多元统计分析课后知识题解答第四章
应用多元统计分析课后习题答案高惠璇第四章部分习题解答
4
第四章 回归分析
令
L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y
应用多元统计分析课后答案-朱建平版
均值向量的检验: 在单一变量中 当已知 当未知
(作为的估计量) 一个正态总体 协差阵已知 协差阵未知
() 两个正态总体 有共同已知协差阵 有共同未知协差阵
(其中 ) 协差阵不等 协差阵不等 多个正态总体 单因素方差 多因素方差 协差阵的检验 检验
检验 统计量
3.2 试述多元统计中霍特林
,使总平均损失达到极小。 基本方法: 令,则 若有另一划分, 则在两种划分下的总平均损失之差为
因为在上对一切成立,故上式小于或等于零,是贝叶斯判别的解。 从而得到的划分为 4.5 简述费希尔判别法的基本思想和方法。 答:基本思想:从个总体中抽取具有个指标的样品观测数据,借助方差 分析的思想构造一个线性判别函数 系数可使得总体之间区别最大,而使每个总体内部的离差最小。将新样 品的个指标值代入线性判别函数式中求出值,然后根据判别一定的规 则,就可以判别新的样品属于哪个总体。 4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。 答:① 费希尔判别与距离判别对判别变量的分布类型无要求。二者只 是要求有各类母体的两阶矩存在。而贝叶斯判别必须知道判别变量的分 布类型。因此前两者相对来说较为简单。 ② 当k=2时,若
0 10 210 543 0 876 30 10 9 8 5 2 0 由上表易知
中最小元素是 于是将
, , 聚为一类,记为 计算距离阵
0 30 63 0 85 2 0
中最小元素是 =2 于是将 , 聚为一类,记为 计算样本距离阵
0 30 63 0
中最小元素是 于是将 , 聚为一类,记为 因此,
,其各自的分布密度函数,假设k个总体各自出现的概率分别为,,。设将 本来属于总体的样品错判到总体时造成的损失为,
。 设个总体
多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
智慧树知道网课《多元统计分析》课后章节测试满分答案
第一章测试1【单选题】(1分)研究两组变量间关系的方法是()A.因子分析B.典型相关分析C.主成分分析D.聚类分析2【多选题】(1分)多元统计分析常用的方法有()A.判别分析B.典型相关分析C.主成分分析D.聚类分析E.因子分析3【多选题】(1分)常用的外部数据读取函数有()A.read.table()B.read.spss()C.read.txt()D.read.csv()4【判断题】(1分)多元统计分析是一元统计分析的推广。
A.对B.错5【判断题】(1分)多元统计分析是对多个随机变量同时进行分析研究。
A.错B.对6【判断题】(1分)多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科。
A.错B.对7【判断题】(1分)R程序包需要到相关网站购买。
A.错B.对8【判断题】(1分)向量x<-(10.4,5.6,3.1,6.4,21.7)。
A.错B.对9【判断题】(1分)rep(1:2,5)是把1、2重复5次。
A.错B.对10【判断题】(1分)直接用read.spss()读取SPSS格式的数据。
A.错B.对第二章测试1【单选题】(1分)随机向量X和Y分别服从正态分布,如果X和Y满足(),则它们的联合分布也服从正态分布。
A.有相关关系B.相互独立C.无条件D.互不相关2【单选题】(1分)A.B.C.D.3【单选题】(1分)A.B.C.不确定D.4【多选题】(1分)离散随机向量的概率分布列具有基本性质()。
A.归一性B.非负性C.单调性D.有界性5【多选题】(1分)()。
A.互不相关B.相互独立C.不确定D.有相关关系6【判断题】(1分)样本均值向量是总体均值向量的一致估计。
A.对B.错7【判断题】(1分)A.对B.错8【判断题】(1分)Wishart分布具有可加性。
A.对B.错9【判断题】(1分)样本离差阵S就是类似于一元随机变量的离差平方和。
A.对B.错10【判断题】(1分)样本离差阵是总体协方差阵的极大似然估计。
多元统计分析 第四章至第九章 课后题数据
4.8 某超市经销十种品牌饮料,其中四种畅销,三种平销,三种滞销。
下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。
