复变函数与积分变换课后答案(高教社、第二版)(1)

合集下载

《复变函数与积分变换》(华中科技大学第二版)高等教育出版社课件-第一章

《复变函数与积分变换》(华中科技大学第二版)高等教育出版社课件-第一章

2
3、x yi 与 x yi 称为共轭复数, 记为 z 和 z
4、z1 x1 y1i 与 z2 x2 y2i 可以进行 加、减、乘、除等运算
z1 z2 x1 x2 y1 y2 i z1z2 x1 y1i x2 y2i
z1z2 r1ei1r2ei2 r1r2ei12
z1 z2

r1e i1 r2e i2
r1 ei12 r2
于是有:
z1z2 z1
z2
,
z1 z2

z1 z2
Arg z1z2 Arg z1 Arg z2
Arg z1 / z2 Arg z1 Arg z2
一、复数的基本概念
1、z x yi 称为复数,记为 z C 其中 i 称为虚单位满足:i2 1 实数 x 和 y 称为实部和虚部,记为 x Re z, y Im z
2、z1 x1 y1i 与 z2 x2 y2i 相等 当且仅当 x1 x2 , y1 y2
例如:
y x 的复数方程为 z t ti 1 i t y x2 的复数方程为 z t t2i t R
x2 y2 a2 a 0 的复数方程为
z acost iasint aeit t 0,2
或 z a
而圆心在 z0 x0 y0i 的圆复数方程为 z z0 a 或 z aeit z0
例如 w f z z2 x yi 2
x2 y2 2xyi
u x, y x2 y2,v x, y 2xy
w f z ez e x yi e xe yi e x cos y i sin y

复变函数与积分变换习题答案

复变函数与积分变换习题答案

第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。

复变函数与积分变换习题解答

复变函数与积分变换习题解答

练 习 一1.求下列各复数的实部、虚部、模与幅角。

(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。

1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。

(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。

证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。

复变函数课后习题答案(全)(2020年10月整理).pdf

复变函数课后习题答案(全)(2020年10月整理).pdf

10
3
10 10
(3) z = 1 − 3i = −i + 3 − 3i = 3 − 5i ,
i 1−i
2
2
因此, Re z = 3 , Im z = − 5 ,
3
2
z = 34 , arg z = −arctan 5 , z = 3 + 5i
2
3
2
(4) z = −i8 + 4i21 − i = −1+ 4i − i = −1+ 3i
+
i sin ) 12

z1 = 1 [cos( + ) + i sin( + )] = 1 (cos 5 + i sin 5 )
z2 2
46
4 6 2 12
12
5. 解下列方程:
(1) (z + i)5 = 1
(2) z4 + a4 = 0 (a 0)
解:(1) z + i = 5 1, 由此
(3) (1− 3i)(cos + i sin ) (1− i)(cos − i sin )
2[cos(− ) + i sin(− )](cos + i sin )
=
3
3
2[cos(− ) + i sin(− )][cos(− ) + i sin(− )]
4
4
= 2[cos(− ) + i sin(− )](cos 2 + i sin 2 )
3
z=
5
1
−i
=
2 k i
e5

i

(k = 0,1, 2,3, 4)

复变函数与积分变换课后答案

复变函数与积分变换课后答案

1 ∴ Res e z 1 ,1 1 .
2. 利用各种方法计算 f(z)在有限孤立奇点处的留数.
3z 2 (1) f z 2 z z 2 3z 2 解: f z 2 的有限孤立奇点处有 z=0,z=-2.其中 z=0 为二级极点 z=-2 为一级极 z z 2
1 1 2 解: z 1 sin z 2 2 z 1 sin z z 1 1 1 1 1 z 2 2 z 1 3 5 5! z z 3! z 1 ∴ Res f z , 0 1 3!
为在 c 内 tanπz 有 zk k
sin πz 由于 Res f z , zk cos πz
1 π
1 ∴ tan πzdz 2 πi Res f z , zk 2πi 2n 4ni c π k (2)
3 i 10
6. 计算下列积分.
(1)
π
0
cos m d 5 4 cos 1 π cos m d 2 π 5 4 cos
因被积函数为 θ 的偶函数,所以 I 令 I1
1 π sin m d 则有 2 π 5 4 cos
1 π eim d 2 π 5 4 cos
z 0
所以由留数定理.

