,50BCA Ð=°,90B Ð=°,则CAD Ð的度数等于( )A .40°B .45°C .50°D .60°4.若分式21x x -+的值为0,则x 的值为A .﹣1B .0C .2D .﹣1或25.等腰三角形的一个角为50°,则顶角的度数为( )A .65°或50°B .80°C .50°D .50°或80°6.下列因式分解正确的是( )A .()ab ac a a b c ++=+B .()()22331a a a a --=+-C .()2222a ab b a b ++=+D .()()4221644a a a -=+-7.下列说法中正确的是( )A .如果两个三角形全等,则它们一定关于某直线成轴对称.B .到线段两个端点距离相等的点在这条线段的垂直平分线上.C .等腰三角形任意角的平分线与该角所对边的高线、中线互相重合.D .到角两边距离相等的点在这个角的平分线上.8.如图是22´的正方形网格,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ABC V 为格点三角形,则正方形网格中与ABC V 成轴对称的格点三角形的个数是( )A .6个B .5个C .4个D .3个二、填空题(本大题共8道小题,每小题2分,共16分)9.若分式12x -有意义,则x 的取值范围是 .10.计算234x x -×= .11.如图,BE 、CD 交于点O ,且BE CD =,请添加一个条件,使得ABE ACD V V ≌,则可以添加的条件是: .12.如图,一个直角三角板的一条直角边经过AOB Ð的顶点O ,一把直尺经过三角板的直角顶点E 并且与这条直角边垂直,直尺与AOB Ð的两边分别交于C 、D ,当CE DE =时,AOE Ð与AOB Ð的数量关系为: .13.关于x 的多项式()()13x x n +-展开合并后一次项系数为1-,则n 的值为 .14.如图,射线OG 为AOB Ð的平分线,点P 为射线OG 上一点,PM OA ^于点M ,PN OB ^于点N ,且3PN =,点C 为OA 上一点,9OCP S =△,则OC = .15.如图,线段BD 为ABC V 的中线,且BD BC ^,4BC =,若45A C Ð+Ð=°,则BD = .16.如图,在等边ABC V 中,点P 、Q 在边BC 上,并且满足BP CQ =,连接AP 、AQ ,点N 为AC 上一动点,连接PN 、QN .(1)当PN NQ +最短时,测量CN = cm ;(精确到0.1cm )(2)若4AB =,则在点P 从B 运动到C 的过程中,PN QN +最短时,CN = .三、解答题(本大题共10道小题,其中第17至21题每题8分,第22至23题每题6分,第24题5分,第25题4分,第26题7分,共68分)17.计算:(1)()()421x x x --+(2)()2322682a bc a b a b -¸18.计算:(1)22246ab c a c b c-׸(2)22331a a a a a a a -+æö××ç÷-+èø19.把下列各式分解因式:(1)221218xy xy x-+(2)()222a b a --20.如图,射线OM 平分BOA Ð.(1)按要求尺规作图:作线段AB 的垂直平分线交射线OM 于点C ,连接CB 、CA .(保留作图痕迹)(2)请把以下解题过程补充完整:求证:180OBC OAC Ð+Ð=°.证明:在OA 上截取OD OB =,连接CD .OM Q 平分BOAÐBOM AOM\Ð=Ð在OBC △与ODC V 中:_______OB OD BOM AOM=ìïÐ=Ðíïî①OBC ODC \≌△△(②)CD CB \=,OBC ODCÐ=ÐQ 点C 在线段AB 的垂直平分线上CB CA \=(③)CD CA\=CDA CAD \Ð=Ð(④)Q 点D 在射线OA 上180ODC CDA \Ð+Ð=°180OBC OAC \Ð+Ð=°21.如图,在平面直角坐标系xOy 中,()2,1A --,()1,2B -,连接AB .(1)画线段11A B ,使得线段11A B 与线段AB 关于y 轴对称,并写出11A B 的坐标:1A _______,1B _______;(2)如果点C 在y 轴上,且ABC V 是等腰三角形,试着写出一个满足条件的点C 的坐标:_______.这样符合条件的点C 共有_______个.22.化简求值:当2610x x --=时,求()()()23233x x x --+-的值.23.如图,等腰ABC V 中,AB AC =,AD BC ^于D ,过点D 分别作DE AB ^交AB 于点E ,DF AC ^交AC 于点F .求证:BE CF =.24.如图1,小长方形的长和宽分别为a 和b ,将四块这样的长方形按如图2所示位置摆放.(1)图2中的四边形EFGH 为正方形,其边长为_______.(2)能用图2中的图形面积关系来验证的等式是:_______=_______.(3)若3x y -=,4xy =,求x y +的值.25.已知:如图,36MON Ð=°,射线OM 、ON 上分别有点A 和点B ,点P 在线段OB 上,连接PA ,()0144OAB a a Ð=°<<°.若线段PA 将AOB V 分割为两个等腰三角形,则称线段PA 为AOB V 的“a 角等分线”.(1)如图1,当90a =°时,画出AOB V 的“90角等分线”此时OAP Ð=_______°.(2)当90a ¹°时,若存在线段PA 为AOB V 的“a 角等分线”,则a =_______°.26.如图1所示,在ABC V 中,AB AC =,2BAC a Ð=()4590a °<<°,D 为线段BC 上一点,E 为CD 中点,连接AE .作EAM a Ð=,得到射线AM ,过点E 作EF AE ^交射线AM 于点F .(1)依题意补全图形;(2)求证:B AFE Ð=Ð;(3)如图2,当60a =°时,连接BF 、DF ,求证:FBD V 为等边三角形.B 卷四、填空题(本大题共两道小题,其中27题4分,28题6分,共10分)27.如图,点B 在线段AC 上,点E 在线段BD 上,ABD DBC Ð=Ð,AB DB =,EB CB =,M ,N 分别是线段AE 、CD 的中点.以下结论正确的是: .①AE CD =;②AE CD ^;③AE 平分DAC Ð;④BM BN ^且BM BN=28.在平面直角坐标系xOy 中,已知点(),R a b .对于点P 给出如下定义:先将点P 向右()0a ³或向左()0a <平移a 个单位长度,再关于直线y b =对称,得到点P ¢,则称点P'为点P 的“R 关联点”(1)如图1,点P 坐标为()3,1①当点R 坐标为()1,2-时,则点P 的“R 关联点”P ¢的坐标为:_______;②若点()4,3Q -为点P 的“R 关联点”,则R 的坐标为_______;(2)如图2,点A (−2,0)、C (0,1),点B 与点A 关于y 轴对称.点R 在ABC V 边上,点P 坐标为()5,0①画出点P 所有的“R 关联点”;②这些关联点组成的图形形状是:_______.(3)如图3,点(),E n n -、(),F n n --、(),G n n -、(),H n n ,0n >,点R 在正方形EFGH 边上,点()6,4M 、()7,5N ,若线段MN 上存在点()3,0P n 的“R 关联点”,直接写出n 的取值范围.1.A【分析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:B ,C ,D 选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A 选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A .2.D【分析】本题考查同底数幂的乘除法、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.根据同底数幂的乘除法法则、幂的乘方与积的乘方法则进行计算即可.【详解】解:A 、()3328a a =,故该项正确,不符合题意;B 、358a a a ×=,故该项正确,不符合题意;C 、624a a a ¸=,故该项正确,不符合题意;D 、()236a a -=,故该项不正确,符合题意;故选:D .3.C【分析】本题考查了全等三角形的性质,由三角形全等可知ACB CAD Ð=Ð,进而即可得出答案.【详解】解:Q ABC CDA △△≌,ACB CAD Ð=Ð\,Q 50BCA Ð=°,50CAD \Ð=°,故选:C .4.C【分析】根据分式值为零的条件可得x ﹣2=0,再解方程即可.【详解】解:由题意得:x ﹣2=0,且x +1≠0,解得:x =2,故选C .5.D【分析】分50°角是等腰三角形的顶角和底角两种情况计算,熟练掌握等边对等角,三角形内角和定理是解题的关键.【详解】当50°角是等腰三角形的顶角时,顶角的度数是50°;当50°角是等腰三角形的底角时,顶角的度数是180505080°-°-°=°;故选D.6.C【分析】本题考查因式分解,熟记乘法公式,掌握提公因式法和公式法分解因式的步骤和要求是解答的关键.利用提公因式法或公式法对每个选项中的式子进行因式分解,进而可作出判断.【详解】解:A 、()1ab ac a a b c ++=++,原计算错误,不符合题意;B 、()()22331a a a a --=-+,原计算错误,不符合题意;C 、()2222a ab b a b ++=+,原计算正确,符合题意;D 、()()()()()42221644422a a a a a a -=+-=++-,原计算错误,不符合题意;故选:C .7.B【分析】本题考查了全等三角形的性质,等腰三角形的性质,线段垂直平分线的判定及角平分线的判定,熟练掌握全等三角形的性质,等腰三角形的性质,线段垂直平分线的判定及角平分线的判定依次进行判断即可.【详解】解:如果两个三角形全等,则它们不一定关于某直线成轴对称,故A 选项不符合题意;到线段两个端点距离相等的点在这条线段的垂直平分线上,故B 选项符合题意;等腰三角形顶角的平分线,底边上的中线和底边上的高相互重合,故C 选项不符合题意;在角的内部到角两边距离相等的点在这个角的平分线上,故D 选项不符合题意,故选:B .8.B【分析】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】解:如图所示,BCD △,EBC V ,MHN V ,BAO V 与ABC V 成轴对称∴共5个.故选:B .9.2x ¹【分析】本题主要考查了分式有意义的条件,根据分式有意义的条件是分母不为0进行求解即可.【详解】解:∵分式12x -有意义,∴20x -¹,∴2x ¹,故答案为:2x ¹.10.312x -【分析】此题考查的是单项式乘单项式,解决此题的关键是掌握单项式乘单项式的运算法则.直接根据单项式乘单项式的运算法则计算即可.【详解】解:原式312x =-.故答案为:312x -.11.B C Ð=Ð(答案不唯一)【分析】本题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法.添加条件:B C Ð=Ð,再由已知条件BE CD =和公共角A Ð可利用AAS 定理证明ABE ACD V V ≌.【详解】解:添加条件:B C Ð=Ð,在ABE V 和ACD V 中,A ABC BE CD Ð=ÐìïÐ=Ðíï=î,\()AAS ABE ACD V V ≌,故答案为:B C Ð=Ð(答案不唯一).12.12AOE AOB Ð=Ð【分析】本题考查了全等三角形的性质与判定,解决本题的关键是熟练掌握全等三角形的性质与判定.根据SAS 可以证明OEC OED V V ≌,从而得结论.【详解】解:由题意得OE CD ^,90OEC OED \Ð=Ð=°,在OEC △和OED V 中,CE DE OEC OED OE OE =ìïÐ=Ðíï=î,(SAS)OEC OED \V V ≌,AOE BOE \Ð=Ð,12AOE AOB \Ð=Ð,故答案为:12AOE AOB Ð=Ð.13.4【分析】本题考查了多项式乘以多项式的法则的应用,关键是理解展开合并后一次项系数为1-.根据多项式乘以多项式法则展开后,根据x 项的系数等于1-可得出n 的值.【详解】解:()()()22133333x x n x nx x n x n x n+-=-+-=+--Q 一次项系数为1-,31n \-=-4n \=,故答案为:4.14.6【分析】本题主要考查了角平分线的性质定理,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.首先根据角平分线的性质定理得到3PM PN ==,然后利用9OCP S =△代数求解即可.【详解】解:∵射线OG 为AOB Ð的平分线,PM OA ^,PN OB ^,且3PN =,∴3PM PN ==;∵9OCP S =△,∴192OC MP ×=,即1392OC ´=,∴6OC =.故答案为:6.15.2【分析】本题考查了全等三角形的判定和性质、等腰三角形的判定.解题的关键是作辅助线,构造全等三角形.延长BD 至点E ,使得DE BD =,连接CE ,证明ADB CDE △△≌,可得ECD A Ð=Ð,再证得45BCE Ð=°,最后根据等腰三角形判定求解可.【详解】解:如图,延长BD 至点E ,使得DE BD =,连接CE ,在ADB V 和CDE V 中,AD CD ADB CDE BD DE =ìïÐ=Ðíï=î,()SAS ADB CDE \V V ≌,ECD A \Ð=Ð,45A BCD Ð+Ð=°Q ,45ECD BCD \Ð+Ð=°,45BCE \Ð=°,BD BC ^Q ,45BCE BEC \Ð=Ð=°,4BE BC \==,122BD BE \==,故答案为:216. 0.5 1【分析】本题考查了等边三角形的性质和判定,三角形的外角,两点之间线段最短问题.(1)作点Q 关于直线AC 的对称点Q ¢,连接PQ ¢,交AC 于点N , 根据“两点之间线段最短”可知,此时PN NQ +最短,测量出CN 即可;(2)连接AQ CQ ¢¢,,根据题意证明()SAS ABP ACQ V V ≌,结合点Q 关于直线AC 的对称点Q ¢,证明()SSS AQC AQ C ¢V V ≌,因此AP AQ AQ BAP CAQ CAQ ¢¢==Ð=Ð=Ð,,进而证明APQ ¢△是等边三角形,根据“两点之间线段最短”可知,要使PN QN +最短,则P 、N 、Q ¢三点共线,此时PN NQ PQ ¢+=,又因为AP PQ ¢=,即AP 最小,过点A 作^AP BC 于点P ,此时AP 最小,由QN Q N ¢=,APQ ¢△是等边三角形,得AN PQ ¢^,再结合30NPC Ð=°,4AB =,即可求出答案.【详解】解:(1)作点Q 关于直线AC 的对称点Q ¢,连接PQ ¢,交AC 于点N ,此时PN NQ +最短,则测量0.5cm CN =;(2)连接AQ CQ ¢¢,,在等边ABC V 中,60AB AC B ACB =Ð=Ð=°,,BP CQ =Q ,()SAS ABP ACQ \V V ≌,Q 点Q 关于直线AC 的对称点Q ¢,AQ AQ CQ CQ ¢¢\==,,AC AC =Q ,()SSS AQC AQ C \¢V V ≌,AP AQ AQ BAP CAQ CAQ ¢¢\==Ð=Ð=Ð,,60BAC Ð=°Q ,60PAQ ¢\Ð=°,APQ ¢\V 是等边三角形,AP PQ ¢\=,PN QN PN NQ PQ ¢¢+=+³Q ,\要使PN QN +最短,则P 、N 、Q ¢三点共线,此时PN NQ PQ ¢+=,AP PQ ¢=Q ,即AP 最小,过点A 作^AP BC 于点P ,此时AP 最小,Q ABC V 为等边三角形,BP CP \=,Q BP CQ =,\此时P 、Q 重合,QN Q N ¢=Q ,APQ ¢△是等边三角形,AN PQ ¢\^,90906030NPC ACB \Ð=°-Ð=°-°=°,Q 4AB =,11222CP BC AB \===,112CN CP \==,\PN QN +最短时,1=CN ,故答案为:1.17.