3.映射函数的定义

合集下载

高三数学函数的概念

高三数学函数的概念

1 u 1 v D f u , g v 1 u 1 v
2.关于函数(映射)定义
例2、集合 A 3,4, B 5,6,7 ,那么从A→B的映射 有 9 个,从B→A的映射 8 个,从B→A,且A中 每个元素都有原像的映射有 6 个,。
变式一
设集合A和B都是自然数集合N,映射f: A→B 把集合A中的元素n映射到集合B中的元素 2n+n,则在映射f下,像20的原象是 4 .
2 ( x 1 ) ,x 1 练习2.(2004. 人教版理科)设函数 f ( x ) , 4 x 1, x 1
7 1求f f f =1 2若f a 3, 求 a的值. 1.5或 4 6
函数的概念与表示
高三备课组
(1)映射:设A、B是两个集合,如果按照某种映射 法则f,对于集合A中的任一个元素,在集合B中都有 唯一的元素和它对应,则这样的对应(包括集合A、B 以及A到B的对应法则f)叫做集合A到集合B的映射, 记作f:A→B。 (2) 象与原象:如果给定一个从集合A到集合B的映 射,那么集合A中的元素a对应的B中的元素b叫做a的 象,a叫做b的原象。
参考答案:1
(A)1
2 2 2 (B)1, (C) 1, (D) 2 2 2
x 2( x 1) 已知函数 f x 2 x(1 x 2) 练习1: x2 x 2 2
、则使得 f ( x ) 1的自变量的取值范围为(B ) ,2 0,1 B、 ,2 0,10 A、 xC、 ,2 1,10 D、 2,0 1,10
D f x log
ax a
(a 0, a 1),

函数、映射的概念

函数、映射的概念

函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。

(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。

2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。

显然值域是集合B的子集。

3、构成函数的三要素:定义域,值域,对应法则。

值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。

注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。

•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。

映射与函数习题

映射与函数习题

广州至慧教育学生姓名 就读年级映射;②“存在性”:对于集合A 中的任何一个元素,集合B 中都存在元素和它对应; ③“唯一性”:对于集合A 中的任何一个元素,在集合B 中和它对应的元素是唯一的.3.用映射定义函数(1).函数的定义:如果A 、B 都是非空数集,那末A 到B 的映射f :A →B 就叫做A →B 的函数。

记作:y=f (x ).(2)定义域:原象集合A 叫做函数y =f (x)的定义域。

(3)值域:象的集合C 叫做函数y =f (x)的值域。

)(B C定义:给定一个集合A到集合B的映射,且a∈A,b∈B。

如果元素a和元素b 对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象。

给定映射f:A→B。

则集合A中任何一个元素在集合B中都有唯一的象,而集合B中的元素在集合A中不一定都有原象,也不一定只有一个原象。

问题1:下图中的(1)(2)所示的映射有什么特点?答:发现规律:(1)对于集合A中的不同元素,在集合B中有不同的象,我们把这样的映射称为单射。

(2)集合B中的每一个元素都有原象,我们把这样的映射称为满射。

定义:一般地,设A、B是两个集合。

f:A→B是集合A到集合B的映射,如果B的映射共有n m个。

【映射例题精解】例1在下列对应中、哪些是映射、那些映射是函数、那些不是?为什么?设A={1,2,3,4},B={3,5,7,9},对应关系是f(x)=2x+1,x属于A设A={1,4,9},B+{-1,1,-2,2,-3,3}对应关系是‘A中的元素开平方’设A=R,B=R,对应关系是f(x)=x的3次方,x属于A设A=R,B=R,对应关系是f(x)=2x的2次方+1,x属于A解析:1、是一一映射,且是函数2、不是映射(象是有且唯一)3、是一一映射,且是函数4、是映射,但不是函数,因为B中不是所有值在A中都有对应。