AB
f z dz
BE
f z dz
EF
f z dz
C
FA
f z dz 2πi ln a


BE
f z dz

R
C
e x Ri ln a dx x Ri 2

复变函数课后习题答案(全)

复变函数课后习题答案(全)

精心整理习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:( 1)1(2)i2i 1)(i2)3(i(3)13i (4) i 84i21ii1 i解:( 1) z1 3 2i ,3 2i 13因此: Re z3 , Im z2 ,13 13 ( 2) zii 3 i , (i1)(i 2)13i10因此, Re z3 , Im z 1 ,1010( 3) z1 3i ii3 3i 3 5i ,i 12 2因此, Re z3 , Im z 5 ,32( 4) zi 8 4i 21i 1 4i i 1 3i因此, Re z 1, Im z 3,2. 将下列复数化为三角表达式和指数表达式:( ) ( )1 3i ( ) r (sin i cos )1 i23( 4) r (cos i sin ) (5)1 cos i sin(02 )解:( 1) icosi sini e 2 22222(2) 13ii2(cosi sin)2e33 3( 3) r (sini cos ) r[cos()i sin()] () i2re22( 4) r (cos i sin ) r[cos( ) i sin( )]re i(5)1cosi sin2sin 22 2i sincos 22页脚内容..3. 求下列各式的值:(1)( 3 i)5 ( 2) (1i )100(1i)100(3)(13i )(cos i sin ) (4) (cos5 i sin 5)2(1 i )(cos i sin ) (cos3 i sin 3)3(5) 3i( )1i6解:( 1) (3 i )5 [2(cos() i sin( ))] 566(2) (1 i )100(1i)100(2i )50( 2i )502(2)50251(3)(13i )(cos i sin )(1 i )(cos i sin )(cos5i sin 5 ) 2(4)i sin 3 )3(cos3(5) 3i3cosi sin22(6)1 i2(cos i sin )4 44. 设 z 11 i, z 23 i, 试用三角形式表示 z z 与z 1212z 2解: zcos i sin , z 2 2[cos() i sin( )] ,所以14466z 1z 22[cos() i sin( 46 )] 2(cos12 i sin ) ,4 6125. 解下列方程:(1) (z i )5 1( 2) z 4 a 4 0( a 0)解:( 1) zi51,由此z51i 2k ii , (k0,1,2,3,4)e 5(2) z4a 44a 4 (cosi sin )..精心整理a[cos 1(2k ) i sin 1(2k )] ,当 k0,1,2,3时,对应的 4 个根分别为:44a(1 i ), a ( 1 i), a ( 1 i ), a (1 i)2 2 226x iy, 则xy zxy. 证明下列各题:( 1)设 z2证明:首先,显然有 z x 2 y 2xy ;其次,因 x 2y 2 2 x y , 固此有 2( x 2 y 2 ) ( xy )2 ,从而 zx2y2x y2 。