(1)2491x x --(2)34c ab-【分析】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.(1)直接利用单项式乘多项式法则进行化简,再去括号,最后合并进而得出答案;(2)直接利用多项式除以单项式法则计算得出答案.【详解】(1)解:原式2481x x x =---,2491x x =--;(2)解:原式34c ab=-18.(1)23-(2)3a -【分析】本题考查了分式的乘法运算和分式的除法运算,熟记分式的运算法则是解题的关键.(1)根据分式的乘除法则,先将除法转化为乘法,再约分化简即可;(2)先将分子分母因式分解,再约分化简即可.【详解】(1)解:22246ab c a c b c-׸22246ab c c c b a-××=23=-;(2)22331a a a a a a a -+æö××ç÷-+èø()()223131a a a aa a a -+=××-+3a =-.19.(1)()223x y -(2)()()3a b a b --【分析】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.(1)先提公因式,然后利用完全平方公式因式分解即可.(2)利用平方差公式因式分解即可.【详解】(1)221218xy xy x-+()2269x y y =-+()223x y =-;(2)()222a b a --()()22a b a a b a =-+--()()3a b a b =--.20.(1)见解析(2)OC OC =;SAS ;线段垂直平分线的性质;等边对等角【分析】本题考查尺规作图,全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定,熟练的作图是解本题的关键.(1)按题意作出图形即可;(2)根据全等三角形的判定与性质、线段垂直平分线的性质及等腰三角形的判定,逐步填写推理过程与推理依据即可.【详解】(1)解:如图;.(2)证明:在OA 上截取OD OB =,连接CD .OM Q 平分BOAÐBOM AOM\Ð=Ð在OBC △与ODC V 中:OB OD BOM AOMOC OC =ìïÐ=Ðíï=î()SAS OBC ODC \V V ≌CD CB \=,OBC ODCÐ=ÐQ 点C 在线段AB 的垂直平分线上CB CA \=(线段垂直平分线的性质)CD CA\=CDA CAD \Ð=Ð(等边对等角)Q 点D 在射线OA 上180ODC CDA \Ð+Ð=°180OBC OAC \Ð+Ð=°故答案为:OC OC =;SAS ;线段垂直平分线的性质;等边对等角21.(1)图见解析,()12,1A -,()11,2B ;(2)()0,0,4.【分析】()1根据轴对称的性质画出图形并写出对称点的坐标即可;()2选取一点与线段AB 构成等腰三角形分三种情况:以点A 为等腰三角形的顶点AB 为腰;以点B 为等腰三角形的顶点AB 为腰;以AB 为等腰三角形的底边时,则等腰三角形的顶点在线段AB 的垂直平分线上.【详解】(1)解:如下图所示,分别作点A 、B 关于y 轴的对称点1A 、1B ,连接11A B ,线段11A B 与线段AB 关于y 轴对称;Q 已知点A 、B 的坐标分别是()2,1--、()1,2-,1A \的坐标是()2,1-,1B 的坐标是(1,2);(2)解:当以点A 为等腰三角形的顶点AB 为腰时,在y 轴上有2个点可以与线段AB 组成等腰三角形,如下图所示,当以点B 为等腰三角形的顶点AB 为腰时,在y 轴上有两个点使3C B AB =、4C B AB =,可以看出点A 、B 、3C 在同一条直线上,不能构成三角形,\在y 轴上有1个点可以与线段AB 组成等腰三角形,如下图所示,当以AB 为等腰三角形的底边时,则等腰三角形的顶点在线段AB 的垂直平分线上,如下图所示,可以发现这个点恰好是原点.综上所述,在y 轴上有4个点可以与线段AB 构成等腰三角形,其中一个满足条件的点是()0,0.【点睛】本题考查了轴对称变换和等腰三角形的性质.关于y 轴对称的两个点的纵坐标相等,横坐标互为相反数;有两条边相等的三角形是等腰三角形.22.23【分析】此题考查了整式乘法的混合运算,化简求值,熟练掌握运算法则是解决本题的关键.原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并得到最简结果,将已知等式整体变形代入计算即可求值.【详解】解:∵2610x x --=∴261x x -=∴22122x x -=()()()23233x x x --+-()()223449x x x =-+--22312129x x x =-+-+221221x x =-+221=+23=.23.见解析【分析】此题考查了等腰三角形三线合一性质,等边对等角,全等三角形的性质和判定等知识,解题的关键是掌握以上知识点.首先由三线合一性质和等边对等角得到BD CD =,B C Ð=Ð,然后证明出()AAS BDE CDF ≌△△,.即可得到BE CF =.【详解】解:∵等腰ABC V 中,AB AC =,AD BC ^于D ,∴BD CD =,B CÐ=Ð∵DE AB ^,DE AB^∴90BED CFD Ð=Ð=°∴()AAS BDE CDF ≌△△∴BE CF =.24.(1)()a b -(2)()2a b -,()24a b ab+-(3)5x y +=±【分析】此题考查了列代数式,完全平方公式和几何图形的应用,利用完全平方公式的变形求值,解题的关键是掌握以上知识点.(1)由小长方形的长和宽分别为a 和b 求解即可;(2)分别用两种方法表示出正方形EFGH 的面积即可求解;(3)由(2)得()()224x y x y xy -=+-,然后整体代数求解即可.【详解】(1)解:∵小长方形的长和宽分别为a 和b ,∴图2中的四边形EFGH 为正方形,其边长为()a b -;(2)解:正方形EFGH 的面积为()22EF a b =-;正方形EFGH 的面积还可以表示为()24a b ab +-;∴()()224a b a b ab -=+-;(3)解:由(2)得,()()224x y x y xy-=+-∵3x y -=,4xy =,∴()22344x y =+-´∴()225x y +=∴5x y +=±.25.(1)画图见解析;36;(2)72或108【分析】本题考查了等腰三角形的性质与判定、三角形内角和定理及外角的性质,解决本题的关键是熟练掌握等腰三角形的性质与判定.(1)作出线段OB 的中点P ,连接AP ,线段PA 为AOB V 的“90角等分线”,再根据直角三角形性质及等腰三角形性质求解即可;(2)作出图形并分两种情况讨论:作72OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =;作108OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =,再求解即可.【详解】(1)解:如图,作出线段OB 的中点P ,连接AP ,线段PA 为AOB V 的“90角等分线”,Rt AOB Q △中,AP 是斜边上的中线,OP AP PB \==,\线段PA 将AOB V 分割为两个等腰三角形,\线段PA 为AOB V 的“90角等分线”,36OAP MON \Ð=Ð=°,故答案为:36;(2)解:如图,作72OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =,36MON Ð=°Q ,OP AP =,36OAP MON \Ð=Ð=°,72OAB Ð=°Q ,723636PAB \Ð=°-°=°,72APB MON OAP Ð=Ð+Ð=°Q ,18072ABP PAB APB Ð=°-Ð-Ð=°Q ,ABP APB \Ð=Ð,AP AB \=,\线段PA 将AOB V 分割为两个等腰三角形,72a =°;如图,作108OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =,36MON Ð=°Q ,OP AP =,36OAP MON \Ð=Ð=°,108OAB Ð=°Q ,1083672PAB \Ð=°-°=°,72APB MON OAP Ð=Ð+Ð=°Q ,PAB APB \Ð=Ð,AB PB \=,\线段PA 将AOB V 分割为两个等腰三角形,108a =°;故答案为:72或10826.(1)见详解(2)见详解(3)见详解【分析】本题考查了等边三角形的判定及性质,全等三角形的判定及性质,等腰三角形的判定及性质等;(1)按要求补全图形,即可求解;(2)由角的和差得90AFE EAF Ð=°-Ð,由等腰三角形的性质得()118022B a Ð=°-,即可求证;(3)延长AE 至H 使AE EH =,连接,DH FH ,证明()SAS AEC HED V V ≌得出AC DH =,CAE EHD Ð=Ð,进而证明DHF BAF Ð=Ð,证明()SAS ABF HDF V V ≌,推出FB FD =,AFB HFD Ð=Ð,即可得出60BFD AFH Ð=Ð=°,则FBD V 为等边三角形.【详解】(1)解:如图,(2)证明:Q EF AE ^,90AEF \Ð=°,90AFE EAF\Ð=°-Ð90a =°-,AB AC =Q ,2BAC a Ð=,()118022B a \Ð=°-90a =°-,\B AFE Ð=Ð;(3)证明:延长AE 至H 使AE EH =,连接,DH FH ,∵,,AE EH AEC HED DE EC=Ð=Ð=∴()SAS AEC HED V V ≌∴AC DH =,CAE EHDÐ=Ð又∵AB AC=∴AB DH=∵60a =°,则120BAC Ð=°,60FAE Ð=°∴60BAF EACÐ=°-Ð∵EF AH ^,AE EH=∴AF FH =,∴60DHF AHF EHD EAC BAC FAE EAC BAFÐ=Ð-Ð=°-Ð=Ð-Ð-Ð=Ð∴()SAS ABF HDF V V ≌∴FB FD =,AFB HFDÐ=Ð∴60BFD AFH Ð=Ð=°∴FBD V 为等边三角形.27.①②④【分析】本题主要考查全等三角形的性质与判定,三角形内角和定理等知识,熟练掌握全等三角形的判定方法是解题的关键.首先证明出()SAS ABE DBC V V ≌,得到AE CD =,即可判断①;延长AE 交CD 于点F ,得到EAB BDC Ð=Ð,然后结合三角形内角和 得到90ABD DFE ==°∠∠,即可判断②;根据题意无法证明AE 平分DAC Ð,即可判断③;证明出()ASA ABM DBN V V ≌,得到ABM DBN Ð=Ð,进而可判断④.【详解】解:在ABE V 和DBC △中,AB DB ABD DBC EB CB =ìïÐ=Ðíï=î,∴()SAS ABE DBC V V ≌,∴AE CD =,故①正确;如图所示,延长AE 交CD 于点F∵ABD DBC Ð=Ð,点B 在线段AC 上,∴90ABD DBC Ð=Ð=°∵ABE DBCV V ≌∴EAB BDCÐ=Ð∵AEB DEFÐ=Ð∴AE CD ^,故②正确;根据题意无法证明AE 平分DAC Ð,故③错误;∵ABE DBC V V ≌,M ,N 分别是线段AE 、CD 的中点∴BM BN=又∵MAB NDB Ð=Ð,AB BD=∴()ASA ABM DBN V V ≌∴ABM DBNÐ=Ð∴ABM DBM DBN DBMÐ+Ð=Ð+Ð∴90ABD MBN Ð=Ð=°∴BM BN ^,故④正确;综上所述,结论正确的是:①②④.故答案为:①②④.28.(1)①(2,3);②(1,1)-(2)①图见解析;②等腰三角形(3)522n ££或732n ££【分析】本题考查了坐标变换,解题关键是得到“R 关联点”变化规律.(1)根据“R 关联点”定义可得点P (,)x y 的“(),R a b 关联点”的坐标为(),2P x a b y ¢+-,据此计算即可;(2)①根据(),R a b 关联点的定义计算出当R 在三角形的顶点时,点P 的“R 关联点”坐标,即可画图;②由图可知关联点组成的图形形状是三角形.(3)分点R 在正方形的四条边上上时,坐标不同,根据()3,0P n 的“R 关联点”在线段MN 上方程和不等式求解即可.【详解】(1)解:设P 坐标为(,)x y ,设P ¢的坐标为(),P x y ¢¢¢,先将点P 向右()0a ³或向左()0a <平移a 个单位长度,得到点的坐标为(,)x a y +,再关于直线y b =对称,得到点P ¢,则2x x a y y b =+ì¢+=¢ïíïî,∴2x x a y b y =+ìí=-¢¢î即P ¢坐标为(),2x a b y +-①当点P 坐标为()3,1,点R 坐标为()1,2-时,则点P 的“R 关联点”P ¢的坐标为(31,221)-´-,即(2,3);②点()4,3Q -为点P ()3,1的“R 关联点”,∴43321a b =+ìí-=-î解得:11a b =ìí=-î,即R 的坐标为(1,1)-,(2)解:①如图②这些关联点组成的图形形状是等腰三角形.(3)∵点()6,4M 、()7,5N ,①当点R 在EH 上时,设点(,)R a n 其中n a n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(3,2)n a n +,∴322n a n +-=,∴2a n=-又∵637n a n a n £+£ìí-££î即63(2)72n n n n n£+-£ìí-£-£î解得:522n ££,当点R 在EH 上时,522n ££, 线段MN 上存在点()3,0P n 的“R 关联点”②当点R 在FG 上时,设点(,)R a n -其中n a n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(3,2)n a n +-,∵0n >,∴(3,2)n a n +-不可能在第一象限,故点R 在FG 上时,线段MN 上不存在点()3,0P n 的“R 关联点”;③当点R 在H G 上时,设点(,)R n b 其中n b n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(4,2)n b ,∴422n b -=,∴21b n =-又∵647n n b n ££ìí-££î即64721n n n n££ìí-£-£î不等式组无解,故点R 在H G 上时,线段MN 上不存在点()3,0P n 的“R 关联点”;④当点R 在EF 上时,设点(,)R n b -其中n b n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(2,2)n b ,∴222n b -=,∴1b n =-又∵627n n b n ££ìí-££î即6271n n n n££ìí-£-£î解得:732n ££,当点R 在EF 上时,732n ££, 线段MN 上存在点()3,0P n 的“R 关联点”综上所述:当522n ££或732n ££时,线段MN 上存在点()3,0P n 的“R 关联点”。