方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n中不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法例5已知:集合{,,}f a f b f c++=,M a b c→满足()()()0N=-,映射:f M N=,{1,0,1}那么映射:f M N→的个数是多少?思路提示:满足()()()0f a f b f c ++=,则只可能00001(1)0++=++-=,即()f a 、()f b 、()f c 中可以全部为0,或0,1,1-各取一个.解:∵(),(),()f a N f b N f c N ∈ ∈ ∈,且()()()0f a f b f c ++= ∴有00001(1)0++=++-=.当()()()0f a f b f c ===时,只有一个映射;例8.已知集合{04}P x x =≤≤,{02}Q y y =≤≤,下列不表示从P 到Q 的映射是() 答案:C提示:C 选项中2:3f x y x →=,则对于P 集合中的元素4,对应的元素83,不在集合Q 中,不符合映射的概念.例9.集合{3,4}A = ,{5,6,7}B = ,那么可建立从A 到B 的映射个数是__________,从B 到A 的映射个数是__________. 答案:9,8提示:从A 到B 可分两步进行:第一步A 中的元素3可有3种对应方法(可对应5或6或7),第二步A 中的元素4也有这3种对应方法.则不同的映射种数1339N =⨯=.反之从B 到A ,道理相同,有22228N =⨯⨯=种不同映射.3B 中的元素n n +2,则在映射f 下,象20的原象是()A.2B.3 C.4D.54.如果(x,y)在映射f 下的象是(x+y,x-y),那么(1,2)在映射下的原象是()A.(3,1)B.(21,23-)C.(23,21-)D.(-1,3)5.已知点(x ,y)在映射f 下的象是(2x -y ,2x +y),求(1)点(2,3)在映射f 下的像;(2)点(4,6)在映射f 下的原象.6.设集合A ={1,2,3,k},B ={4,7,a 4,a 2+3a},其中a,k ∈N,映射f:A →B ,使B 中元素y =3x +1与A 中元素x 对应,求a 及k 的值. 【综合练习】 一、选择题:1.下列对应是从集合A 到集合B 的映射的是()A .A =R ,B ={x |x >0且x ∈R},x ∈A ,f :x →|x | B .A =N ,B =N +,x ∈A ,f :x →|x -1|C .A ={x |x >0且x ∈R},B =R ,x ∈A ,f :x →x 2C .(-∞,0)∪(0,+∞)D .(-∞,0)∪(1,+∞)6.下列各组中,函数f (x )和g(x )的图象相同的是()A .f (x )=x ,g(x )=(x )2B .f (x )=1,g(x )=x 0C .f (x )=|x |,g(x )=2xD .f (x )=|x |,g(x )=⎩⎨⎧-∞∈-+∞∈)0,(,),0(,x x x x7.函数y =1122---x x 的定义域为()A .{x |-1≤x ≤1}B .{x |x ≤-1或x ≥1}C .{x |0≤x ≤1}D .{-1,1}8.已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为()A .(-1,0)B .[-1,1]C .(0,1)D .[0,1]9.设函数f (x )对任意x 、y 满足f (x +y )=f (x )+f (y ),且f (2)=4,则f (-1)的值为()三、解答题:17.(1)若函数y =f (2x +1)的定义域为[1,2],求f (x )的定义域.(2)已知函数f (x )的定义域为[-21,23],求函数g (x )=f (3x )+f (3x)的定义域.18.(1)已f (x 1)=xx -1,求f (x )的解析式.(2)已知y =f (x )是一次函数,且有f [f (x )]=9x +8,求此一次函数的解析式. 19.求下列函数的值域:(1)y =-x 2+x ,x ∈[1,3] (2)y =11-+x x(3)y x =20.已知函数ϕ(x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函。

《高等数学》第一节:映射与函数

《高等数学》第一节:映射与函数
[1,1] [ 0, ]
[

, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x

2


2
0

2
x
| arctanx |
定义域 (,)

2

2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos

,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!