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

复变函数课后习题答案

复变函数课后习题答案

习题一 P311题 (2)i ii i -+-11 = 1)1(2)1(--++i i i i =223i --)R e (z 23-= ; 21)(-=z I m ; z = 23-2i + ; z =210;arg(z) = arctan-31π (4) 8i i i +-214 i i +-=41 i 31-= ;;1)Re(=z ;3)Im(-=z ;31i z += ;10=z 3a r c t a na r g -=z ; 5题(2) πππi e i 2)sin (cos 22=+=-;(4)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+=-)43sin(arctan )43cos(arctan 5)43sin(arctan )43cos(arctan 91634i i i;5θi e = );43arctan(-=θ (6) θθθθθθθθϑθθ7sin 7cos )()()2sin 2(cos )sin (cos )7(4322323i e e e e e i i i i i i i -====+---- ; 8题(2) 16)2()1(848==+πie i (4));3432sin 3432(cos2163ππππ-+-=--k i k i ;431arctan ππθ-=-= ;2,1,0=K);1(24)2222(2360i i K -=-= );125sin 125(cos261ππi K += );1213sin 1213(cos 262ππi K +=12题(2) ;3)2(=-z R e 即 ;3])2[(e =+-iy x R ;32=-x 5=x 直线(6) ;4)arg(π=-i z ;4))1(arg(π=-+y i x arctan;41π=-x y ;11=-xy 1+=x y 以i 为起点的射线(x>0). 13题(1) 0)(<z I m ; 即y<0, 不含实轴的下半平面,开区域,无界,单连通。

《复变函数与积分变换》高等教育出版社课后答案

《复变函数与积分变换》高等教育出版社课后答案


Re i8 − 4i 21 + i = 1, Im i8 − 4i 21 + i = −3
{
}
{
co
}
k = 0,±1,±2, ".
= 1 − 4i + i = 1 − 3i
m
(4) i 8 − 4i 21 + i = i 2 − 4 i 2 i + i = (− 1)4 − 4(− 1)10 i + i
所以
Arg i8 − 4i 21 + i = arg i8 − 4i 21 + i + 2kπ = arg(1 − 3i ) + 2kπ
(
)
(

= −arctan3 + 2kπ
2.如果等式 解:由于
ww
w.
解得 x = 1, y = 11 。 4.证明
比较等式两端的实、虚部,得
⎧ 5 x + 3 y − 4 = 34 ⎧ 5 x + 3 y = 38 或⎨ ⎨ ⎩− 3x + 5 y − 18 = 34 ⎩− 3x + 5 y = 52
6.当 | z |≤ 1 时,求 | z n + a | 的最大值,其中 n 为正整数,a 为复数。 解:由于 z n + a ≤ |z|n + |a| ≤ 1 + |a| ,且当 z = e
n n
i
(1)i;
8.将下列复数化成三角表示式和指数表示式。
P ( z ) = a0 z n + a1 z n −1 + " + an −1 z + an
4
da
证明: | z1 + z2 | + | z1 − z2 |

复变函数与积分变换答案(马柏林)

复变函数与积分变换答案(马柏林)