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。

第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。

2024-2025学年广东省广州市八年级上学期期中数学试题及答案

2024-2025学年广东省广州市八年级上学期期中数学试题及答案

2024-2025学年第一学期广东省广州市八年级数学期中复习试卷试卷满分:120分 考试时间:120分钟一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.下列四个图形中,是轴对称图形的是( )A .B .C .D .2.下列各组长度的三条线段能组成三角形的是( )A .1,2,3B .1,1,2C .1,2,2D .1,5,73.将一副三角板按如图所示的方式放置,则α∠的度数为( )A .75°B .85°C .90°D .95°4.已知等腰三角形一边长为2,一边的长为4,则这个等腰三角形的周长为() A .8 B .9 C .10 D .8或105.在平面直角坐标系中,点A (﹣2,m ﹣1)与点B (n +2,3),则m +n 的值是() A .﹣6 B .4 C .5 D .﹣56.如图,在Rt ABC △中,90C ∠=°,30B ∠=°,点D 是AB 的中点,ED AB ⊥于点D ,交BC 于点E ,连接AE ,若2DE =,则BC 的值是( )A .3B .4C .5D .67.如图,在ABC 中,90C ∠=°,30A ∠=°,AB 的垂直平分线交AC 于点D ,交AB 于点E ,3CD =,则AC 等于( )A .5B .6C .8D .98 .如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的A ′处,折痕为DE .如果A α∠=,CEA β∠′=,BDA γ∠′=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=−−9.如图,在ABC 中AB =AC ,BC=4,面积是20,AC 的垂直平分线EF 分别交AC 、AB 边于E 、F 点, 若点D 为BC 边的中点,点M 为线段上一动点,则CDM 周长的最小值为( )A .6B .8C .10D .1210 .如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②PQ AE ∥;③EQ DP =;④60AOB ∠=°;其中恒成立的结论有( )个A .1B .2C .3D .4二、填空题:本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.11.一个n 边形的内角和是720°,则n = .12.如图,D 在BC 边上,△ABC ≌△ADE ,则∠B 的度数为 .13.如图,ABC 中,AB AC =,AB 的垂直平分线交AC 于点D ,交AB 于点E .若30A ∠=°,则DBC ∠= .14.如图,在Rt ABC △中,90C ∠=°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AAAA 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,交边BC 于点D , 若3CD =,12AB =,则ABD △的面积是 .15.若等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数是 .16 .如图,ABC 中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H 交BE 于G .下列结论:①BD CD =;②AD CF BD +=;③12CE BF =;④AE BG =. 其中正确的是 .三、解答题:本大题共9个小题,共72分,解答应写出文字说明、证明过程或演算步骤17.在△ABC 中,∠A =100°,∠C 比∠B 大20°求∠B 、∠C 的度数18.如图,AB DEAB DE BE CF ==∥,,.求证:ABC DEF ≌△△.19.如图,在所给正方形网格图中完成下列各题,ABC 的三个顶点都在格点上(用无刻度的直尺画图).(1)画出ABC 的中线AD ;(2)作出ABC 关于直线l 对称的111A B C △;(3)在直线l 上找到一点Q ,使QB QC +的值最小.20 . 如图,点B. F. C. E 在一条直线上(点F,C 之间不能直接测量),点A,D 在直线l 的异侧,测得AB=DE,AB ∥DE,AC ∥DF.(1)求证:△ABC ≌△DEF ;(2)若BE=13m ,BF=4m ,求FC 的长度.21.如图,在△ABC 中,EF 垂直平分AC ,交BC 于点E ,AD ⊥BC ,连接AE .(1)若∠BAE =44°,求∠C 的度数.(2)若AC =7cm ,DC =5cm ,求△ABC 的周长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB =AE =CE ,求出∠AEB 和∠C =∠EAC ,即可得出答案;(2)根据已知能推出AB +BD =EC +DE =DC ,即可得出答案.22.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求证:△CEF 是等腰三角形;(2)若CD =3,求DF 的长.23.如图,在ABC 中,AB CB =,90ABC ∠=°,F 是AAAA 延长线上一点,点E 在BC 上,且BE BF =.(1)求证:ABE CBF △△≌;(2)若30CAE ∠=°,求AEF ∠和ACF ∠的度数.24.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B(0,n),且|m﹣n﹣3|+(2n﹣6)2=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)OA=________,OB=_________.(2)连接PB,若△POB的面积为3,求t的值;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样点P,使△EOP≌△AOB,若存在,请直接写出t的值;若不存在,请说明理由.25.如图,在△ABC中,AB=AC,点在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△A BE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.参考解答一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.D 2.C . 3.A 4.C . 5.A . 6 .D 7 .D 8 .A 9 .D 10 .D二、填空题:本大题共6个小题.每小题3分,共18分.把答案填在题中横线上. 11.3. 12.70°.13 .45° 14 .18 15.50°或130° 16 .①②③三、解答题:本大题共9个小题,共72分,解答应写出文字说明、证明过程或演算步骤17.解:∵∠C 比∠B 大20°,∴∠C =∠B +20°,根据三角形内角和定理得:∠A +∠B +∠C =180°,∴100°+∠B +∠B +20°=180°,解得:∠B =30°,∠C =30°+20°=50°.18.证明:∵AB DE ∥,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,在ABC 和DEF 中,AB DE B DEF BC EF = ∠=∠ =. ∴()SAS ABC DEF △△≌.19.(1)如图,找出BC 中点D ,然后连接AD ,∴AD 即为所求;(2)如图,利用网格特点和轴对称的性质画出、、A B C 关于l 的对称点111A B C 、、,∴111A B C △即为所求;(3)如图,连接1B C 交l 于Q ,利用1QB QB =得到1QB QC B C +=,则根据两点之间线段最短即可,∴点Q 即为所求.20 . (1)证明:∵AB ∥DE , ∴∠ABC=∠DEF ,∴AC ∥DF ,∴∠ACB=∠DFE ,在△ABC 与△DEF 中, ABC=DEF ACB=DFE AB=DE ∠∠ ∠∠∴△ABC ≌△DEF ;(AAS )(2)∵△ABC ≌△DEF , ∴BC=EF ,∴BF+FC=EC+FC ,∴BF=EC ,∵BE=13m ,BF=4m ,∴FC=BE-BF-EC=13-4-4=5m .21.解:(1)∵AD⊥BC,EF垂直平分AC,∴AE=AB=EC,∴∠CAE=∠C,∵∠BAE=44°,∴,∴.(2)由(1)知:EC=AE=AB,∵DE=BD.∴AB+BD=EC+DE=DC,∴△ABC的周长为AB+BC+AC=AB+BD+DC+AC=2DC+AC=6×5+7=17(cm).答:△ABC的周长为17cm.22.解:(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°∴∠EDC=∠ECD=∠DEC=60°∵EF⊥ED,∴∠DEF=90°∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°∴CE =CF .∴△CEF 为等腰三角形(2)由(1)可知∠EDC =∠ECD =∠DEC =60°∴CE =DC =3又∵CE =CF ,∴CF =3∴DF =DC +CF =3+3=623.(1)证明:90ABC ∠=° , 90CBF ABE ∴∠=∠=°,在ABE 和CBF 中,AB CB ABE CBF BE BF = ∠=∠ =, ∴()SAS ABE CBF ≌△△;(2)解:由1()知:ABE CBF △≌△,∴BE BF =,BCF BAE ∠=∠, 又∵90ABC ∠=°, ∴90EBF ∠=°, ∴45BEF BFE ∠=∠=°, 90AB BC ABC =∠=° ,,45CAB ACB ∴∠=∠=°,又453015BAE CAB CAE ∠=∠−∠=°−°=° ,15BCF BAE ∴∠=∠=°,9075AEB BAE ∠=°−∠=°,∴120AEF BEF AEB ∠=∠+∠=°,451560ACF BCF ACB ∠=∠+∠=°+°=°.24.解:(1)∵|m ﹣n ﹣3|+(2n ﹣6)2=0,|m ﹣n ﹣3|≥0,(2n ﹣6)2≥0,∴|m ﹣n ﹣3|=0,(2n ﹣6)2=0,∴m ﹣n ﹣3=0,2n ﹣6=0,解得,m =6,n =3,∴OA =6,OB =3,故答案为:6;3;(2)当点P 在线段AO 上时,OP =6﹣t , 则12×(6﹣t )×3=3, 解得,t =4,当点P 在线段AO 的延长线上时,OP =t ﹣6, 则12×(t ﹣6)×3=3, 解得,t =8,∴当t =4或8时,△POB 的面积等于3;(3)如图1,当点P 在线段AO 上时,∵△POE ≌△BOA ,∴OP =OB ,即6﹣t =3,解得,t =3,如图2,当点P 在线段AO 的延长线上时,∵△POE ≌△BOA ,∴OP =OB ,即t ﹣6=3,解得,t =9,∴当t =3或9时,△POQ 与△AOB 全等.25.(1)解:BD BC = ,60DBC ∠=°, DBC ∴∆是等边三角形,DB DC ∴=,60BDC DBC DCB ∠=∠=∠=°, 在ADB ∆和ADC ∆中,AB AC AD AD DB DC = = =, ()ADB ADC AAS ∴∆≅∆,ADB ADC ∴∠=∠,1(36060)1502ADB ∴∠=°−°=°. (2)解:结论:ABE ∆是等边三角形.理由:60ABE DBC ∠=∠=° , ABD CBE ∴∠=∠,在ABD ∆和EBC ∆中,150ADB BCE ABD CBE BD BC ∠=∠=° ∠=∠ =, ABD EBC ∴∆≅∆,AB BE ∴=,60ABE ∠=° , ABE ∴∆是等边三角形.(3)解:连接DE . 150BCE ∠=° ,60DCB ∠=°, 90DCE ∴∠=°, 90EDB ∠=° ,60BDC ∠=°, 30EDC ∠=°∴, 142EC DE ∴==, ABD EBC ∆≅∆ , 4AD EC ∴==.。

河北省石家庄市正定县2023-2024学年八年级上学期期中数学试题(含答案)

河北省石家庄市正定县2023-2024学年八年级上学期期中数学试题(含答案)

正定县2023-2024学年度第一学期期中质量检测八年级数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.)10,,,0.101001001……(相邻两个1之间依次多一个0),其中无理数有( )A .1个B .2个C .3个D .4个2.代数式,,,,,,中,属于分式的有()A .2个B.3个C .4个D .5个3x 的取值范围是( )A .B .C .D .4.精确到0.1,得到21.0的数是下面的( )A .21.12B .21.05C .20.95D .20.9455.若分式中的x ,y 都扩大原来的3倍,那么分式的值( )A .扩大为原来的9倍B .扩大为原来的3倍C .不变D .缩小到原来的6.如图,若两个三角形全等,图中字母表示三角形边长,则的度数为( )6题图A .40°B .50°C .60°D .70°7.如图,是嘉淇同学做的练习题,他最后的得分是( )π1325x 1π224x +223x -1x 12xx ++211x x --2x ≥2x <2x ≠-2x >232x yx y +-131∠(4)请写出一个无理数——7题图A .5分B .10分C .15分D .20分8.解分式方程时,去分母后变形为( )A .B .C .D .9.如图,将边长分别为2和1的矩形沿图中虚线剪开,拼成一个正方形,则该正方形的边长最接近整数( )9题图A .1B .2C .3D .410.在中,,为边上一点.将沿折叠,使点恰好落在边上的点处.若,,,则的周长是( )10题图A .6B .7C .8D .911.若运算的结果为整式,则“□”中的式子可能是( )A .B .C .D .12.若关于的方程的解为正数,则的取值范围是( )A .B .C .且D .且13.在和中,,,.已知,则( )A .40°B .40°或140°C .或D .14.老师上课提出问题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )π-22311x x x++=--()()2231x x ++=-()2231x x -+=-()()2231x x -+=-()()2231x x -+=-Rt ABC △90ACB ∠=︒D AB ABC △CD A BC E 3AC =4BC =5AB =BDE △22x x y y x ÷+- y x-y x +1x 3x x 2111x m x x ++=--m 3m <3m >3m >1m ≠3m <1m ≠ABC △A B C '''△40B B '∠=∠=︒6AB A B ''==4AC A C ''==C n ∠=︒C ∠'=n ︒180n ︒-︒n ︒甲:设该品牌的饮料每瓶是元,则 乙:设该品牌饮料每箱瓶,则丙:设该品牌的饮料每瓶是元,则 丁:设该品牌饮料每箱瓶,则A .甲、丁B .甲、乙C .乙、丙D .甲、乙、丙15.如图,在和中,点A ,E ,B ,D 在同一直线上,,,只添加一个条件,能判定的是( )15题图A .B .C .D .16.如图,点在线段上,于点,于点,,且,,点从点开始以速度沿向终点运动,同时点以的速度从点开始,在线段上往返运动(即沿运动),当点到达终点时,、同时停止运动.过、分别作的垂线,垂足分别为、.设运动的时间为,当以、、三点为顶点的三角形与全等时,t 的值为( )s .16题图A .1B .1或3C .2或4D .1或4二、填空题(本大题共4小题,每小题3分,20题第一个空1分,第二个空2分,共12分,请把答案填在题中的横线上)17的平方根是______.18.是方程的解,则a 的值为______.19.化简:的结果为______.20.如图,在中,,.点在线段上运动(不与,重合),连接,作,交线段于点.(1)当时,______°;x 363620.9x x-=x 36360.92x x ⨯=+x ()0.936236x ⨯+=x 36360.92x x ⨯=+ABC △DEF △//AC DF AC DF =ABC DEF ≌△△BC DE =ABC D ∠=∠A DEF ∠=∠AE DB=C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒7cm AC =8cm CE =P A 2cm/s AC C Q 3cm/s E EC E C E →→P P Q P Q BD M N s t P C M QCN △5x =122x x a=-+2211x x x+--ABC △3AB AC ==40B C ∠=∠=︒D BC D B C AD 40ADE ∠=︒DE AC E 120BDA ∠=︒DEC ∠=(2)当______时,.三、解答题(本大题共6小题,共56分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本小题满分8分)以下是某同学化简分式的部分运算过程:解:原式①②③…(1)上面的运算过程中第______步出现了错误;(2)请你写出完整的解答过程.22.(本小题满分8分)已知点A ,B 在数轴上所对应的数分别为,,A ,B 两点关于原点对称.(1)当时,求的值;(2)若不存在满足条件的,求的值.23.(本小题满分8分)已知正数的两个平方根分别是和互为相反数,求的平方根.24.(本小题满分8分)如图,已知,,,.求的值.25.(本小题满分12分)为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知型充电桩比型充DC =ABD DCE ≌△△2113422x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()1122223x x x x x ⎡⎤+-=-⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +---=⋅+-8m x -78x x--2m =x x m a 3x +26x -2a b +EC AC =BCE DCA ∠=∠A E ∠=∠4BC =DC A B电桩的单价少0.3万元,且用12万元购买型充电桩与用18万元购买型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A ,B 型充电桩,购买总费用不超过15万元,且型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?26.(本小题满分12分)如图所示,在中,,点是线段延长线上一点,且,点是线段上一点,连接,以为斜边作等腰,连接,且.(1)过点作,垂足为.①求证:②求证:;(2)如图2,若点是线段延长线上一点,其他条件不变,请写出线段,,之间的数量关系,并说明理由.图1 图2A B A Rt ABC △90C ∠=︒D CA AD AB =F AB DF DF Rt DFE △EA EA AB ⊥D DG AE ⊥G DEG EFA≌△△AE AF BC =+F BA AE AF BC正定县2023-2024学年度第一学期期中教学质量检测八年级数学答案一、选择题1--5DCDCC 6--10ABCAA 11--15DDCCDB二、填空题17.; 18.1; 19.; 20.(1)120°;(2)3三、解答题21.(本题满分8分)解:(1)③--------------------------------2分(2)原式--------------------------------4分----------------------------------------6分-----------------------------------------------8分22.(本题满分8分)解:(1)根据题意得:把代入得:----------------------1分去分母得:--------------------------------------2分解得:-------------------------------------------3分经检验,是分式方程的解.--------------------------4分(2)去分母得:------------------------------------------5分已知不存在满足条件的x 的值,则,--------------------------6分把代入得-------------------------------------------------------------7分2±2-()()1122223x x x x x ⎡⎤+--⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +-+-=⋅+-()()32223x x x -=⋅+-12x =+7088m x x x-+=--2m =27088x x x -+=--()270x --=9x =9x =7088m x x x-+=--()70m x --=8x =8x =()70m x --=()870m --=解得----------------------------------------------------------8分23.(本题满分8分)解:∵正数a 的两个平方根分别是和∴--------------------------------------------2分∴----------------------------------------------------3分∴------------------------------------------4分∴,-------------------------------------------5分∴,-----------------------------------------------------6分∴------------------------------7分∴的平方根是------------------------------8分24.(本题满分8分)解:∵,∴---------------------------------------2分在和中------------------------------5分∴--------------------------------6分∴.--------------------------------------------------8分25.(本题满分12分)解:(1)设A 型充电桩的单价为x 万元,则B 型充电桩的单价万元,根据题意得----------------------------------4分解得,经检验是原方程的解,---------------------6分答:A 型充电桩的单价为0.6万元,则B 型充电桩的单价为0.9万元;(2)设购买A 型充电桩m 个,则购买B 型充电桩个,根据题意,得:-----------------------------------------------------------------9分解得:又因,且是整数-∴,11,12--------------------------------------------------------10分∴该停车场有3种购买方案,1m =3x +26x -()3260x x ++-=1x =()2316a x =+=()23430b b -+-=10b =21621036a b +=+⨯=2a b +6±BCE ACD ∠=∠ACB ECD ∠=∠ACB △ECD △A E AC ECBCA DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACB ECD ≌△△4BC CD ==()0.3x +12180.3x x =+0.6x =0.6x =0.30.9x +=()20m -()0.60.92015m m +-≤10m ≥12m ≤10m =方案一:购买10个A 型充电桩、10个B 型充电桩;方案二购买11个A 型充电桩、9个B 型充电桩;方案三:购买12个A 型充电桩、8个B 型充电桩.----------------------------------------11分∵A 型机床的单价低于B 型机床的单价,∴购买方案三总费用最少,最少费用(万元)--------------------------12分26.(本题满分12分)证明(1)∵①,∴,∵,∴∴---------------------------2分在△DEG 和△EFA 中,∴---------------------------4分②证明:∵,,∴,∵,,∴----------------------6分∴,∵,∴,∴-----------------------8分(2),--------------------------------9分理由如下,如图2,过点D 作,交AE 的延长线于点G ,则,∵,∴,∵△DEE 是以DF 为斜边的等腰直角三角形,∴,,∴,∴,∴,---------------------10分∴,∵,∴,∴------------------------------------11分120.680.914.4=⨯+⨯=DG AE ⊥90DEG EDG ∠+∠=︒90DEF ∠=︒90DEG AEF ∠+∠=︒EDG FEA ∠=∠DGE EAF EDG FEADE EF ∠=∠∠=∠=⎧⎪⎨⎪⎩()AAS DEG EFA ≌△△90GDA GAD ∠+∠=︒90GAD BAC ∠+∠=︒GDA BAC ∠=∠AD AB =90DGA C ∠=∠=︒()AAS GDA CAB ≌△△BC AG =DEG EFA ≌△△EG AF =AE AG GE AF BC =+=+BC AE AF =+DG AE ⊥90DGE ∠=︒AE AB ⊥90EAF DGE ∠=∠=︒90DEF ∠=︒DE EF =90GDE GED GED AEF ∠+∠=∠+∠=︒GDE AEF ∠=∠()AAS GDE AEF ≌△△GE AF =90DGE EAF ∠=∠=︒//DG AB GDA CAB ∠=∠在和中,∴,∴,∴------------------------------------12分GDA∠CAB∠DGA CGDA CABAD AB∠=∠∠=∠=⎧⎪⎨⎪⎩()AASGDA CAB≌△△BC AG= BC EG AE AF AE=+=+。

人教版初二上学期期中数学试题与参考答案

人教版初二上学期期中数学试题与参考答案

人教版数学初二上学期期中模拟试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是6厘米,宽是宽的3倍,求这个长方形的周长。