第3-4节映射

第3-4节映射

(2)如果BY,则由f和B唯一确定了X的一个子集。 {xf(x)B,xX}
这个子集习惯上用f-1(B)表示。f-1(B)是X中在f下 的象落在B里的那些元素组成的。
f-1(B)叫做在f下B的原象。 利用这种方法,由f又得到一个2Y到2X的一个映 射,记为f-1。
16/25
集合与图论 例1: 设X={1,2,3,4},Y={a,b,c,d,e},f:XY: f(1)=a,f(2)=b,f(3)=b,f(4)=c。 令A={1,2},B={b,c,d},求f(A),f-1(B),f-1({d}), f-1({b})。 解:f(A) ={a,b} f-1(B) ={2,3,4}。
24/25
集合与图论
逆映射的性质
定理4.1 设f:XY,则f是可逆的充分必要条件 是f为双射(一一对应)。 定理4.2 设f:XY,则如果f是可逆的,则f的 逆映射是唯一的。f的逆记作f-1。 定理4.3 设f:XY,g:YZ都是可逆的,则gf 也可逆且(gf)-1=f-1g-1,(f-1)-1=f。 定理4.4 设f:XY,则: (1)f左可逆的充分必要条件是f为单射; (2)f右可逆的充分必要条件是f为满射。
18/25
集合与图论 例2:设X={1,2,3,4},Y={a,b,c,d,e}。 f:XY: f(1)=a,f(2)=b,f(3)=b,f(4)=c。 令A={1,2},B={3,4} ,求f(A∩B), f(A)∩f(B)。 解: f(A∩B) =, f(A)∩f(B) ={b}
例3: 设X={a,b,c},Y={1,2,3}。f:XY: f(a)=1,f(b)=f(c)=2。 令A={a,b},B={c},求f(AB),f(A)f(B)。 解:f(AB)=f((A\B)∪(B\A)) =f({a,b,c})={1,2} f(A)f(B) ={1,2}{2}={1}

高数课件-映射与函数

高数课件-映射与函数

义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射

主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1

函数知识点汇总

函数知识点汇总

函数知识点汇总知识点一函数及其表示(一)、函数与映射的定义1.映射设A和B是两个非空集合,如果按照某一个确定的对应关系f,对于集合A中的任何一个元素,在集合B中总有唯一一个元素和它对应,这样的对应叫做从集合A到集合B的一个映射,记作映射f:A→B.2.函数设A和B是两个非空的数集,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数y与之对应,映射f:A→B叫作从集合A到集合B的一个函数,记作函数y=f(x),x∈A.(二)、函数的有关概念1.函数的定义域、值域:函数y=f(x),(x∈A)中,x叫作自变量,集合A叫做函数的定义域,集合{f(x)|x∈A}叫作函数的值域.2.函数的三要素:定义域、值域和对应法则.3.相同函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相同函数。

4.分段函数(1)函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域是各段函数定义域的并集,值域是各段函数值域的并集.知识点二 函数的基本性质(一)、函数的单调性 1.单调函数的定义1212①f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.3.单调区间的定义:如果y =f (x )在区间A 上是增加的或是减少的,那么称A 为单调区间. (二)、函数的最值 1.图像关于原点对称的函数叫作奇函数.图像关于y 轴对称的函数叫作偶函数. (四)、奇偶函数的性质1.奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).2.在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数. ②两个偶函数的和函数、积函数是偶函数. ③一个奇函数,一个偶函数的积函数是奇函数.3.若函数f (x )是奇函数且在x =0处有定义,则f (0)=0. (五)、周期性1.周期函数:对于函数y =f (x ),如果存在非零常数T ,对定义域内的任意一个x 值, 都有f (x +T )=f (x ),就把f (x )称为周期函数,称T 为这个函数的周期.2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.知识点三 基本初等函数(一)、二次函数1.二次函数解析式的三种形式①一般式:f (x )=ax 2+bx +c (a ≠0).②顶点式:f (x )=a (x -m )2+n (a ≠0).③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎤-∞,-b2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减 对称性 函数的图象关于x =-b2a对称1.幂函数的定义“”如果一个函数,底数是自变量x ,指数是常量α,即y =x α,这样的函数称为幂函数.2.常见的5种幂函数的图象3.常见的5种幂函数的性质(三)、根式:1.概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. 2.性质:(n a )n =a (a 使n a 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.(四)、分数指数幂1.规定:正数的正分数指数幂的意义是a m n =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1na m (a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.2.有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q . (五)、指数函数的图象与性质(六)、对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b .其中a 叫作对数的底数,N 叫作真数. (七)、对数的性质与运算性质1.对数的性质①a log a N =N ;②log a a N =N (a >0,且a ≠1);③零和负数没有对数.2.对数的运算性质(a >0,且a ≠1,M >0,N >0)①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).3.对数的重要公式①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d=log a d .(八)、对数函数的图象与性质(0,+∞)知识点四 函数的图像(一)、利用描点法作函数图象:其基本步骤是列表、描点、连线.首先:(1)确定函数的定义域,(2)化简函数解析式,(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.(二)、.函数图象间的变换 1.平移变换对于平移,往往容易出错,在实际判断中可熟记口诀:左加右减,上加下减. 2.对称变换3.伸缩变换y =f (x )――→纵坐标不变各点横坐标变为原来的1a (a >0)倍y =f (ax ).y =f (x )――→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ).知识点五 函数与方程(一)、函数的零点1.函数的零点的概念:函数y =f (x )的图像与横轴的交点的横坐标称为这个函数的零点. 2.函数的零点与方程的根的关系方程f (x )=0有实数根⇔函数y =f (x )的图像与x 轴有交点⇔函数y =f (x )有零点. 3.零点存在性定理若函数y =f (x )在闭区间[a ,b ]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f (a )·f (b )<0,则在区间(a ,b )内,函数y =f (x )至少有一个零点,即相应方程f (x )=0在 区间(a ,b )内至少有一个实数解.(二)、二次函数y =ax 2+bx +c (a >0)的图象与零点的关系。