销售情况 产品序号销售价格 口味评分 信任度评分畅销1 2.2 5 8 2 2.5 6 73 3 3 94 3.2 8 6 平销5 2.8 76 6 3.5 87 7 4.89 8 滞销8 1.7 3 4 9 2.2 4 2 102.7 4 3(1) 根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
(2) 现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。
4.9 银行的贷款部门需要判别每个客户的信用好坏(是否为履行还贷责任),以决定是否给予贷款。
可以根据贷款申请人的年龄(1X )、受教育程度(2X )、现在所从事工作的年数(3X )、未变更住址的年数(4X )、收入(5X )、负债收入比例(6X )、信用卡债务(7X )、其他债务(8X )等来判断其信用情况。
下表是从银行的客户资料中抽取的部分数据,(1)根据样本资料分别用距离判别法、贝叶斯判别法和费希尔判别法建立判别函数和判别规则。
(2)某客户的如上情况资料为(53,1,918,50,11.20,2.02,3.58),对其进行信用好坏的评。
目前信用好坏 客户序号X1 X2 X3 X4 X5 X6 X7 X8 已履行还贷责任1 23 1 72 31 6.6 0.34 1.71 2 34 1 173 59 8 1.81 2.91 3 42 2 7 23 41 4.6 0.94 0.94 4 39 1 195 48 13.1 1.93 4.36 5 35 1 9 1 34 5 0.4 1.3 未履行还贷责任6 37 1 1 3 24 15.1 1.8 1.82 7 29 1 13 1 42 7.4 1.46 1.65 8 32 2 11 6 75 23.3 7.76 9.72 9 28 2 2 3 23 6.4 0.19 1.29 1026 1 4 3 27 10.5 2.47 0.365.8 下表是15个上市公司2001年的一些主要财物指标,使用系统聚类法和K 均值法分别对这些公司进行聚类,并对结果进行比较分析。
多元统计分析第4章作业题选讲
多元统计分析
解:由已知可得,
1 (1) 1 6 2 4 (2) x x 2 2 2 1 0.5
^
4 3 1 9 3 1 =S p 27 3 4 3 9 ^ ^ ^ ^ 1 9 3 4 1 1 a 1 2 27 3 4 3 0 x1 4 ^ ^ x 1 1 x 4 记x , 则W ( x) a x 1 1 x 0 x 2 2 2 6 6 当x , 则W ( x) 6 4=2 0 ,所以,x 属于总体G1. 0 0
i
1 令 W x a x μ ,其中 μ 2 μ1 μ2
i
i
a Σ 1 μ1 μ2 ,则上述判别规则可简化为:
x G1 , 若W x 0 x G2 , 若W x 0 待判, 若W x =0
由s≤min(k−1,p)知,组数k=2时只有一个判别式,k=3时最
多只有两个判别式,判别式的个数不可能超过原始变量的个 数p。
多元统计分析
第三步 写出判别式 第一判别式:y1=t1′x; 第二判别式:y2=t2′x;
一般地,第i判别式:yi=ti′x,i=1,2,⋯,s。
多元统计分析
(2)判别规则 选取前r(≤s)个判别式y1,y2,⋯,yr,使累计贡献率:
k
k
使ECM达到最小的判别规则:
k
l 1 l i
x l , 若 q j f j x C l | j min q j f j x C i | j
多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
最新应用多元统计分析课后习题答案高惠璇PPT课件
(2) 考虑随机变量Y= X1-X2 ,显然有
YX 1X2 0 X 1X 1,当 估计
P{Y0}P{X11或 X11} P{X11}P{X11} (X1~N(0,1)) 2(1)0.317 04
若(X1 , X2 ) 是二元正态分布,则由性质4可知,
31
第三章 多元正态总体参数的检验
证明 记rk(A)=r.
若r=n,由AB=O,知B= On×n,于是 X′AX与X′BX
若r=0时,则A=0,则两个二次型也是独 立的.
以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
32
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
P{X1x}(x) 17
第二章 多元正态分布及参数的估计
当-1≤x≤1时,
P{X2 x}P{X2 1}P{1X2 x} P{X1 1}P{xX1 1} P{X1 1}P{1X1 x} P{X1 x}(x)
它的任意线性组合必为一元正态. 但Y= X1-X2 不是正态分布,故(X1 , X2 ) 不是二元正态分布.