选项:A、18厘米B、24厘米C、30厘米D、36厘米2、一个正方形的对角线长为10厘米,求这个正方形的面积。

选项:A、25平方厘米B、50平方厘米C、100平方厘米D、125平方厘米3、一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?选项:A. 25B. 50C. 100D. 1254、一个数加上它的3倍后等于24,这个数是多少?选项:A. 4B. 6C. 8D. 125、题目:在下列各数中,最小的正有理数是:A.12B.−13C.0D.√26、题目:若x2−5x+6=0,则x的值是:A.2和3B.1和4C.2和2D.3和37、已知直角三角形两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 88、下列分数中,分母最大的一个是什么?A. 5/6B. 3/8C. 2/5D. 7/49、一个长方形的长是10厘米,宽是5厘米,如果将它的长和宽都扩大到原来的2倍,那么这个长方形的面积将扩大到原来的多少倍?选项:A. 2倍B. 4倍C. 5倍D. 10倍 10、一个等腰三角形的底边长为12厘米,腰长为10厘米,那么这个三角形的周长是多少厘米?选项:A. 32厘米B. 34厘米C. 36厘米D. 38厘米二、填空题(本大题有5小题,每小题3分,共15分)1、题干:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是_______cm。

2、题干:已知一元二次方程(x2−5x+6=0),则这个方程的两个根的和为_______ 。

3、若一个等腰三角形的底边长为8厘米,腰长为10厘米,则这个三角形的周长为______ 厘米。

4、小明家住在三层楼,他从一层走到三层需要爬 ______ 个楼梯间隔。

5、已知一个等腰三角形的腰长为5cm,底边长为8cm,则这个等腰三角形的高为____cm。

江苏省徐州市铜山区2023-2024学年八年级上学期期中数学试题(含答案)

江苏省徐州市铜山区2023-2024学年八年级上学期期中数学试题(含答案)

2023-2024学年度第一学期期中质量自测八年级数学试题注意事项1.本试卷共6页满分为140分,考试时间100分钟;2.答案全部涂、写在答题卡上,写在本试卷上无效.一、精心选一选:(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的,把所选答案填涂在下表相应位置上)1.4的平方根是()A .2B .C .-2D .42.如图,,其中,则的度数是()第2题A .B .C .D .3.下列美丽的图案中是轴对称图形的个数有()A .1个B .2个C .3个D .4个4.一等腰三角形的两边长分别为3和6,则它的周长为()A .12B .15C .12或15D .185.如图,在Rt 、Rt 中,,添加两个条件不能使这两个直角三角形全等的是()第5题A .B.2±ABC A B C '''△≌△36,24A C ︒==︒∠∠B '∠150︒120︒90︒60︒ABC △DEF △90B E ==︒∠∠,A D AB DE ==∠∠,A D BC EF==∠∠C .D .6.在中,三边满足,则互余的一对角是()A .与B .与C .与D .以上都不是7.如图相交于点,用“SAS ”证还需()第7题A .B .C .D .8.勾股定理是几何中的一个重要定理,在我国古算书《周碑算经》中就有“若勾三,股四,则弦五”的记载,如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理,图(2)是由图(1)放入矩形内得到的,,点都在矩形的边上,则矩形的面积为()第8题A .90B .100C .110D .121二、细心填一填:(本大题共8小题,每小题4分,共32分.请把答案填在答题卡相应位置上.)9.在实数,0.5,3.14159,,0.12121121112…中有理数的个数是______.10.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据图形全等的知识,说明画出的依据是______.(填),AB DE BC EF==,A D C F ==∠∠∠∠ABC △,,a b c 222ba c -=A ∠B ∠C ∠A∠B ∠C ∠AC BD 、,O OA OD =ABO DCO △≌△AB DC =A D =∠∠OB OC =AOB DOC=∠∠90,3,4BAC AB AC ==︒=∠D E F G H I 、、、、、KLMJKLMJ 1323π0.020020002-A O B ∠'''AOB ∠A O B AOB ∠∠='''SSS SAS ASA AAS 、、、第10题11.如果与为一个非负数的两个平方根,则______.12的值在两个整数与之间,则______.13.若的立方根是,则______.14.如图,在Rt中,是斜边上的中线,如果,那么______cm.第14题15.如图,在中,平分,若,点是上一动点,的最小值为______.第15题16.如图,有一块矩形纸片.将纸片折叠,使得边落在边上,折痕为,再将沿向右翻折,与的交点为,则的面积是______.第16题三、用心做一做:(本大题共9题,共84分.请把答案写在答题卡相应位置,解答应写出文字说明、推理过程或演算步骤.)17.(本题10分,每题5分)计算:(1;(2)18.(本题10分,每题5分)求下列各式中的:56m-32m-a m=a1a+a=x14-x=ABC△CD AB 2.4cmCD=AB=ABC△90,C AD=∠BAC∠10,6BC BD==E AB DE,8,6ABCD AB AD==AD AB AE AED△DE AE BC F CEF△(2()()12012273π-⎛⎫-+-+-- ⎪⎝⎭x(1);.19.(本题8分)如图,在中,,折叠该纸片,使点落在点处,折痕为,若的周长为8,求的长.20.(本题8分)如图,在中,,以点为圆心,任意长为半径画弧分别交、于点和,再分别以点为圆心,大于的长为半径画弧,两弧交于点,连接并延长交于点,若,求的度数.21.(本题8分)如图,已知:,垂足分别为,且.求证:.22.(本题8分)如图,中,角平分线相交于点.(1)与相等吗?请说明你的理由;(2)若连接,并延长交边于点.你有哪些新发现?请写出两条(不必说明理由).21 1.25x -=()()32211x +=-ABC △5AC =A B DE BCE △BC ABC △90C ︒=∠A AB AC M N M N 、12MN P AP BC D 32B ︒=∠ADC ∠,ED AB FC AB ⊥⊥,//D C AE BF 、AE BF =AC BD =ABC △AB AC =BD CE 、O OB OC AO AO BC F23.(本题8分)如图,,一机器人在点处看见一个小球从点出发沿着方向匀速滚向点,机器人立即从点出发,沿直线匀速前进拦截小球,恰好在点处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程是多少?24.(本题12分)如图,和是的两条高,交点为,且,延长至点,使.试问:线段和有怎样的数量关系和位置关系?请说明理由.25.(本题12分)在Rt 中,,点为上一点.(1)如图①,将折叠,使点与点重合,折痕为,若,则的长为______;(2)如图②,Rt 中,,将折叠,使点与的中点重合,折痕为,求线段的长;题图①题图②(3)如图③,若,点为边上一点,连接,且,将沿折叠,当点恰好落在边上时,求线段的长;(4)如图④,若,点为的中点,连接,将沿折叠,点的对应点恰好落在边的中线上时,则______是三角形,请说明理由.90,45m,15m AOB OA OB ===︒∠B A AO O B C BC BE CF ABC △P BP CA =CF Q CQ BA =AP AQ ABC △90ACB ∠=︒D AB ABC △B A DE 3,4BC AC ==AE ABC △18,12AC BC ==ABC △A BC N MD CM 4,5AC AB ==E BC DE 2BE CE =BDE △DE B 'AC AB '60B ︒=∠E BC DE BDE △DE B B 'AB CF B DE '△题图③题图④2023-2024学年度第一学期期中学情调研八年级数学试题参考答案及评分意见一、选择题(每题3分,共24分)题号12345678答案B B C B D B C C二、填空题(每题4分,共32分)9.610.SSS11.1 12.213.14.4.815.416.2三.耐心做一做:(本大题共9小题,共84分.解答应写出文字说明、推理过程或演算步骤.)17.(本题10分,每题5分)(1)原式(2)原式=18.(本题10分,每题5分)(1)解:,或(2)解:,19.(本题8分)解:由折叠可知:周长为8即20.(本题8分)解:由作图可知:平分,在Rt 中,,,又是的外角,21.(本题8分)证明:164-232=-+1=2413=++-4=21 1.25x -= 22.25x ∴= 1.5x ∴= 1.5x =-()3211x += 211x ∴+=1x ∴=AE BE =CBQ △8BE BC EC ∴++=8AE BC EC ++=58,3BC BC ∴+==AD BAC ∠BAD CAD ∴=∠∠ABC △9058BAC B ∠︒-︒== ∠12BAD BAC ∴=∠∠ADC ∠ABD △322961ADC B BAD ∴=+︒+︒=︒∠=∠∠,ED AB FC AB ADE BCF⊥⊥∴= ∠∠又在和中,即22.(本题8分)(1)解:,平分,,同理:,(2)平分:点是的中点(说出其中两条即可)23.(本题8分)解:小球滚动的速度与机器人行走的速度相等,运动时间相等,即,(2分)设为,则,由勾股定理可知,又,把它代入关系式,解方程得出.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程是.24.(本题12分)解:.(2分)//AE BF A B∴=∠∠ADE △BCF △A D ADE BCFAE BF =⎧⎪=⎨⎪=⎩∠∠∠∠()AAS ADE BCF ∴△≌△AD BC∴=AD CD BC CD ∴-=-AC BD=OB OC =,AB AC ABC ACB=∴= ∠∠BD ABC ∠12DBC ABC ∴=∠∠12EBC ACB =∠∠DBC ECB ∴∠=∠OB OC ∴=AF ;BAC AF BC ⊥∠F BC BC CA =AC x 45OC x =-222OB OC B +=45,15OA OB == ()2221545x x +-=25x =BC 25cm ,AP AQ AP AQ =⊥是的两条高,.又.在和中,,.又,即,.25.(本题12分)(1)在Rt 中,,设,则,,解得:(2)将折叠,使点与的中点重合,,设,则,在Rt 中,,解得:;(3)在Rt 中,,,,,;(4)是等边三角形在Rt 中,为斜边的中线,为等边三角形,有折叠可知是等边三角形∴点是的中点连接,则(等边三角形三线合一)点与点关于直线对称又是等边三角形.题图① 题图② 题图③题图④BE CF 、ABC △,,90BE AC CF AB AFC AEB ∴⊥⊥∴∠=∠=︒,CAF BAE QCA PBA ∠=∠∴∠=∠ APB △QAC △,BP CA ABP QCA APB QAC AP AQ BA CQ =⎧⎪∠=∠∴∴=⎨⎪=⎩△≌△BAP Q ∠=∠90,90QAF Q QAF BAP ∠+∠=∴∠+∠=︒︒ 90QAP ∠=︒AP AQ ∴⊥ ABC △90ACB ∠=︒AE x =4,CE x EB x =-=()22243x x ∴=-+2525;88x AE =∴= ABC △A BC N 6CN BN ∴==CM x =18MN AM x ==-CMN △()222618x x +=-8x = ABC △90,4,5,3ACB AC AB BC ∠===∴=︒2,1,2BE CE CE BE =∴== 2B E BE ∴=='B C ∴'==4AB '∴=-B DE '△ ABC △90,ACB CF ∠=︒AB ,60,CF BF B CFB ∴=∠=︒∴ △60BCF ∴∠=︒B E BE CE ='=B CE ∴'△1122B C BC CF ∴=='B 'CF BB 'B B CF '⊥30CBB BB E ''∴∠=∠=︒ B B 'DE 60B B CF B ED ∴⊥∴∠=''︒60EB D ︒'∠= B DE ∴'△。

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。

答案:±42. 如果一个角的补角是120°,那么这个角是______。

答案:60°3. 一个数的绝对值是5,这个数可以是______。

答案:±54. 一个数的立方等于27,这个数是______。

答案:35. 一个数的倒数是1/3,那么这个数是______。

答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。

答案:x = 52. 已知一个角是45°,求它的补角。

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。

一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。

山东省济南市历下区2023-2024学年八年级上学期期中数学试题(含答案)

山东省济南市历下区2023-2024学年八年级上学期期中数学试题(含答案)