高三 一轮复习 函数的概念及其表示 教案

高三 一轮复习 函数的概念及其表示 教案

函数及其表示1.函数映射的概念函数映射两集合A,B设A,B是两个非空数集设A,B是两个非空集合对应关系f:A→B 如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B是一个映射2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成.[试一试]1.(2013·苏锡常镇一调)已知常数t是负实数,则函数f(x)=12t2-tx-x2的定义域是________.2.(2013·扬州期末)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,则f (f (0))=________.求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ). [练一练]1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于________.2.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________.考点一函数与映射的概念1.下列四组函数中,表示同一函数的是________.(填写序号) ①y =x -1与y =(x -1)2 ②y =x -1与y =x -1x -1③y =4lg x 与y =2lg x 2 ④y =lg x -2与y =lg x1002.以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx ;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:x x ≤1 1<x <2 x ≥2 y123(3)f 1:y =2x ;f 2:如图所示.[类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.考点二函数的定义域问题函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分.归纳起来常见的命题角度有:(1)求给定函数解析式的定义域;(2)已知f (x )的定义域,求f (g (x ))的定义域; (3)已知定义域确定参数问题.角度一 求给定函数解析式的定义域1.(1)(2013·山东高考改编)函数f (x )= 1-2x +1x +3的定义域为________.(2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________.角度二 已知f (x )的定义域,求f (g (x ))的定义域 2.已知函数f (x )的定义域是[-1,1],求f (log 2x )的定义域.角度三 已知定义域确定参数问题3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.[类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.考点三求函数的解析式[典例] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).(4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[类题通法]求函数解析式常用的方法有(1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法; (4)解方程组法. [针对训练]1.已知f (x +1)=x +2x ,求f (x )的解析式.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.考点四分段函数[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.[类题通法]分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒:当分段函数的自变量范围不确定时,应分类讨论. [针对训练]设函数f (x )=⎩⎨⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[课堂练通考点]1.(2013·南京一模)函数y =2x -x 2的定义域是________.2.(2013·苏北四市二调)若函数f (x )=⎩⎨⎧2x , x <0,-2-x , x >0,则函数y =f (f (x ))的值域是________.。