1. 复级数1nn a∞=∑与1nn b∞=∑都发散,则级数1()nn n ab ∞=±∑和1n n n a b ∞=∑发散.这个命题是否成立?为什么?答.不一定.反例: 2211111111i ,i n n n n n n a b n n n n ∞∞∞∞=====+=-+∑∑∑∑发散但2112()i n n n n a b n ∞∞==+=⋅∑∑收敛 112()n nn n ab n∞∞==-=∑∑发散 241111[()]n n n n a b n n∞∞===-+∑∑收敛.2. 下列复数项级数是否收敛,是绝对收敛还是条件收敛?(1)2111i n n n +∞=+∑ (2)115i ()2nn ∞=+∑ (3) π1ei nn n∞=∑ (4) 1i ln nn n∞=∑ (5)cosi 2n n n ∞=∑解 (1) 211111i 1(1)i 1(1)i n n nn n n n n n n +∞∞∞===++-⋅-==+⋅∑∑∑ 因为11n n ∞=∑发散,所以2111i n n n +∞=+∑发散(2)1115i 2nnn n ∞∞==+=∑∑发散 又因为15i 15lim()lim(i)0222n nn n →∞→∞+=+≠ 所以115i()2nn ∞=+∑发散(3)πi11e 1nn n n n ∞∞===∑∑发散,又因为π111ππcosisin e 1ππ(cos isin )i nn n n n n n n n n n ∞∞∞===+==+∑∑∑收敛,所以不绝对收敛. (4)11i 1ln ln n n n n n∞∞===∑∑ 因为11ln 1n n >- 所以级数不绝对收敛.又因为当n=2k 时, 级数化为1(1)ln 2kk k∞=-∑收敛当n=2k+1时, 级数化为1(1)ln(21)kk k ∞=-+∑也收敛所以原级数条件收敛(5) 0000cosi 1e e 1e 11()()2222222n n n nnn n n n n n e -∞∞∞∞====+=⋅=+∑∑∑∑ 其中0e ()2nn ∞=∑ 发散,01()2n n e ∞=∑收敛 所以原级数发散.3.证明:若Re()0n a ≥,且1nn a∞=∑和21nn a∞=∑收敛,则级数21nn a∞=∑绝对收敛.证明:设2222i ,(i )2i n n n n n n n n n n a x y a x y x y x y =+=+=-+ 因为1nn a∞=∑和21nn a∞=∑收敛所以21111,,(),n nnn n n n n n n x y xy x y ∞∞∞∞====-∑∑∑∑收敛又因为Re()0n a ≥,所以0n x ≥且2lim lim 0n n n n x x →∞→∞== 当n 充分大时, 2n n x x <所以21nn x∞=∑收敛2222222()n n n n n n a x y x x y =+=--而212nn x∞=∑收敛,221()n n n xy ∞=-∑收敛所以21nn a∞=∑收敛,从而级数21nn a∞=∑绝对收敛.4.讨论级数1()n n n zz ∞+=-∑的敛散性解 因为部分和110()1nk k n n k s zz z ++==-=-∑,所以,1,1n z s <→-当时1,0n z s =→当时,1,n z s =-当时不存在.当i e z θ=而0θ≠时(即1,1z z =≠),cosn θ和sinn θ都没有极限,所以也不收敛.,n z s →∞当>1时.故当1z =和1z <时, 1()n n n zz ∞+=-∑收敛.5.幂级数(2)nnn C z ∞=-∑能否在z=0处收敛而在z=3处发散.解: 设1limn n nC C ρ+→∞=,则当12z ρ-<时,级数收敛,12z ρ->时发散.若在z=0处收敛,则12ρ>若在z=3处发散, 则11ρ<显然矛盾,所以幂级数0(2)nnn C z ∞=-∑不能在z=0处收敛而在z=3处发散6.下列说法是否正确?为什么?(1)每一个幂级数在它的收敛圆周上处处收敛.(2) 每一个幂级数的和函数在它的收敛圆内可能有奇点.答: (1) 不正确,因为幂级数在它的收敛圆周上可能收敛,也可能发散. (2) 不正确,因为收敛的幂级数的和函数在收敛圆周内是解析的.7.若0nn n C z ∞=∑的收敛半径为R,求0nn n n C z b ∞=∑的收敛半径。

复变函数 积分变换——课后答案

复变函数   积分变换——课后答案
z (
ln 1 z 1
( )
+
b .lim lim 1 ,故z 0 为可去奇点。
z→0 z→0 1+
----------------------- Page 1-----------------------
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。
z − z −
( 1)( 1) z z
( −1)( +1)
∞ z n+1 ( ) ∞ n
1 z
(4 ) ; (5) ; (6)e − ;
n +1 z n +1
n 0 n 0
3 sin z
a. z 0 为sin z 为的一级零点;而z 0 为z 的三级零点。故z 0 为 的二级极点。
z z z z 2 z 1
(7)因e −1 z∑ z(1+ + +) ,故z 0 为z (e −1) 的三级零点,因而是 2 z
1
ln(z +1) z
(2k+1)π
1+z (k 0,±1,±2,) 1+e
(5)由1+z 0 得z ±i 为 的一级零点,由1+e 0得z 2k +1 i 为
( ) 2 2 ( )
z (z +1)
其奇点,z 0 为一级极点,而z ±i 为其二级极点。
3
z
n 0 (n +1) ! 2 3! z (e −1)
的三级极点,而z 2kπi,(k ±1,±2,) 均为一级极点。
1 sin z 1
(1) ; (2 ) ; (3) ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档