2023~2024学年第一学期八年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中,是最简二次根式的是()ABCD3.下列关于的函数是一次函数的是()A.B.C.D.4.是下面哪个二元一次方程的解()A.B.C.D.5.下列计算正确的是()ABCD6.一次函数的图象过点,且随的增大而减小,则的值为()A.B.或2C.1D.27.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以,符合上述要求的图形是()A.B.C.D.8.某校规定学生体测成绩由三部分组成:长跑占成绩的,50米跑占成绩的,立定跳远占成绩的.小明上述三项成绩依次是92分,100分,80分,则小明本次的体测成绩为()分.A.95B.93C.91D.899.一次函数与的图象如图所示,下列选项正确的是()()1,2Ax2yx=y=21y x=-52y x=-53xy=⎧⎨=⎩27x y-=2y x=-+2x y=--231x y-=-+===2+=()20y mx m m=+≠()0,4y x m2-2-1-50%25%25%1y kx b=+2y mx n=+第9题图①对于函数来说,随的增大而减小;②函数的图象不经过第一象限;③A .①②B .①③C .②③D .①②③10.两地相距240千米,早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.甲、乙两车离开各自出发地的路程(千米)与甲车出发的时间(小时)之间的关系如图所示,下列描述中不正确的有()个.第10题图①甲车的平均速度是60千米/小时;②乙车的平均速度是80千米/小时;③甲车与乙车在早上10点相遇;④两车在10:40或10:58时相距20千米.A .1B .2C .3D .4第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.如图,在“笑脸”的“嘴巴”上找一格点,这一格点的坐标可以为______(写出一点即可).第11题图12.赵老师每天登录“学习强国”进行学习,在获得信息和知识的同时,还能获得“点点通”奖励.上表是王1y kx b =+s t y kx n =+22k m n b -=-AB A B B A 12s s 、t老师最近一周每日“点点通”奖励情况,这组数据的平均数是______点.星期一二三四五六日“点点通”(点)15202523211719第12题图13.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马两,每头牛两.根据题意,可列方程组为______.14.直线与直线相交于点,则关于的方程组的解为______.15.下表列出了一项实验的统计数据(单位:):5080100150 (30)455580…它表示皮球从一定高度落下时,弹跳高度是下落高度的一次函数,那么变量与之间的关系式为______.16.如图,在平面直角坐标系中,直线表达式为,点是直线上一点,直线过点,且与直线的夹角,则直线的表达式为______.第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)计算:(1);(2.18.(本小题满分6分)解方程组:(1);(2).19.(本小题满分6分)x y 1y x =+y mx n =+()1,M b ,x y 1x yy mx n+=⎧⎨-=⎩cm x yy x y x AB 13y x =()3,1M AB CD M AB 45AMC ∠=︒CD (22++127x y x y =+⎧⎨+=⎩351458x y x y -=-⎧⎨+=⎩和都是方程的解,求与的值.20.(本小题满分8分)如图,直线是一次函数的图象,且经过点和点.第20题图(1)求和的值;(2)求直线与两坐标轴所围成的三角形的面积.21.(本小题满分8分)如图,在平面直角坐标系中,.第21题图(1)作出;(2)作出关于轴的对称图形;(3)求的面积.22.(本小题满分8分)2023年中秋、国庆双节假期期间,济南趵突泉景区共纳客200多万人次,为迎接游客,甲、乙两个纪念品商店对标价都是每个10元纪念印章推出优惠活动:甲商店购买5个以上,从第6个开始按标价的9折卖:乙商店从第1个开始就按标价的9.5折卖.(1)直接写出两商店优惠后的价格(元)与购买数量(个)的关系式();(2)小明要买8个纪念印章,到哪个商店购买比较省钱,请说明理由;21x y =-⎧⎨=⎩14x y =⎧⎨=⎩ax y b -=a b l y kx b =+()0,4A ()5,2B --k b l ()()()4,1,3,3,2,2A B C ----ABC △ABC △y 111A B C △111A B C △y x 5x >(3)若纪念印章的成本为每个7元,请写出甲商店的利润(元)与卖出数量(个)的关系(卖出5个以上).23.(本小题满分10分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a .30名同学中华传统文化知识测试成绩的统计图如图1:图1b .30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:,).图2c .测试成绩在这一组的是:70 72 72 74 74 74 75 77d .小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在这一组的同学成绩的众数为______分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______名;(3)抽取的30名同学的成绩的中位数为______分;(4)序号(见图1横轴)为1-10的学生是七年级的,他们成绩的方差记为;序号为11-20的学生是八年级的,他们成绩的方差记为;序号为21-30的学生是九年级的,他们成绩的方差记为.直接写出①,②,③中最小的是______(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800w x 4050x ≤<5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<7080x ≤<7080x ≤<21s 22s 23s 21s 22s 23s名同学都参加测试,请估计成绩优秀的同学人数.24.(本小题满分10分)根据以下素材,探索完成任务.如何设计布料剪裁方案?素材1图1中是第31届世界大学生夏季运动会吉祥物“蓉宝”玩偶,经测量,制作该款吉祥物头部所需布料尺寸为,身子布料尺寸.图2是两部分布料的尺寸示意图.图1图2素材2某工厂制作该款式吉祥物,经清点库存时发现,需在市场上购进某型号布料加工制作该款式的玩偶.已知该布料长为,宽为.(剪裁时不计损耗)我是布料剪裁师任务一拟定剪裁方案若要不造成布料浪费,请你设计出一匹该布料的所有剪裁方案:方案一:剪裁头部布料16张和身子布料0张.方案二:剪裁头部布料______张和身子布料______张.方案三:剪裁头部布料______张和身子布料______张.任务二解决实际问题工厂目前已有裁剪好的12张头部布料和4张身子布料,经商议,现需购买一批该型号布料,其中一部分按照方案二裁剪,另一部分按照方案三裁剪,一共制作700个“蓉宝”玩偶.请问:需要购买该型号布料共多少匹(恰好全部用完)?25.(本小题满分12分)为激发学生们对科技的好奇心和探索欲,培养学生的创新意识和创新精神,某学校开展了“智能小车实验探究”50cm 15cm ⨯50cm 40cm ⨯240cm 50cm活动.某小组观察探究小车运动中的函数关系,如图,在一条长为的水平直线轨道上,放置一辆长为的智能小车,开始时小车左端与处挡板重合,然后以的速度匀速向右行驶,当小车接触到处的挡板时因为要改变方向需停顿,然后以相同的速度返回,至再次与处的挡板接触时小车停止运动.在这个过程中,设小车的右端与处挡板的距离为,小车出发后的时间为,请根据所给条件解决下列问题:第25题图(1)小车运动时间为时,的值为______;(2)小车从处驶向处的过程中,求与的函数表达式;(3)当小车左端与处挡板的距离比小车右端与处挡板距离的2倍多时,请求出的值.26.(本小题满分12分)如图,直线与轴、轴分别交于点,直线与轴、轴分别交于点.第26题图第26题备用图(1)直线过定点的坐标为______(填写合适的选项);A .B .C .D .(2)若直线将的面积分为两部分,请求出的值.(3)当时,将直线沿直线作轴对称得直线,此时直线与轴平行,直接写出此时的值.初二年级期中检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)50cm 4cm A 2cm /s B 1s A B ()cm s ()s t 3s s cm B A s t A B 4cmt 1:l y =+x y ,60A B BAO ∠=︒、2:l y kx k =-+x y C D、y kx k =-+M ()1,3(32⎛⎝(2,2l AOB △1:7k 0k >2l 1l 3l 3lx 2:l y kx k =-+k题号12345678910答案ACDABABCDC二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案答案不唯一20三.解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)17.(满分共6分)(1)(218.(满分共6分)(1)解:将①代入②得:,解得:将代入①得:原方程组的解为(2)解:由①+②得:,解得:将代入②得:,解得:原方程组的解为19.(满分共6分)解:将代入,得:()0,2-273212x y x y +=⎧⎨+=⎩12x y =⎧⎨=⎩152y x =+1522y x =-+()2222431+=-=-=0+=-+=127x y x y =+⎧⎨+=⎩①②127y y ++=2y =2y =213x =+=∴32x y =⎧⎨=⎩351458x y x y -=-⎧⎨+=⎩①②77x =1x =1x =458y +=45y =∴145x y =⎧⎪⎨=⎪⎩21x y =-⎧⎨=⎩ax y b -=21a b--=将代入,得:解得:20.(满分共8分)解:(1)将点和点代入得:解得:,直线的表达式为(2)点把代入,得解得:点,即点21.(满分共8分)解:(1)即为所求;(2)即为所求;(3)22.(满分共8分)解:(1)14x y =⎧⎨=⎩ax y b -=4a b -=1,3a b ==-()0,4A ()5,2B --y kx b=+452b k b =⎧⎨-+=-⎩654k b ⎧=-⎪⎨⎪=⎩6,45k b ∴==∴l 645y x =-+ ()0,4,4A OA ∴=0y =645y x =+6405x +=103x =-∴10,03C ⎛⎫- ⎪⎝⎭103OC = ()0,4,4A OA ∴=11102042233AOC S OA OC ∴=⋅=⨯⨯=△ABC △111A B C △1111117251523122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△()500.910595y x x =+⨯⨯-=+甲0.95109.5y x x=⨯=乙(2)到乙商店购买较省钱把代入得:(元)把代入得:(元),到乙商店购买较省钱(3)23.(满分共10分)解:(1)74(2)11(3)73(4)③(5)(人)答:成绩优秀的同学人数为600人.24.(满分共10分)解:任务一:设一卷该布料裁切头部布料张,身子布料张,,,为非负整数,或或故答案为:8 30 6(方法二和方法三可以互换位置)任务二:设用卷该布料裁切头部布料8张,身子布料3张,用卷该布料裁切头部布料0张,身子布料6张,解得:(卷),需要购买该布料159卷.25.(满分共12分)解:(1)40(2)(秒)(3)①当小车从到运动时:解得:②当小车从到运动时:解得:或26.(满分共12分)解:(1)B8x =y 甲98577y =⨯+=甲8x =y 乙9.5876y =⨯=乙7677< ∴95725w x x x =+-=+10180060030⨯=m n 1540240m n +=4883nm -∴=,m n 160m n =⎧∴⎨=⎩83m n =⎧⎨=⎩0,6m n =⎧⎨=⎩x y 870012,367004x x y =-⎧⎨+=-⎩8673x y =⎧⎨=⎩8673159+= ∴()504223-÷= 23124∴+=()224s t ∴=⨯-248s t ∴=-A B ()224624t t =⨯-+16t =B A ()()50424822484t t ---=⨯-+31t =16t ∴=31t =(2)将代入得:将代入得:直线过定点,直线也过定点,是两直线的交点直线将的面积分为两部分,①当时,②当时,(3)0x=y =+y=(0,,B OB ∴=0y=y =+=4x ()4,0,4A OA ∴=11422AOB S OA OB ∴=⨯⨯=⨯⨯=△ 2l (M 1l (M M ∴ 2l AOB △1:70k>18BMD AOB S S ∴=⨯=△△12BMD M S BD x =⨯⨯=△BD=(0,D∴k ∴=0k<18AMC AOB S S ∴=⨯=△△12AMC M S AC y =⨯⨯= △23AC ∴=10,03C ⎛⎫∴ ⎪⎝⎭k ∴=k =。

北京市大兴区2024—2025学年上学期期中检测八年级数学试题(含答案)

北京市大兴区2024—2025学年上学期期中检测八年级数学试题(含答案)

大兴区2024~2025学年度第一学期期中检测初二数学2024.11考生须知1.本试卷共7页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在答题纸上准确填写学校名称、准考证号,并将条形码贴在指定区域.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.的相反数是()(A)(B(C)(D2.下列四个图标中是轴对称图形的是()(A)(B)(C)(D)3.下列四组线段中,能组成三角形的是()(A)2,3,5(B)3,4,5(C)3,4,8(D)5,5,104.如图,用三角尺作的边上的高,下列三角尺的摆放位置正确的是()(A)(B)(C)(D)5.正十二边形的外角和为()(A)30°(B)150°(C)360°(D)1800°6.在中,,则()(A)是锐角三角形(B)是直角三角形(C)是钝角三角形(D)不存在7.如图,在中,,是的平分线,已知,,则的面积是()(A)3.5(B)5(C)7(D)148.在中,和的平分线交于点F,过点F作的平行线,分别交,于点ABC△ABABC△::1:2:3A B C∠∠∠=ABC△ABC△90C∠=︒AD CAB∠2CD=7AB=ADB△ABC△ABC∠ACB∠BC AB ACD ,E .给出下面四个结论:①若,则;②若,则;③;④若,,则的周长为.上述结论中,正确的个数是( )(A )1(B )2(C )3(D )4二、填空题(共16分,每题2分)9.把二元一次方程改写成用含x 的式子表示y 的形式,则y =______.10.点关于y 轴的对称点的坐标为______.11.在数轴上点M ,N 表示的数分别为2,,且点N 在点M 的右侧,则x 的取值范围是______.12.方程的解为______.13.如图,在中,,于点D ,,若,则______.14. 如图,,,垂足分别为点B ,D .若只添加一个条件,使,则这个条件可以是______.(写出一种情况即可).15.如图,在中,点D ,E 分别是,的中点,若的面积为a ,则的面积是______.16.若是的高,且,,则的度数是______.120A ∠=︒160BFC =︒∠AB AC =BDF CEF ≌△△2DE BF FC <+8cm AB =6cm AC =ADE △14cm 34x y +=()2,1M -21x -+36x x -=ABC △90ACB ∠=︒CD AB ⊥30B ∠=︒4AB =BD =AB BC ⊥AD DC ⊥ABC ADC ≌△△ABC △AB CD ABC △ADE △AD ABC △20ABD ∠=︒50ACD ∠=︒BAC ∠三、解答题(共68分,第17-22题,每题5分,第23-26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.18.解不等式组:19.如图,、. 求证:平分.20.如图,在中,作的平分线,交于点P .在射线上,截取线段,使.(1)用直尺和圆规补全图形(保留作图痕迹,不写作法);(2)连接,求证:.21.如图,是的中线,过点C 作,交的延长线于点E ,求证:.22.如图,的三个顶点的坐标分别为,,(1)若与关于x 轴成轴对称,请画出;(2)在x 轴上找一点P ,使的值最小,在图中画出点P .(-()3142925x x x x -<+⎧⎪⎨->⎪⎩AB AC =BO CO =AO BAC ∠ABC △BAC ∠AP BC AC AD AD AB =PD PB PD =AD ABC △CE AB ∥AD AD DE =ABC △()1,1A ()4,2B ()3,4C A B C '''△ABC △A B C '''△PA PB +23.在科技节活动中,小明利用几何图形及其元素的关系,设计了一款风筝(如图1所示),并结合所学知识利用图2进行了讲解和展示,获得了大家的一致好评.下面是他对自己设计理念中两个特点的描述.特点一:图2是该“风筝”中平面图形的主要部分,它是轴对称图形;特点二:延长 交于点E ,此时恰好是的垂直平分线.阅读以上材料完成下面问题:(1)根据描述,补全图形;(2)根据上面的特点,小明发现与相等,并写出他的探究过程.请认真阅读,完成下面的证明过程,并在括号中填写依据.证明:是的垂直平分线, ______()与关于直线______对称,,______,,().24.在历史上数学家欧拉最先用记号来表示关于x 的多项式.当时,多项式的值用来表示.BC AD BE AD CAB ∠B ∠ BE AD ∴CA = ACB △ACD △∴ACB ACD ≌△△∴CB =∴CA CB =∴CAB B ∠=∠()f x x a =()f a例如,对于多项式,当时,多项式的值为当多项式时,回答下面问题:(1)______;(2)若,求的值;(3)若,求m 的取值范围.25.如图,在四边形中,,平分,,求的度数.26.如图,在平面直角坐标系中,的顶点坐标分别为点,,.将向左平移两个单位长度得到,线段与线段相交于点M .(1)求证:;(2)连接,交于点N .①求证:平分;②直接写出的面积.27.在中,,,点D 是射线上一点(点D 不与点B ,C 重合),连接,将线段 绕点A 逆时针旋转60°,旋转后且,连接,,延长线段交直线于点F .(1)如图1,证明:是等边三角形;(2)当点D 在如图1所示的位置时:①求证:;②直接用等式表示线段, 和之间的数量关系;(3)当点D 在线段上时(点D 不与点B ,C 重合),直接用等式表示线段、和之间的数量关系.()21f x x x =++2x =()222217f =++=()322f x mx mx x m =-+-()2f =()00f =()2024f ()()11f f ≤-ABCD AB AD =AC BCD ∠90BAD ∠=︒ACB ∠xOy Rt ABC △()5,2A ()1,0B ()5,0C Rt ABC △Rt DEF △DF AB AM BM =CD AB CD ACB ∠ACN △ABC △90ACB ∠=︒30BAC ∠=︒CB AD AD AE AD =60DAE ∠=︒DE EC EC AB ADE △BD BF =AB BF CD BC AB BF CD28.在平面直角坐标系中,对于点,若点Q 坐标为,则称点Q 为点P 的“关联点”.例如,点,则点是点P 的“关联点”.(1)若点是点的“关联点”,则点的坐标为______;(2)若点是点的“关联点”,且点在x 轴上,求t 的值;(3)若点是点的“关联点”,且线段与x 轴有交点,直接写出t 的取值范围.xOy (),P x y (),2x y x -+()1,2P ()1,4Q -1Q ()12,3P 1Q 2Q ()21,1P t --2Q 3Q ()3,3P t t --33PQ大兴区2024~2025学年度第一学期期中检测初二数学参考答案及评分标准一、选择题(共16分,每题2分)题号12345678答案A D B A C B C B二、填空题(共16分,每题2分)9.10.11.12.13.314.答案不唯一,如15.16.30°或110°三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)17.18.解:解不等式①得:解不等式②得:原不等式组的解解集是.19.证明:在和中,,平分.20.(1)解:43x-()2,1--12x<-3x=AB AD=4a(-172=+-+4=+()3142925x xxx-<+⎧⎪⎨->⎪⎩①②7x<1x>-17x-<<ABO△ACO△AB ACBO COAO AO=⎧⎪=⎨⎪=⎩∴ABO ACO≌△△∴BAO CAO∠=∠∴AO BAC∠(2)证明:平分,,在和中,.21.证明:证明:是的中线,,.,.在和中,.(方法不唯一)22.解:AP BAC ∠∴BAP CAP ∠=∠ABP △ADP △AB CD BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩∴ABP ADP ≌△△∴PB PD = AD ABC △∴BD CD = AB CE ∥∴BAD E ∠=∠ABD △ECD △BDA C E B D BD CD AD E ⎧⎪∠=∠⎨⎪==∠⎩∠∴ABD ECD ≌△△∴AD DE =(第二问,也还可以连接,与x 轴交点也是P 点)23.解:(1)(2);线段垂直平分线上的点与这条线段两个端点的距离相等;;;等边对等角.24.解:(1);(2),.,,.把代入.,.(3),AB 'CD AC CD 2m - ()32f x mx mx x m =-+-∴()3200200f m m m m =⨯-⨯+-=- ()00f =∴0m -=∴0m = 0m =()32f x mx mx x m =-+-∴()f x x =∴()20242024f = ()32f x mx mx x m =-+-,.,..25.解:在上截取,连接.平分,.在和中,.,,...在四边形中,,.即 26.(1)证明:连接.∴()12121f m m m m =-+-=-+()12141f m m m m -=----=-- ()()11f f ≤-∴2141m m -+≤--∴1m ≤-CD CE CB =AE AC BCD ∠∴12∠=∠AEC △ABC △12CE CB AC AC =⎧⎪∠=∠⎨⎪=⎩∴AEC ABC ≌△△∴3B ∠=∠AE AB = AB AD =∴AE AD =∴4D ∠=∠ 34180∠+∠=︒∴180B D ∠+∠=︒ ABCD 360BAD B BCD D +++=︒∠∠∠∠∴180BAD BCD ∠+∠=︒ 90BAD ∠=︒∴90BCD ∠=︒ 12∠=∠∴245∠=︒45ACB ∠=︒AD向左平移两个单位得到,,,.,,.,,.(2)①过点N 作于H ,于G .,,,,.,.,,,为的平分线.②.27.解:(1),,是等边三角形;(2)①证明: 延长至点G ,使, 连接,,Rt ABC △Rt DEF △∴AD BC ∥2AD CF ==∴MAD MBF =∠∠ ()1,0B ()5,0C ∴4BC =∴2BF BC CF =-=∴BF AD = DMA FMB ∠=∠∴DMA FMB ≌△△∴AM BM =NH BC ⊥NG AC ⊥ ()5,2A ()5,0C ∴2AC =∴AC AD =∴ADC ACD ∠=∠ AD CB ∥∴180DAC ACB +=︒∠∠ 90ACB ∠=︒∴90DAC ∠=︒∴90ACD ADC ∠+∠=︒∴45ACD ∠=︒∴45BCD ∠=︒∴CD ACB ∠4360DAE ∠=︒AD AE =∴ADE △BC BC CG =AG EG,.,,是等边三角形,. .在和中,,.在和中,,.②.(3)28.解:(1)点;(2)点,点,BC CG =90C ∠=︒∴AB AG = 90ACB ∠=︒30BAC ∠=︒∴60ABC ∠=︒∴ABG △120ABD =︒∠∴60AGB BAG ∠=∠=︒∴60DAE BAG ∠=∠=︒∴DAB EAG ∠=∠ABD △AGE △AD AE DAB EAGAB AG =⎧⎪∠=∠⎨⎪=⎩∴ABD AGE ≌△△∴BD GE =120ABD AGE =∠=︒∠ 60AGB ∠=︒∴60EGC ∠=︒∴EGC ABC ∠=∠BCF △GCE △ABC EGC BC GCBCF GCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BCF GCE ≌△△∴BF EG =∴BD BF =()2AB CD BF =-()2AB CD BF =+()12,7Q - ()21,1P t --∴()21,3Q t -;(3)或.∴30t -=∴3t =3t ≥3t ≤-。