映射、对应和函数1

映射、对应和函数1

中都有唯一的元素和它对应.
8
四.映射与函数的联系和区别
映射、对应和函数 2019/4/29
映射:
设A,B是两个非空集合,如果按照某种对应法则f,
对A中的任意一个元素x,在B中有一个且仅有一个元素y
与x对应,则称f是集合A到集合B的映射。
记作 f: A → B 函数: 设集合A是一个非空的数集,对A内任意数x,按
如果A、B是非空数集,那么A到B 的映射f:A B 就叫做A到B的函数
记作: y=f(x)
函数是一种特殊的映射
10
映射、对应和函数
例3:在下列对应中、哪些是映射、那些映射是20函19/4数/29 、
那些不是?为什么?
(1)设A={1,2,3,4},B={3,5,7,9},对应关系:
f(x)=2x+1,x∈A .
设A,B是两个非空集合,如果按照 某种对应法则f,对A中的任意一个 元素x,在B中有且仅有一个元素y与 x对应,则称f是集合A到集合B的映 射.
这时, X称作y的原象,y称作是x在映射f的作
用的象,记作f(x), 于是
y=f(x).
映射f也可记为:
f: A →B
X → f(x)
4
二、对概念的认识
映射、对应和函数 2019/4/29
照 确定的法则f,都有唯一确定的数值y与它应,则这 种对应关系叫做集合A上的一个函数。
记作 y=f(x),x∈A
联系:都是从A到B 的单值对应 区别:构成函数的两个集合必须是数集,而构成映射的两个集
合可以是其它集合
9
四.映射和函数的联系和区别
映射、对应和函数 2019/4/29
因此还可以用映射的概念来定义函数:

一函数与映射的基本概念

一函数与映射的基本概念

一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。

例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。

3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|,半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。

函数定义域、值域和映射讲义

函数定义域、值域和映射讲义

函数定义域、值域和映射讲义函数定义域1.函数的定义域就是使函数式 的集合 常见的三种题型确定定义域:2.(1) 已知函数的解析式,就是如:①)()(x g x f y =,则 ; ②)()(*2N n x f y n ∈=,则 ; ③0)]([x f y =,则 ; ④)(log )(x g y x f =,则 ; ⑤tan y x =,则 ; ⑥()f x 是整式时,定义域是全体实数。

(2) 复合函数f [g(x )]的有关定义域,就要保证内函数g(x )的 域是外函数f (x )的 域.(3)实际应用问题的定义域,就是要使得 有意义的自变量的取值集合.例1。

求下列函数的定义域 (1)2112y x |x|=-- 例2 (1)若)(x f 的定义域为[-1,1],求函数)1(+x f 的定义域(2)若)1(+x f 的定义域是[-1,1],求函数)(x f 的定义域若函数f(x)的定义域是[0,1],则f(x+a)·f(x -a)(0<a <)的定义域是( )A. B .[a ,1-a ]C.[-a ,1+a ]D.[0,1]等腰梯形ABCD 的两底分别为02,,45AD a BC a BAD ==∠=,作直线MN AD ⊥交AD 于M ,交折线ABCD 于N ,记AM x =,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域。

例3 如图,等腰梯形ABCD 内接于一个半径为r 的圆,且下底AD =2r ,如图,记腰AB 长为x ,梯形周长为y ,试用x 表示y 并求出函数的定义域一、求下列函数的定义域21∅(1)xy 111+=(2)()2143432-+--=x x xy(3)()02112++-=x x y(5)函数y =1122---x x (6) y =1132---x xx ;函数值域一、函数值域基本知识1.定义:在函数中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。

一、函数与映射的基本概念

一、函数与映射的基本概念

一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。

例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。

3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|, 半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。

离散数学第5章

离散数学第5章
19
练习:
3.已知:f:X→Y, g:Y→Z, h= gf , f是满 射,h是单射,求证g是单射.
20
证明3:已知:f:X→Y, g:Y→Z, h= gf , f是满射,h是单射. 求证g是单射.
证:假设 不是单射 假设g不是单射 假设 不是单射, 1.则存在y1≠y2,而 g(y1)=g(y2); 2.而f是满射,每个y都一定有对应的x,所以对于y1 和y2 必存在y1=f(x1), y2=f(x2) 2, 3.y1≠y2 所以f(x1)≠f(x2),所以x1≠x2 ; 4.h(x1)=g(f(x1))=g(y1) h(x2)=g(f(x2))=g(y2) 所以h(x1)=h(x2) 对于不同的x,h函数具有相同值, 显然就不是单射了,与已知条件矛盾! 所以原假设不成立! 所以原假设不成立!
一一对应
定义:集合X和Y间,存在从X到Y上的双 射,则称集合X和Y一一对应 一一对应. 一一对应 集合X和Y一一对应,则:
映射的条件 单射的条件 满射的条件
1.X中每个元素在Y中有唯一 象. 唯一的象 唯一 2.X中不同元素 象各不相同 不同元素的象各不相同. 不同元素 3.Y中每个元素在X上都有原象 原象. 原象
13
实例
判断从{a,b,c,d}到{1,2,3,4,5}是否一一 是单射吗? 是满射吗? 是双射吗? 对应. 是单射吗? 是满射吗? 是双射吗? f为:f(a)=4, f(b)=5,f(c)=1,f(d)=3 不是一一对应的关系.虽然是单射,但 不是满射.所以不是双射.所以不是一 一对应的关系.
14
23
反函数的性质
也是双射函数. 是双射的, 也是双射函数 定理 设 f:A→B是双射的 则f 1:B→A也是双射函数 : 是双射的 是函数, 是关系, 证 因为 f 是函数 所以 f 1 是关系 且 dom f 1 = ranf = B , ran f 1 = domf = A, 假设有x 对于任意的 y∈B = dom f 1, 假设有 1, x2∈A使得 ∈ 使得 <y,x1>∈f 1∧<y,x2>∈f 1 ∈ ∈ 成立, 成立 则由逆的定义有 <x1,y>∈f∧<x2,y>∈f ∈∧ ∈ 从而证明了f 是函数, 根据 f 的单射性可得 x1 = x2, 从而证明了 1是函数,且是 满射的. 的单射性. 满射的 下面证明 f 1 的单射性 若存在 y1, y2∈B 使得 f 1 (y1) = f 1 (y2) = x, 从而有 <y1,x>∈f 1∧<y2,x>∈f 1 ∈ ∈ <x,y1>∈f∧<x,y2>∈f y1 = y2 ∈∧ ∈

微积分第一章1-2

微积分第一章1-2
若R f Y , 则称f 是X 到Y 上的映射或满射; 若对x1 , x2 X , x1 x2 , 有f ( x1 ) f ( x2 ), 则称 f

是X 到Y 的单射; 若f 既是单射,又是满射,则称f 为一一映射(或 双射).
5
2. 逆映射与复合映射
设f 是X 到Y 的单射, 则对每个y R f , 有唯一的 x X , 适合f ( x ) y . 于是可定义一个新映射g , 即 g : Rf X
注 : (1) 构成映射必须具备三个要素 :
集合X ,即定义域; 集合Y ,即值域的范围; 对应法 则f , 使对每个x X , 有唯一确定的y f ( x )与之对应.
(2) 对每个x X , 元素x的像 y是唯一的; 而对每 个y R f , 元素 y的原像不一定是唯一的.
(3) 一般地Rf Y , 不一定Rf Y .
当x (1, )时, 对应的 函数值f ( x ) 1 x.
O
y
y 1 x
y2 x
1
x
21
2. 函数的几种特性
(1) 函数的有界性
设D是函数f ( x )的定义域 , 数集X D , 若存在 数K 1 , 对任一x X , 有 f ( x ) K1 , 则称函数f ( x )在X 上有上界.而K 1 称为函数f ( x )在 X 上的一个上界. 若存在数K2 , 对任一x X , 有
8
注 : 对于映射g : X Y1 和映射f : Y2 Z , 只有 当Rg D f 时, 才能构成复合映射f g.
一般地, 若f 使f
g有意义, 但g f 未必有意义.即 g与g f 也未必相同.
g与g f 都有意义,f

3-4.函数概念及三要素(学案)

3-4.函数概念及三要素(学案)