2023-2024学年第一学期期中八年级数学试题及答案

2023-2024学年第一学期期中八年级数学试题及答案

2023-2024学年第一学期期中八年级数学试题一.选择题(共8小题,每题3分,共24分)1.下列等式正确的是()A.B.C.D.2.下列条件中,不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=7:3:11B.∠A+∠B=∠CC.a:b:c=7:24:25D.a2=9,b2=1,c=3.已知点P在第四象限内,到x轴的距离等于3,到y轴的距离等于4,则点P坐标是()A.(3,﹣4)B.(3,4)C.(﹣4,3)D.(4,﹣3)4.在解关于x,y的二元一次方程组时,若①﹣②可直接消去一个未知数,则◎和☆的关系是()A.◎=☆B.◎+☆=0C.◎+☆=1D.◎×☆=15.下列函数中,是一次函数的是()A.y=3x2+1B.C.D.6.一组数据由5个正整数组成,其中位数是3.如果这组数据的唯一众数是4,那么这组数据的和为()A.13B.14C.15D.14或157.如图,根据图中的标注和作图痕迹可知,在数轴上的点A所表示的数为()A.﹣1﹣B.﹣1+C.D.18.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2024的坐标是()A.(2,0)B.(4,3)C.(2,4)D.(4,1)7题图8题图10.的算术平方根是的方程组,无论11题图13题图三.解答题(共13小题,共81分)14.(4分)计算:;15.(4分)解方程组:.16.(5分)如图,在Rt△ABC 中,∠ACB=90°,BC=8cm,AC=6cm,动点P 从点B 出发,沿射线BC 以2cm/s 的速度移动,设运动的时间为t(s).(1)求AB 边的长.(2)当∠BAP=90°时,求t 的值.17.(6分)平面直角坐标系中,△ABC 的三个顶点坐标分别为A(1,4),B(3,4),C(3,﹣1).(1)在平面直角坐标系中,画出△ABC,并求出△ABC 的面积.(2)若△A 1B 1C 1与△ABC 关于x 轴对称,请在坐标系中画出△A 1B 1C,写出A 1、B 1、C 1的坐标.21.(7分)如图,一次函数434+-=x y 数y=kx﹣4的图象与直线AB 交于点C(m,2)(1)求m 的值及点A、B 的坐标;(2)若点P 是x 轴上的一个动点,当22.(6分)如图,一辆小汽车在一条限速40km/h 的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A 的正前方60m 处的C 点,过了8s 后,测得小汽车所在的B 点与车速检测仪A 之间的距离为100m.(1)求B,C 间的距离.(2)这辆小汽车超速了吗?请说明理由.23.(6分)已知2a+7b+3立方根是3,3a+b﹣1的算术平方根是4,c 是的整数部分.求3a﹣b+c 的平方根.24.(6分)小丽和小明同时解一道关于x 、y 的方程组,其中a 、b 为常数.在解方程组的过程中,小丽看错常数“a ”,解得;小明看错常数“b ”,解得.(1)求a、b 的值;(2)求出原方程组正确的解.25.(7分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径是2米,长方形的另一条边长是2.3米.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少增加到多少?26.(10分)(1)问题发现:如图1,等腰直角AOB置于平面直角坐标系中,点A,B的坐标分别为(4,0),(0,4),D是AB 上一点,AD=OA,则点D的坐标为______.(2)问题探究:如图2,若点A,B的坐标分别为(16,0),(0,12),其余条件与(1)相同,求经过O,D两点的直线表达式.(3)问题解决:国庆前夕,大唐芙蓉园景区为了提高服务质量,想尽可能美化每一个角落,给游客美的享受.如图3,ABO是景区东门的广场一角,OA,OB两面墙互相垂直,景区管理部门设计将OA,OB墙面布置成历史人文宣传墙,AB边上用建筑隔板搭出AD段将该角落与广场其他区域隔开,AD段布置成长安八景图,剩余BD部分为广场角出入口,内部空间放置一些绿植和供游人休息的桌椅,考虑到出入安全,还需在靠近出入口的E处建一个安检点.已知16mAD OA==,12m∠,安检点E在BC与OD的交点处.求点E分别到OB,OB=,BC平分OBAOA墙面的距离.2023-2024学年第一学期期中八年级数学试题参考答案一.选择题(共7小题)1.A .2.A .3.D .4.A .5.B .6.B .7.A .8.D 二.填空题(共4小题)9.3或.10.3.11.x =1.12.7.13.三.解答题(共11小题)14.计算:解:(1)=﹣1﹣8×﹣3×=﹣1﹣1﹣1=﹣3;15.解方程组:解:原方程组可化为,①+②,得x =3,把x =3代入①,得y =,∴此方程组的解.16.解:(1)在Rt△ABC 中,∠ACB =90°,BC =8cm ,AC =6cm ,由勾股定理,得AB 2=BC 2+AC 2=82+62=100,∴AB =10cm ;(2)当∠BAP =90°时,CP =BP ﹣BC =(2t ﹣8)cm ,AC =6cm ,在Rt△ACP 中,AP 2=AC 2+CP 2=62+(2t ﹣8)2,在Rt△BAP 中,AP 2=BP 2﹣AB 2=(2t )2﹣102,则62+(2t ﹣8)2=(2t )2﹣102,解得:t =,所以当∠BAP =90°时,t 的值为.17.解:(1)如图所示,△ABC 的面积为:=5;(2)(图略)若△A 1B 1C 1与△ABC 关于x 轴对称,则A 1(1,﹣4)、B 1(3,﹣4)、C 1(3,1).18.解:(1)根据题意可知,甲组再次开始加工的时间为:(1500﹣300)÷300=4(小时),∴8﹣4﹣2=2(小时),∴甲组停产2小时;(2)乙组共加工疫苗试剂:200×(8﹣)+400=1300(百盒),∴乙组共加工了疫苗试剂1300百盒.(3)乙组提速前的加工速度为400÷(﹣1)=160(百盒/小时)甲组停工时,300=160(t﹣1),解得t=.甲组再次加工过程中,300+300(t﹣4)=400+200(t﹣),解得t=6.∴甲、乙两组工人加工的疫苗试剂数量相等时t的值或6.19.解:(1)设每名熟练工每月可以安装x辆电动汽车,每名新工人每月可以安装y辆电动汽车,依题意,得:,解得:.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=40.答:还需要招聘40名新工人才能完成一个月的生产计划.20.解:(1)a=7,b=7.5,c=50%;(2)我认为八年级学生掌握传统气节知识较好,理由如下:因为七年级、八年级学生知识竞答活动得平均分一样均为7,但是八年级的众数(8分)大于七年级的众数,因此我认为八年级学生掌握传统气节知识较好;(3)(人)答:估计参加此次测试活动成绩合格的学生人数大约是1480人.21.解:(1)一次函数y=﹣x+4的图象经过点C(m,2),得﹣m+4=2,解得m=,∵一次函数y=﹣x+4的图象分别与x轴,y轴的正半轴交于点A、B,∴当y=0时,﹣x+4=0,解得x=3,即A(3,0),当x=0时,y=4,即B(0,4),∴m=,A(3,0),B(0,4);(2)把点C(,2)一次函数y=kx﹣4,得2=k﹣4,解得k=4,∴y=4x﹣4,当y=0时,x=1,即D(1,0).∴AD=3﹣1=2,=×2×2=2;∴S△ACD∵点P是x轴上的一个动点,设P(x,0),∴PD=|x﹣1|,∵S=,△PCD∴|x﹣1|×2=2,∴x=2或0,∴点P的坐标为(2,0)或(0,0).22.解:(1)在Rt△ABC中,∵AC=60m,AB=100m,且AB为斜边,∴BC===80(m),答:B,C间的距离为80m;(2)这辆小汽车没有超速.理由:∵80÷8=10(m/s),平均速度为:10m/s,10m/s=36km/h,36<40,∴这辆小汽车没有超速.23.解:∵2a+7b+3立方根是3,3a+b﹣1的算术平方根是4,∴,解得:,∵9<14<16,∴3<<4,∴的整数部分是3,∴c=3,∴3a﹣b+c=3×5﹣2+3=15﹣2+3=16,∴3a﹣b+c的平方根是±4.24.解:(1)∵在解方程组的过程中,小丽看错常数“a”,解得,∴﹣1﹣3b=5,解得b=﹣2;∵在解方程组的过程中,小明看错常数“b”,解得,∴2a+1=3,解得a=1;∴a=1;b=﹣2;(2)由(1)知,由①﹣②得﹣y=﹣2,解得y=2,将y =2代入①得x =1,∴原方程组的解为.25.解:(1)能通过.理由如下:如图①所示,当桥洞中心线两边各为0.8米时,0.82+x 2=12,∴x=0.6∵2.5<2.3+6∴能通过(2)如图②所示,OA 2=1.22+(2.8-2.3)2=1.32,∴OA=1.3米∴桥洞的宽至少应为1.3×2=2.6米.。