B.(-3,-7)
C.(-6,-4)
D.(- 3 , 7 ) 22
答案:B
x
解析:
x
2 2
y y
5, 2,
x
y
3, 7.
x 2. 函数 y x 的图像是图中的( )
x
【解析】C.
当 x 0 时, y x x x 1;当 x 0 时, y x x x 1 ,满足要求的只有 C 选项中的函数图象,故选
( ) 这个答案不对,视频中是按照上面那个答案给的,但是第三行有问题,应该是
y
=
ìïïí146t,+0
£ 5
t t
£4 -4
,4
<
t
£
6
ï ïî26
+
7(t
-
6)
,t
>
6
(3)根据题意,16 5t 4 24 ,解得 t 5.6 .所以,要使 1 月份缴纳的水费不超过 24 元,该用户最多可以
x
x
C.
第6页共7页
3.下列四个图形中,不可能表示函数 y f (x) 的图象的是( )
【解析】D. 对于选项 A、B 和 C 中的图象,每一个自变量均有唯一的函数值与之对应,符合函数的要求,但是 D 选项中,存 在自变量对应两个数值,不符合函数定义的要求,故选 D.
两函数的交点是 x 4 ,此时的函数值为 y 6 ,故选 C.
2. (1)若 f x 1 x2 2x 5 ,则 f x
.
(2)若 f x 2x 3, g x 2 f x ,则 g x
.
【解析】(1)设 t x 1,那么 x t 1,则 f t t 12 2 t 1 5 t 2 4t 8 ,所以 f x x2 4x 8

函数的映射

函数的映射
2 2
π π
Jlin Institute of Chemical Technology
上页
下页
返回
退出
2.逆映射与复合映射 逆映射 设f是X到Y的单射, 则由定义, 对每个y∈Rf , 有唯一的 x∈X, 适合f(x)=y, 于是, 我们可定义一个从Rf 到X的新映射 g, 即 g : R f →X, 对每个y∈Rf , 规定g(y)=x, 这x满足f(x)=y. 这个映射g称为f 的逆映射, 记作f −1, 其定义域为Rf , 值域为X . 讨论: 下述三个映射是否存在逆映射? (1) f : R→R, 对每个x∈R, f(x)=x2. (2)设X={(x, y)|x2+y2=1}, Y={(x, 0)||x|≤1}, f : X→Y, 对 每个(x, y)∈X, 有唯一确定的(x, 0)∈Y与之对应.
Jlin Institute of Chemical Technology
上页 下页 返回 退出
3.区间和邻域 无限区间 [a, +∞)={ x|a≤x}, (−∞, b]={ x|x≤b}, (a, +∞)={ x|a<x}, (−∞, b)={ x|x<b}, −∞, = , (−∞, +∞)={ x| |x|<+∞}.
上页 下页 返回 退出
例1 设 f : R→R, 对每个x∈R, f(x)=x2. f 是一个映射, f 的定义域Df =R, 值域Rf ={y|y≥0}. 例2 设X={(x, y)|x2+y2=1}, Y={(x, 0)||x|≤1}, f : X→Y, 对每个(x, y)∈X, 有唯一确定的(x, 0)∈Y与之对应. 例3 f :→[−1, 1], 对每个x∈ [− π , π ] [− 2 2 f 是一个映射, f 的定义域Df=X, 值域Rf =Y. f(x)=sin x .

高一数学第四讲函数的概念与表示

高一数学第四讲函数的概念与表示

高一数学第四讲函数的概念与表示一.知识归纳:1.映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A→B。

(2)象与原象:如果给定一个从集合A 到集合B 的映射,那么集合A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象。

注意:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

2.函数(1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一X 围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。

②近代定义:设A 、B 都是非空的数的集合,f :x→y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A→B 就叫做函数,记作y=f(x),其中x ∈A,y ∈B ,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。

注意:①C ⊂B; ②A,B,C 均非空(2)构成函数概念的三要素:①定义域②对应法则③值域3.函数的表示方法:①解析法 ②列表法 ③图象法注意:强调分段函数与复合函数的表示形式。

二.例题讲解:【例1】下列各组函数中,表示相同函数的是()(A) f(x)=lnx 2,g(x)=2lnx (B)f(x)=xa a log (a>0且a ≠1),g(x)=x (C) f(x)=21x -, g(x)=1−|x| (x ∈[−1,1]) (D) f(x)=xa a log (a>0且a ≠1),g(x)=33x 解答:选D点评:判断两个函数是否相同主要是从定义域、对应法则两个方面加以分析。