2023-2024学年北京通州区初二(上)期中数学试题及答案

2023-2024学年北京通州区初二(上)期中数学试题及答案

2023北京通州初二(上)期中数 学考生须知:1.本试卷共6页,共三道大题,28个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 要使分式12x x +−有意义,x 的取值应满足( ) A. 2x ≠ B. 2x ≠且1x ≠− C. 1x ≠− D. 2x = 2. 如图所示,AD 是ACE 中CE 边上的高,延长EC 至点B ,使BC CE =,连接AB .设ABC 的面积为1S ,ACE △的面积为2S ,那么下列判断正确的是( )A. 12S S >B. 12S SC. 12S S <D. 不能确定 3. 如果把分式xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A. 不变 B. 扩大3倍 C. 扩大6倍 D. 扩大9倍 4. 已知三条线段的长分别是3,8,a ,如果这三条线段首尾顺次相接能构成一个三角形,那么整数a 的最大值是( )A. 11B. 10C. 9D. 75. 计算2112x m m x−⋅+的结果正确的是( ) A. 12m − B. 12+m C. 12m x − D. 122m m −+ 6. 如果113x y +=,那么分式6xy x y +的值是( ) A. 6 B. 3 C. 2 D. 127. 如图,AC 与BD 相交于点O ,AB DC =,要使ABO DCO △≌△,则需添加的一个条件可以是( )A. OB OC =B. A D ∠=∠C. OA OD =D. AOB DOC ∠=∠ 8. 如图,测量河两岸相对的两点A ,B 的距离时,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC ≌△ABC ,从而得到ED =AB ,则测得ED 的长就是两点A ,B 的距离.判定△EDC ≌△ABC 的依据是( )A. “边边边”B. “角边角”C. “全等三角形定义”D. “边角边”二、填空题(本题共8个小题,每小题2分,共16分)9. 如图,ABC DEF ≅△△,7BC =,4EC =,则CF 的长为_____.10. 计算a b a b b a+−−22的结果是______. 11. 如图,已知AC 平分BAD ∠.请添加一个条件:______,使ABC ADC △△≌.12. 分式方程123x x =+的解为________. 13. 如图,在ABC 中,AB AC =,AD 是BC 边上的中线,BE AC ⊥,垂足为E ,已知25CBE ∠=︒.那么BAC ∠的度数为______.14. 分式216x y 和234xy 的最简公分母为______. 15. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰三角形ABC 是是“倍长三角形”,底边BC 长为5,则等腰三角形ABC 的周长为______.16. 定义:如果一个分式能化成一个整数与一个分子为常数的分式的和的形式,则称这个分式为“赋整分式”. 例如:112122323(1)53(1)551;31111111111x x x x x x x x x x x x x x x x +−+−−+−+−−==+=+==+=+−−−−−+++++;将“赋整分式”4121x x +−化为一个整数与一个分子为常数的分式的利的形式是______. 三、解答题(本题共68分,第17-24题每小题5分,第25、26题每小题6分,第27、28题每小题8分)解答应写出文字说明、演算步骤或证明过程.17. 计算:2221a a b a b−−+. 18.解分式方程:22111x x x −=+−. 19. 如图,在ABC 中,延长AC 到点E ,使EA AB =,过点E 作ED AB ∥且ED AC =,连接AD . 求证:AD BC =.20. 如图,在ABC 中,AB AC =,点D ,E 在BC 边上,且AD AE =.求证:BAD CAE ∠=∠.21.先化简,再求值:2231b a a b a b⎛⎫−÷ ⎪+−⎝⎭,其中6a b −=. 22. 如图,在ABC 中,AD 平分BAC ∠交BC 于点D ,CE AB ⊥于点E ,如果50B ∠=︒,30ACE ∠=︒,求ADC ∠的度数.23. 下面是学习了分式混合运算后,甲,乙两名同学解答一道题目中第一步的做法,选择其中一名同学的做法,完成解答过程.24. 如图,在ABC 中,点E 是BC 边上一点,且AB EB =,点D 在AC 上,连接BD ,DE ,如果AD ED =,80A ∠=︒,40CDE ∠=︒,求C ∠的度数.25. 列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A 型和B 型两款汽车,已知每辆A 型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A 型汽车的数量比1200万元购进B 型汽车的数量少10辆.求A 型和B 型汽车的进价分别为每辆多少万元?26. 如图,在ABC 中,点 E 在边AB 上,点 D 在边BC 上,且BD BE =,连接AD 、CE ,AD 与CE 相交于点 F ,BAD BCE ∠=∠.求证:(1)BA BC =;(2)AF CF =.27. 如果两个分式M 与N 的差为整数a ,那么称M 为N 的“汇整分式”,整数a 称为“汇整值”,如分式2222222(1),,2111111x x x x M N M N x x x x x x −−==−=−===−−−−−−,则M 为N 的“汇整分式”,“汇整值”2a =.(1)已知分式22692,93x x x A B x x −+==−+,判断A 是否为B 的“汇整分式”,若不是,说明理由;若是,请求出“汇整值”a ;(2)已知分式22,442E x C D x x x −==+++,其中E 为多项式,且C 为D 的“汇整分式”且“汇整值1a =,求E 所表示的多项式.28. 如图,在ABC 中,AD 为BC 边上的中线,任DA 延长线上报一点F ,使得CF AB =.(1)求证:F BAD ∠=∠;完成下面的证明过程:证明:过点C 作CG AB ∥,交AD 的延长线于点G .如图1,G BAD ∴∠=∠∵AD 为BC 边上的中线,∴BD =CD .在ADB 和GDC 中,BAD G ADB GDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB GDC ≌△△.∴______.又∵CF =AB ,∴______.∴______.∵G BAD ∠=∠∴F BAD ∠=∠.(2)过点C 作CE AD ⊥于点E ,如图2.用等式表示线段AF DE 、之间的数量关系,并证明.参考答案一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 【答案】A【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案,熟练掌握分式有意义的条件是解题关键. 【详解】解:要使分式12x x +−有意义,则20x −≠,所以2x ≠. 故选:A .2. 【答案】B【分析】因为BC CE =,AD 是ABC 的高,也是ACE △的高,根据三角形的面积公式即可得出结果,确定两个三角形等底同高是解决本题的关键.【详解】解:根据等底同高,可得:12S S . 故选B .3. 【答案】B【分析】根据已知列出算式,再根据分式的基本性质进行化简即可. 【详解】解:()3393333x y xy xy x y x y x y⨯==+++ 即如果把分式xy x y+中的x 和y 都扩大3倍,那么分式的值扩大3倍, 故选:B .【点睛】本题考查了分式的基本性质,能正确根据分式的基本性质进行化简是解此题的关键. 4. 【答案】B【分析】本题主要考查了三角形的三边关系.根据“三角形两边之和大于第三边,两边之差小于第三边”,即可求解.【详解】解:根据题意得:8383a −<<+,即511a <<,∴整数a 的最大值是10.故选:B5. 【答案】A【分析】本题考查了分式的乘法,把分子分解因式约分即可. 【详解】解:()()2211112121m m x m x m m x m x +−−⋅⋅=+−=+. 故选A .6. 【答案】C 【分析】本题主要考查了分式化简求值,解题的关键根据113x y+=得出3x y xy +=. 【详解】解:∵113x y+=, ∴3x y xy+=, 即3x y xy +=, ∴6623xy xy x y xy==+, 故选:C .7. 【答案】B【分析】根据全等三角形的判定方法,进行判断即可.【详解】解:AB DC =(已知),AOB DOC ∠=∠(对顶角相等),A 、当OB OC =时,SSA 无法证明ABO DCO △≌△,不符合题意;B 、当A D ∠=∠时,AAS ,可以证明ABO DCO △≌△,符合题意;C 、当OA OD =时,SSA 无法证明ABO DCO △≌△,不符合题意;D 、AOB DOC ∠=∠,两个条件无法证明ABO DCO △≌△,不符合题意;故选B .【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定方法,是解题的关键.8. 【答案】B【分析】由“ASA ”可证△EDC ≌△ABC .【详解】解:由题意可得∠ABC =∠CDE =90°,在△EDC 和△ABC 中ACB DCE CD BC ABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC ≌△ABC (ASA ),故选:B .【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.二、填空题(本题共8个小题,每小题2分,共16分)9. 【答案】3【分析】利用全等三角形的性质可得7EF BC ==,再解即可.【详解】解:∵ABC DFE ≅,∴7EF BC ==,∵4EC =,∴3CF =,故答案为:3.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.10. 【答案】a b +【分析】根据分式的加减运算进行计算即可求解. 【详解】解:a b a b b a+−−22 22a b a b−=− ()()a b a b a b+−=− a b =+,故答案为:a b +.【点睛】本题考查了分式的加减运算,掌握分式的加减运算法则是解题的关键.11. 【答案】AB AD =(答案不唯一)【分析】由角平分线的性质可得BAC DAC ∠=∠,要使ABC ADC △△≌,由于AC 是公共边,即已知一组边和一组角分别对应相等,根据全等三角形的判定并结合条件的特点,可补充一组对应边相等或补充一组对应角相等.【详解】解:∵AC 平分BAD ∠,∴BAC DAC ∠=∠,添加AB AD =时,证明ABC ADC △△≌的理由如下:在ABC 与ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌;添加B D ∠=∠时,证明ABC ADC △△≌的理由如下:在ABC 与ADC △中,B D BAC DAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC ADC ≌;添加ACB ACD ∠=∠时,证明ABC ADC △△≌的理由如下:在ABC 与ADC △中,BAC DAC AC ACACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADC ≌;∴添加一个条件是:AB AD =或B D ∠=∠或ACB ACD ∠=∠.故答案为:AB AD =或B D ∠=∠或ACB ACD ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个一般三角形全等的方法有:SSS 、SAS 、ASA 、AAS ,判定两个直角三角形全等的方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.理解和掌握全等三角形的判定方法是解题的关键.12. 【答案】3x =【分析】先去分母化为整式方程,解整式方程,检验即可. 【详解】解:123x x =+, 方程两边都乘以()3x x +约去分母得:32x x +=,解这个整式方程得3x =,检验:当3x =时,()30x x +≠,∴3x =是原分式方程的解.故答案为:3x =.【点睛】本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.13. 【答案】50︒【分析】根据三角形三线合一的性质可得CAD BAD ∠=∠,根据同角的余角相等可得:CBE CAD ∠=∠,再根据等量关系即可求解,熟练掌握等腰三角形的性质是解题关键.【详解】解:AB AC =,AD 是BC 边上的中线,CAD BAD ∴∠=∠,AD BC ⊥,BE AC ⊥,90CBE C CAD C ∴∠+∠=∠+∠=︒,25CBE CAD ∴∠=∠=︒,250BAC CAD ∴∠=∠=︒.故答案为:50︒.14. 【答案】2212x y【分析】根据确定最简公分母的方法:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母.即可求解,熟练掌握最简公分母的相关知识是解题的关键.【详解】解:分式216x y ,234xy的最简公分母为2212x y , 故答案为:2212x y .15. 【答案】25【分析】由等腰ABC 是“倍长三角形”,可知2AB BC =或2BC AB =,若210AB BC ==,可得AB 的长为10;若25BC AB ==,因2.5 2.55+=,故此时不能构成三角形,这种情况不存在;即可得答案.【详解】解:∵等腰ABC 是“倍长三角形”,∴2AB BC =或2BC AB =,若210AB BC ==,则ABC 三边分别是10、10、5,符合题意,等腰三角形ABC 的周长为1010525++=;若25BC AB ==,则 2.5AB =,ABC 三边分别是2.5、2.5、5,∵2.5 2.55+=,∴此时不能构成三角形,这种情况不存在;综上所述,等腰三角形ABC 的周长为25,故答案为:25.【点睛】本题考查了等腰三角形的定义以及三角形三边关系,读懂题意,理解“倍长三角形”是解本题的关键.16. 【答案】3221x +− 【分析】根据分式的加减法及提公因式法整理计算即可,理解题意是解题关键. 【详解】解:4121x x +− 2(21)321x x −+=− 2(21)32121x x x −=+−− 3221x =+−, 故答案为:3221x +−. 三、解答题(本题共68分,第17-24题每小题5分,第25、26题每小题6分,第27、28题每小题8分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】1a b− 【分析】先通分,化成同分母分式,再根据同分母分式加减法法则计算即可.【详解】原式2=()()()()a ab a b a b a b a b −−+−+− 2=()()a a b a b a b −++− =()()a b a b a b ++− 1=a b −. 【点睛】本题主要考查了异分母分式加减法,掌握运算法则是解题的关键.18.【答案】无解【分析】本题主要考查了解分式方程,先去分母,把分式方程化为整式方程,再解出整式方程,然后检验,即可求解. 【详解】解:22111x x x −=+−, 去分母得:()2121x x x −−=−,解得:=1x −,检验:当=1x −时,210x ,∴原方程无解.19. 【答案】见解析【分析】根据平行线的性质得到E EAB ∠=∠,再证明()SAS AED BAC △≌△,可得结论,熟练掌握全等三角形的判定和性质是解题关键.【详解】解:∵ED AB ∥,∴E EAB ∠=∠,在AED △和BAC 中, ED AC E EAB EA AB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AED BAC △≌△,∴AD BC =.20. 【答案】见解析【分析】先根据等边对等角得出B C ∠=∠,ADE AED ∠=∠,再由三角形外角的性质即可得出结果,熟练掌握等腰三角形及三角形外角的性质是解题关键.【详解】证明:∵AB AC =,∴B C ∠=∠,又∵AD AE =,∴ADE AED ∠=∠,∴BAD CAE ∠=∠.21. 【答案】3a b −,2 【分析】本题主要考查了分式的化简求值.先计算括号内的,再计算除法,然后把6a b −=代入化简后的结果,即可. 【详解】解:2231b a a b a b ⎛⎫−÷ ⎪+−⎝⎭ ()()3a b a b a b b a b a+−+−=⨯+ ()()3a b a b a a b a+−=⨯+ 3a b −=, 当6a b −=时,原式623==. 22. 【答案】80︒【分析】本题考查了三角形内角和定理,直角三角形的性质,根据三角形内角和定理可得60BAC ∠=︒,从而得到1432DAE BAC ∠=∠=︒,再由直角三角形两锐角互余,即可求解. 【详解】解:∵50B ∠=︒,CE AB ⊥,∴9040BCE B ∠∠=︒−=︒,∴403070ACB BCE ACE ∠∠∠=+=︒+︒=︒,∴18060BAC B ACB ∠=︒−∠−∠=︒.∵AD 平分BAC ∠, ∴1302DAC BAC ∠=∠=︒. ∴18080ADC DAC ACB ∠=︒−∠−∠=︒.23. 【答案】甲或乙,过程见解析【分析】题目主要考查分式的混和运算,熟练掌握分式的四则混和运算法则是解题关键.【详解】解:选择甲同学:231112x x x x x x−⎛⎫−⋅ ⎪−+⎝⎭ 23(1)(1)1(1)(1)(1)(1)2x x x x x x x x x x ⎡⎤+−−=−⋅⎢⎥−+−+⎣⎦3(1)(1)(1)(1)(1)(1)2x x x x x x x x x ⎡⎤+−−+−=⋅⎢⎥−+⎣⎦ 2(2)(1)(1)(1)(1)2x x x x x x x++−=⋅−+ 2x =+;选择乙同学:231112x x x x x x −⎛⎫−⋅ ⎪−+⎝⎭ 3(1)(1)112x x x x x x x +−⎡⎤=−⋅⎢⎥−+⎣⎦ 3(1)(1)(1)(1)1212x x x x x x x x x x+−+−=⋅−⋅−+ 3(1)(1)22x x +−=− 2x =+.24. 【答案】40︒【分析】本题考查的是三角形的外角的性质,全等三角形的判定与性质,先证明ABD EBD △≌△,可得80BED ∠=︒,再利用三角形的外角和的性质可得答案,证明80BED ∠=︒是解本题的关键.全等三角形的性质:对应边相等,对应角相等.全等三角形的判定:SSS ,SAS ,AAS ,ASA ,HL .【详解】解:∵AB EB =,AD ED =,BD BD =,∴()SSS ABD EBD △≌△,∵80A ∠=︒,∴80BED A ∠=∠=︒,∵40CDE ∠=︒,∴40C BED CDE ∠=∠−∠=︒.25. 【答案】B 型汽车的进价为每辆20万元,A 型汽车的进价为每辆30万元.【分析】本题考查了分式方程的应用.设B 型汽车的进价为每辆x 万元,则A 型汽车的进价为每辆1.5x 万元,列出分式方程,解方程即可;正确列出方程是解决本题的关键.【详解】解:设B 型汽车的进价为每辆x 万元,则A 型汽车的进价为每辆1.5x 万元, 依题意得:12001500101.5x x −=, 解得:20x, 经检验,20x 是方程的解且符合实际意义,∴1.530x =,答: B 型汽车的进价为每辆20万元,A 型汽车的进价为每辆30万元.26. 【答案】(1)见解析 (2)见解析【分析】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质;(1)根据“AAS ”证明ABD △≌CBE △,再根据全等三角形的性质得出答案;(2)先根据(1)的结论得BAC BCA ∠=∠,再根据BAD BCE ∠=∠,即可得出FAC FCA ∠=∠,进而证明;【小问1详解】证明:在ABD △和CBE △中,BAD BCE B BBD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABD △≌CBE △,∴BA BC =;【小问2详解】∵ABD △≌CBE △,∴BAD BCE ∠=∠.∵BA BC =,∴BAC BCA ∠=∠,∴BAC BAD BCA BCE ∠−∠=∠−∠,即FAC FCA ∠=∠,∴FA FC =.27. 【答案】(1)是,1a =−(2)48E x =+【分析】题目主要考查分式的加减混和运算,(1)根据题意,直接计算A B −,根据结果判断即可;(2)先求2(2)(2)1(2)E x x C D x −−+−==+,结合新定义可得2(2)(2)(2)E x x x −−+=+,化简可得E 所代表的多项式,熟练掌握分式的运算法则是解题关键.【小问1详解】 解:2269293x x x A B x x −+−=−−+ 2(3)2(3)(3)3x x x x x −=−+−+ 3233x x x x −=−++323x x x −−=+ 33x x +=−+ 1=−,∴1a =−;【小问2详解】根据题意得:22222(2)(2)(2)(2)1442(2)(2)(2)E x E x x E x x C D x x x x x x −−+−−+−=−=−==++++++ ∴2(2)(2)(2)E x x x −−+=+,∴48E x =+.28. 【答案】(1)见解析 (2)2AF DE =,证明见解析【分析】本题考查了全等三角形的判定和性质,等腰三角形的性质.(1)根据题意中全等三角形的性质得出AB CG =,再由等量代换确定CF GC =,利用等边对等角及等量代换即可证明;(2)同(1)方法类似,过点C 作CG AB ∥,交AD 的延长线于点G ,根据等腰三角形的性质及全等三角形的性质,结合图形对相应线段进行等量代换即可得出结果.【小问1详解】证明:过点C 作CG AB ∥,交AD 的延长线于点G .如图1,G BAD ∴∠=∠∵AD 为BC 边上的中线,∴BD CD =.在ADB 和GDC 中,BAD G ADB GDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB GDC ≌△△.∴AB CG =.又∵CF AB =,∴CF GC =.∴G F ∠=∠.∵G BAD ∠=∠∴F BAD ∠=∠.【小问2详解】过点C 作CG AB ∥,交AD 的延长线于点G .由(1)得FC GC =,∴FCG ∆是等腰三角形,∵CE FG ⊥,∴CE 平分FG ,∴EF GE =,由(1)得ADB GDC ≌△△,∴AD GD =,∵EG DE DG =+,∴EG AD DE =+,∵EF AF AE =+,∴AD DE AF AE +=+,∴AE DE DE AE AF ++=+,∴2DE AF =,∴2AF DE =.。

2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。

答案:b2. 若a的绝对值是5,那么a可能是_________。

答案:5或53. 若a的三次方是27,那么a的平方是_________。

答案:94. 若a的平方根是b,那么b的平方根是_________。

答案:a5. 若a的绝对值是5,那么a的平方是_________。

答案:25三、解答题1. 若一个数的平方根是4,求这个数。

解:设这个数为x,根据题意,有√x = 4。

解这个方程,得到x= 4^2 = 16。

所以这个数是16。

2. 若一个数的三次方是8,求这个数。

解:设这个数为y,根据题意,有y^3 = 8。

解这个方程,得到y = 2。

所以这个数是2。

3. 若一个数的绝对值是7,求这个数的平方。

解:设这个数为z,根据题意,有|z| = 7。

由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。

无论z是正数还是负数,其平方都是49。

所以这个数的平方是49。

4. 若一个数的平方根是5,求这个数的立方。

解:设这个数为w,根据题意,有√w = 5。

解这个方程,得到w= 5^2 = 25。

求w的立方,得到w^3 = 25^3 = 15625。

所以这个数的立方是15625。

5. 若一个数的绝对值是3,求这个数的立方根。

解:设这个数为v,根据题意,有|v| = 3。

由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。

人教版数学初二上学期期中试题与参考答案(2024年)

人教版数学初二上学期期中试题与参考答案(2024年)

2024年人教版数学初二上学期期中复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:已知一个长方形的长为8cm,宽为5cm,求该长方形的对角线长度。

A. 6cmB. 10cmC. 12cmD. 13cm2、题目:一个班级有学生40人,其中男生人数是女生人数的1.5倍,求该班级男生和女生的人数。

A. 男生30人,女生10人B. 男生25人,女生15人C. 男生35人,女生5人D. 男生20人,女生20人3、若一个矩形的长是宽的3倍,且其周长为48厘米,则该矩形的面积是多少平方厘米?A. 64B. 108C. 128D. 1444、已知直角三角形的两个锐角之比为1∶2,那么这两个锐角分别是多少度?A. 30°, 60°B. 45°, 45°C. 60°, 30°D. 以上都不正确5、一个长方形的长是10厘米,宽是5厘米,它的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米6、一个正方形的周长是24厘米,那么它的边长是()A. 2厘米B. 4厘米C. 6厘米D. 8厘米7、已知一个正方形的边长为(a),如果它的边长增加到原来的1.5倍,则新正方形的面积与原正方形面积之比是多少?A.(1.5:1)B.(2.25:1)C.(3:1)D.(1.52:1)8、若一个等腰三角形的底角为(70∘),则顶角的度数是多少?A.(40∘)B.(50∘)C.(60∘)D.(70∘)9、若直角三角形的两条直角边长分别为3和4,则斜边的长度是()A. 5B. 7C. 8D. 10 10、一个长方形的长是10厘米,宽是8厘米,那么它的面积是()A. 80平方厘米B. 90平方厘米C. 100平方厘米D. 120平方厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(x−3=7),则(x=)______ 。