变式:下列各对函数中,相同的是( D ) (A) f(x)=2x , g(x)=x (B)f(x)=lgx 2,g(x)=2lgx (C)f(x)=11lg +-x x , g(x)=lg(x-1)-lg(x+1) (D) f(x)=u u -+11,g(x)=v v -+11 【例2】(1)集合A={3,4},B={5,6,7},那么可以建立从A 到B 的映射的个数是;从B 到A 的映射的个数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

映射函数的定义
1.设是集合A 到集合B 的映射,且集合B 中的每一个元素都有原象,若,则等于( )
A .{0}
B .{2}
C .{0,2}
D .{-2,0}
2.下列各对应中,构成映射的是 ( )
3.设集合A =B ={(,),}x y x R y R ∈∈,从A 到B 的映射在映射下,B 中的元素为(4,2)对应的A 中元素为 ( )
A .(4,2)
B .(1,3)
C . (3,1)
D .(6,2)
4.设集合和集合都是自然数集合,映射,把集合中的元素映射到集合中的元素
,则在映射下,象20的原象是( ) A.2
B.3
C.4
D.5
5.设A={|02x x ≤≤}, B={y | 0≤y ≤3 }, 下列各图中不能表示从集合A 到B 的映射是( )
A .
B .
C .
D .
:||f x x →{2,0,2}A =-A B )
,(),(:y x y x y x f -+→
6.下列图像表示函数图像的是()
y
x y
x
y
x
y
x
A B C D
7.下列图像中,是函数图像的是()
A. (1) (2)
B.(2) (3)
C.(2)(4)
D.(1) (3)
8.下列各图像中,不可能
...是函数
()x f
y=的图像的有几个()
A.1个
B.2个
C.3个
D.4个
9.集合A 中含有2个元素,集合A到集合A可构成个不同的映射.
10.已知集合A={1,2,3,4},B={-1,-2},设映射f:A→B,
如果集合B中的元素都是A中元素在f下的象,那么这样的映射有
_________________________个.
o
x
y

o
y
x

o
y
x

o
y
x

试卷第2页,总2页
参考答案
1.C
【解析】B ={0,2},∴
2.D
【解析】根据映射的定义可知,对于集合A 中的任何一个元素在集合B 中都有一个元素与其相对应,那么可知满足概念的只有选项D.只能一对一,多对一。

3.C
【解析】分析:A 中的元素为原象,B 中的元素为象,令⎩⎨⎧=-=+2
4y x y x 即可解出结果.
解:由题意可得, ⎩

⎧=-=+24y x y x ∴1,3==y x 即象(4,2)的原象为(3,1)
故答案为: C
点评:解决象与原象的互化问题要注意以下两点:(1)分清象和原象的概念(2)确定对应关系
4.C
【解析】解:由2n +n=20求n ,用代入法可知选C .故选C
5.C
【解析】根据映射的定义,集合A 中的每一个元素在集合B 中都有唯一的元素与其对应,显然C 不符合映射的定义.所以C 不是映射.
6.C
【解析】A 、B 、D 都不满足函数定义中一个x 与唯一的一个y 对应的关系,所以选C
7.D
【解析】根据函数的定义,对于任意一个x 值,有唯一的y 值与其对应.据此可确定(1)(3)为函数图像.
8.B
【解析】
试题分析:函数的定义中要求对定义域中的任一x ,有唯一的y 值和它对应。

题目中③显然不符合要求,④中0x =时y 有两个值和它对应.所以题目中有两个图象不可能是函数图象.
考点:本题主要考查函数的定义.
点评:对于此类题目,学生应该确切掌握函数的定义,并且能灵活应用.
9.4。

【解析】主要考查映射的概念。

按要求可得A中的每个元素在B中选象都有两个选择,则共24=16个,但B 中元素都要有原象,则有两个不符舍去,所以共14个. 10.14
{0,2}
A B =。

相关文档
最新文档