北京市第一零一中学2024-—2025学年上学期期中考试八年级数学试题(含答案)

北京市第一零一中学2024-—2025学年上学期期中考试八年级数学试题(含答案)

北京一零一中2024-2025学年度第一学期期中练习初二数学2024.11一、选择题:本大题共8小题,共24分。

1.巴黎奥运会项目的每个图标都融合了对称美学与运动元素,将运动项目描绘成独一无二的徽章.下列巴黎奥运会体育项目的图标中,是轴对称图形的是( )A. B. C. D.2.如图,在中,边上的高是( )A.线段B.线段C.线段D.线段3.下列计算正确的是( )A. B. C. D.4.若正多边形的一个外角是36°,则该正多边形的边数为( )A.5B.6C.8D.105.下列运算正确的是( )A. B.C. D.6.设a ,b 是实数,定义*的一种运算如下:,则下列结论错误的是( )A.,则 B.C. D.7.如图,正五边形的五个内角都相等,五条边都相等,连接对角线,,,线段分别与和相交于点F ,G ,下列结论:①;②;③;④.其中正确结论的个数是()ABC △BC EC BG CD AF222()a b a b-=-632a a a÷=()326aa -=()235a aa⋅-=-()232(4)2318124x x x x x x -+-=---()2233()x y x yxy ++=+2(41)(41)116a a a---=-222(2)24x y x xy y-=-+2*()a b a b =-*0a b =a b =**a b b a =*()**a b c a b a c+=+*()*()a b a b =--AD BE CE AD BE CE 108AGC ∠=︒AG AE =2EBC BEC ∠=∠BF DE =A.1个B.2个C.3个D.4个8.如图,两直线m 与n 相交于点A ,它们相交所成的锐角等于15°,若点B 是直线m 上一定点,,点C 、D 分别是直线m 、n 上的动点,则的最小值为( )A.3B. C. D.6二、填空题:本大题共8小题,共24分。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

八年级数学上学期期中试题1及答案【可修改文字】

八年级数学上学期期中试题1及答案【可修改文字】

70°52°1ba cba可编辑修改精选全文完整版八年级上学期期中复习数学试卷(一)一.选择题(本大题10小题,每小题3分,共30分) 1.下列“表情图”中,属于轴对称图形的是( )A B C D 2.下列长度的各组线段中,能组成三角形的是( )A. 5,9,3B. 3,11,8C. 6.3,6.3,4.4D. 15,8,6 3.点M (3,-4)关于y 轴的对称点的坐标是( )A.(3,4)B.(-3,-4)C.(-3,4)D.(-4,3) 4.下列图形中具有稳定性的是( )A.六边形B.五边形C.平行四边形D.三角形5.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ; ②分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内交于一点C ; ③画射线OC ,射线OC 就是∠AOB 的角平分线.A.SSSB.SASC.ASAD.AAS 6.已知图中的两个三角形全等,则∠1等于( )A.70°B.68°C.58°D.52°7.已知点A (-2,1),点B (3,2),在x 轴上求一点P ,使AP+BP 最小, 下列作法正确的是( ) A.点P 与O (0.0)重合B 连接AB 交y 轴于P ,点P 即为所求.C.过点A 作x 轴的垂线,垂足为P ,点P 即为所求D.作点B 关于x 轴的对称点C ,连接AC ,交x 轴于P ,点P 即为所求8.如图,已知AD 是△ABC 的BC 边上的高,补充下列一个条件不能使△ABD ≌△ACD 的条件是( ) A. ∠B=45° B.BD=CD C.AD 平分∠BAC D.AB=AC9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网BCB BCFBB格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.7B.6C.5D.410.如图,在△ABC中,AC=BC,BD平分∠ABC,CD平分∠ACB,AE=CE,则∠D和∠AEC的关系为()A. ∠D=∠AECB. ∠D≠∠AECC. 2∠AEC-∠D=180°D. 2∠D-2AEC=180°第8题图第9题图第10题图第11题图二.填空题(本大题共有6小题,每小题3分,共18分)11.如图,在△ABC中,∠A=70°,点D是BC延长线上一点,∠ACD=120°,则∠B= .12.如图,AB交CD于点O,△AOC≌△DOB,若OA=6,OC=3.4,AC=5.6,则AB= .13.已知等腰三角形的一边长为4,另一边长为8,则它的周长是.14.把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠CAE=52°,则∠BEC= .16.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=4cm,DE=3cm,则BC= cm.第12题图第14题图第15 题图第16题图三.解答题(本题共9题,共72分)17.(本小题满分6分)如图,∠1=∠2,∠3=∠4,∠A=80°,求∠BOC的度数D E A B C EA BE C FAB D18.(本小题满分6分)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数.19.(本小题满分6分)如图,AC=BD ,BC=AD ,求证:△EAB 是等腰三角形20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,1),B (-1,3),C (-3,2)(1)作出△ABC 关于x 轴对称的△111A B C ; (2)点1A 的坐标 ,点1B 的坐标 ;(3)点P (a ,a-2)与点Q 关于x 轴对称,若PQ=8,则点P 的坐标 21.(本小题满分7分)如图,在等边△ABC 的三边上,分别取点D 、E 、F ,使AD=BE=CF ,求证:△DEF 是等边三角形.EEA 备用图图122.(本小题满分8分)如图,在等边△ABC 中,点D 为AC 上一点,CD=CE ,∠ACE=60° (1)求证:△BCD ≌△ACE ;(2)延长BD 交AE 于F ,连接CF ,若AF=CF ,猜想线段BF 、AF 的数量关系,并证明你的猜想.23.(本小题满分10分)如图,AD 是△ABC 的角平分线,点F 、E 分别在边AC ,AB 上,且BD=FD. (1)求证:∠B+∠ADF=180°; (2)如果∠B+2∠DEA=180°,试探究线段AE ,AF ,FD 之间有何数量关系,并证明你的结论.24.(本小题满分10分)如图,等腰Rt △ACB 中,∠ACB=90°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE.(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA ;图2图3A图1图2图3(2)如图2,连接BF 交AC 于D 点,若ADCD=3,求证:E 点为BC 中点; (3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则AD CD =25.(本小题满分12分)已知点A 与点C 为x 轴上关于y 轴对称的两点,点B 为y 轴负半轴上一点。

初二数学上册期中试卷及答案

初二数学上册期中试卷及答案

初二数学上册期中试卷及答案一、选择题(每题4分,共20分)1. 下列数中是无理数的是:A. √2B. √4C. 3D. 0.3答案:A2. 已知等差数列的前5项和为25,公差为2,首项为:A. 1B. 3C. 5D. 7答案:B3. 下列函数中,奇函数是:A. y = x²B. y = x³C. y = |x|D. y = 2x答案:B4. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,那么BD的长度是:A. 5B. 10C. 20D. 12答案:B5. 在三角形ABC中,a=8, b=10, sinA=3/5,那么sinB的值是:A. 4/5B. 3/5C. 2/5D. 1/5答案:A二、填空题(每题4分,共20分)1. 已知等差数列的首项为3,公差为2,第10项为________。

答案:212. 若向量a=(2,3),向量b=(-1,2),那么向量a+b的坐标为________。

答案:(1,5)3. 函数y=2x+3的逆函数为________。

答案:y=1/2x-3/24. 在直角坐标系中,点P(3,-2)关于y轴的对称点坐标为________。

答案:(-3,-2)5. 三角形ABC中,a=8, b=10, sinA=3/5,那么cosB的值是________。

答案:4/5三、解答题(每题10分,共30分)1. 已知等差数列的首项为3,公差为2,求该数列的前10项和。

答案:1002. 解方程组:\[\begin{cases}x+y=6 \\x-y=2\end{cases}\]答案:x=4, y=23. 函数y=2x+3的图象上任意一点P(x,y)满足y-5=3(x-2),求点P的坐标。

答案:P(2,5)四、应用题(每题10分,共20分)1. 小明家距学校8千米,他骑自行车去学校,速度为15米/分钟,求他到学校需要的时间。

答案:53.33分钟2. 某商品原价为1000元,商店举行打折活动,折扣率为8折,求打折后的商品价格。

2024-2025学年浙江省宁波市八年级上学期数学期中试题及答案

2024-2025学年浙江省宁波市八年级上学期数学期中试题及答案

2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.下列图形中对称轴条数最多的是( )A .B .C .D .2. 若a b <,则下列结论错误是( )A. 11a b +<+B. 22a b −<−C. 33a b <D. 4a <4b 3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A .2mB .3mC .3.5mD .4m4.下列条件中,可以判定ABC 是等腰三角形的是( )A .40B ∠=°,80C ∠=°B .123A BC ∠∠∠=:::: C .2A B C ∠=∠+∠D .三个角的度数之比是2:2:15.某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( )A .六折B .七折C .八折D .九折6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )的A .5B .C .6D .87. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F ,则线段BF 的长为( )A. 5B. 4C. 3D. 2.88. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( )A .30°B .45°C .60°D .90°9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度;点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……,则2024M 的坐标为是( )A .(1,0)B .()0,1−C .()1,0−D .()1,2−10.如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°. 其中正确的有( )A .①③⑤B .①③④⑤C .①②③⑤D .①②③④⑤二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.11.若不等式()11m x m −+<的解是1x >,则m 的取值范围是 .12.若等腰三角形的两边长分别4和6,则它的周长是_______13.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 3分别通过A 、B 、C 三点,且l 1∥l 2∥l 3.若l 1与l 2的距离为4,l 2与l 3的距离为6,则Rt △ABC 的面积为 .14.在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.15.如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为.16.如图,Rt△BDE中,∠BDE=90°,DB=DE=2,A是DE的中点,连结AB,以AB为直角边做等腰Rt△ABC,其中∠ABC=90°.①AC的长为;②连结CE,则CE的长为.17. 解一元一次不等式组,并把解集表示在数轴上.(1)()2112x x −−−<; (2)4261139x x x x >− −+ ≤18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.19ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△;(2)求ABC 的面积;(3)求BC 边上的高.21.如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.22.根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2 如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=°.问题解决任务1 OBD 与COE 全等吗?请说明理由;任务2当爸爸在C 处接住小丽时,小丽距离地面有多高?23.某电器超市销售A 、B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价为150元,下表是近两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.等腰Rt ABC △中,=AB AC ,=90BAC °∠.(1) 如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF .①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2) 如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 ______.(直接给出答案).参考解答一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.A . 2. B . 3.D . 4.D 5. B . 6.B . 7.A . 8.C . 9.B . 10.C .二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11.1m < 12. 14或16 13.26. 14.9 15.12 16..三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤17. 解:(1)去分母得,()()2212x x −−−<,移项得,2222x x −<+−, 合并同类项得,2x −<, 系数化为1得,2x >−, 在数轴上表示为:;(2)解:4261139x x x x >− −+≤①②,由①得,3x >−,由②去分母,得331x x −≤+ 解得,2x ≤.故不等式组得解集为:32x −<≤. 在数轴上表示为:18.证明:∵180AEB BED ∠=°−∠,180AEC CED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠,在AEB △和AEC △中,ABE ACE AEB AEC AE AE ∠=∠ ∠=∠ =, ∴()AAS AEB AEC ≌, ∴BE CE =.19.解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC , ∵13m AB =,12m BC =, ∴22222251213CB AC AB +=+==,∴90ACB ∠=°, ∴四边形ABCD 面积为:1122ACD ABC BC AC DC AD S S =⋅−⋅− ()2115123424m 22=××−××=. 答:这块空地的面积是224m .20. 解:(1)如图,A B C ′′△为所作;(2)解:ABC 的面积11134121433 4.5222=×−××−××−××=; (3)解:设BC 边上的高为h ,∵BC ,∴1 4.52h ×=,解得h =, 即BC21.(1)证明:∵90B E ∠=∠=°, ∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠. 在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5ABCE ==,AC CD =. ∵2BC =,∴在Rt ABC △中,AC∵CD = ∴在Rt ACD △中,AD∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠, 在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BDOE ==, 1.8m OD CE == ∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23.解:(1)设A 种型号电风扇的销售单价为x 元,B 种型号电风扇的销售单价为y 元,依题意,得:,解得:.答:A 种型号电风扇的销售单价为240元,B 种型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台,依题意,得:200a +150(30﹣a )≤5400,解得:a ≤18.答:A 种型号的电风扇最多能采购18台.(3)依题意,得:(240﹣200)a +(180﹣150)(30﹣a )≥1060,解得:a ≥16.∵a ≤18,∴16≤a ≤18.∵a 为整数,∴a =16,17,18.∴共有三种采购方案,方案1:采购A 种型号电风扇16台,B 种型号电风扇14台;方案2:采购A 种型号电风扇17台,B 种型号电风扇13台;方案3:采购A 种型号电风扇18台,B 种型号电风扇12台.24.解:(1)①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CFBE ==, ∴()22273x x =−+,解得297x, ∴297DE =. (2)解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=° EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°== 90EBD ∴∠°=222226345DE BE BD ∴=+=+=∴DE②当点D在线段CB的延长线上,如图3中所示,连接BE:同法可证DBE是直角三角形===EB CD DB12,3222222∴=+=+=DE BE BD123153∴DE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二第一学期数学期中试题及答案
【篇一】
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是准确的,请把准确答案填在后面表格中相对应的位置)
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是
2、下列实数,,,,,0.1,,其中无理数有
A、2个
B、3个
C、4个
D、5个
3.实数范围内有意义,则x的取值范围是()
A、x>1
B、x≥l
C、x<1
D、x≤1
4、等腰三角形一边长为2,周长为5,则它的腰长为
A、2
B、5
C、1.5
D、1.5或2
5.下列三角形中,能够构成直角三角形的有
A.三边长分别为2,2,3B.三边长分别为3,3,5
C.三边长分别为4,5,6D.三边长分别为1.5,2,2.5
6.到△ABC的三条边距离相等的点是△ABC的
A.三条中线的交点B.三条角平分线的交点
C.三条高的交点D.三条边的垂直平分线的交点
7、如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个
全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,
EF=2,那么AH等于
A.8B.6C.4D.5
8、如图,数轴上A、B两点表示的数分别为和,点B关于点A的
对称点为C,则点C所表示的数为A.B.C.D.
9、已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是
A.含30°角的直角三角形B.顶角是30°的等腰三角形
C.等边三角形D.等腰直角三角形
10、如图,在四边形ABCD中,AD∥BC,DE⊥B C,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为
A.2B.C.2D.
题号12345678910
答案
二、填空题(本大题共8小题,每小题2分,共16分,把答案
填写在相对应位置上)
11、近似数3.20×106精确到位
12、如图,则小正方形的面积S=
13、若a<<b,且a,b为连续正整数,则b2﹣a2=
14、实数、在数轴上的位置如图所示,
化简:=
15、已知,则=
16、等腰三角形的一腰上的高与另一腰的夹角是40°,则它的顶角是
17、如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,
DE⊥AB,AC=8cm,AE=4cm,则DE的长是
18、如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.点E为射线DC上的一个动点,△ADE与△AD′E关于直线
AE对称,当△AD′B为直角三角形时,DE的长为.
三、解答题(本大题共10题,共64分,请写出必要的计算过程
或推演步骤)
19、计算:(每小题4分,共8分)
(1).(2)
20、求下列各式中的(每小题3分,共6分)
(1);(2)(2x+10)=-27.
21、已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求
4x﹣2y的平方根(本题4分)
22、如图,AD是△ABC的角平分线,点E在AB上,且AE=AC,
EF∥BC交AC于点F.
求证:EC平分∠DEF.(本题5分)
23、已知,如图△ABC中,AB=AC,D点在BC上,且BD=AD,
DC=AC(本题6分)
(1)写出图中两个等腰三角形
(2)求∠B的度数.。

相关文档
最新文档