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
f(x;μ,Σ)= a
是一个椭球面. (2) 当p=2且
比较上下式相应的系数,可得:
1
2 2
2
1 2
《多元统计分析》第四章 聚类分析
G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6
G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
x1:食品
x5:交通和通讯
x2:衣着
x6:娱乐教育文化服务
x3:家庭设备用品及服务 x7:居住
x4:医疗保健
x8:杂项商品和服务
分别用最短距离法、重心法和Ward方法对各地区作聚类分析。为同等
地对待每一变量,在作聚类前,先对各变量作标准化变换。
18
地区 北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东
类与类之间的距离定义为两类最远样品间的距离,即
DKL
max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
xi*
xi
xi sii
多元统计分析课后习题解答第四章
习题解析
• 题目:简述多元统计分析的基本思想 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关 系和规律,进而解决实际问题的方法。其基本思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
• 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关系和规律,进而解决实际问题的方法。其基本 思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
汇报人:XX
多元统计分析的 方法和技术广泛 应用于各个领域, 如心理学、经济 学、医学等。
多元统计分析的 基本步骤包括数 据收集、数据探 索、模型选择、 模型拟合和模型 评估等。
多元统计分析的基本思想
综合多个变量进行全面分析,以揭示数据之间的内在联系和规律 强调变量之间的交互作用和协同效应,以实现更准确的预测和推断 通过对数据的降维处理,简化复杂数据集,提取关键信息
• 题目:解释因子分析的基本思想。 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共 同因子来解释变量之间的相互关系。通过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。 • 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共同因子来解释变量之间的相互关系。通 过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。
《多元统计分析》第四章 聚类分析
类与类之间的距离定义为两类最远样品间的距离,即
DKL
max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。
G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6
G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
xi*
xi
xi sii
,
i 1, 2,, p
其中 xi 和sii分别为xi的样本均值和样本方差。
4
绝对值距离
v
p
d x, y xi yi
i 1
v 常被形象地称作“城市街区”距离,
当我们对某城市(需考虑彼此之间
路程)的位置点进行聚类时,使用
绝对值距离一般是合适的。
5
马氏距离
3
《多元统计分析》
4.2 距离Байду номын сангаас相似系数
多元统计课后题精选全文完整版
多元统计分析课后题第四章 回归分析1、设河流的一个断面的年径流量为y ,该断面的上游流域的年平均降水量为x1,年平均饱和差为x2,现共有14年的观测记录:时间x1x2y 时间x1x2y17201.8029085792.221512553 2.6713595152.411313575 1.75234105763.031064548 2.07182115471.832005572 2.49145125681.902246453 3.5969137201.982717540 1.88205147002.90130(1)试求y 关于x 1、x 2的二元线性回归方程;(2)对回归方程和每一个回归系数的显著性做检验;(3)求出每一个回归系数的置信水平为0.95的置信区间;(4)求出回归方程的复相关系数;(5)设某年x 1=600,x 2=2.50,求E(y)的点估计及置信水平为0.95的置信区间。
解:利用以上数据表拟合线性回归模型.22110εβββ+++=x x y 点选SPSS 视窗中的分析回归分析线性…,再将y 选入因变量的方框中,同时→→将x1和x2选入自变量的方框中,再在“统计”中选择估计、模型拟合、R 平方变化、描述、部分和偏相关、Durbin-Watson 选项,最后点击“OK ”按钮即可作线性回归分析,输出结果如下:Regression变量的样本均值和标准差:变量间的简单相关系数:这里给出了回归方程的样本决定系数和P值以及DW值:下面的框图是方差分析表,从中可以看出,y关于x1和x2的线性回归方程通过了显著性检验,均方残差为554.963,F统计量值为42.155,P值为0.000,回归方程在0.000的统计意义上是显著的。
上面的框图给出了非标准化和标准化的回归方程,以及回归系数的t 统计量检验结果。
从中我们可以看出,非标准化的回归方程为:(1)21x 647.87292.0875.209-+=x y(2)回归系数、均通过了显著性检验。
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学浙江工商大学第一章测试1.在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,可以解决下面哪几方面的问题。
()A:简化系统结构、探讨系统内核 B:进行数值分类,构造分类模型 C:变量之间的相依性分析 D:构造预测模型,进行预报控制答案:简化系统结构、探讨系统内核;进行数值分类,构造分类模型;变量之间的相依性分析;构造预测模型,进行预报控制2.只有调查来的才是数据。
()A:对 B:错答案:错3.以下都属于大数据范畴。
()A:行车轨迹 B:交易记录 C:问卷调查 D:访谈文本答案:行车轨迹;交易记录;问卷调查;访谈文本4.只要是数据,就一定有价值。
()A:对 B:错答案:错5.统计是研究如何搜集数据,如何分析数据的学问,它既是科学,也是艺术.()A:错 B:对答案:对第二章测试1.考虑了量纲影响的距离测度方法有()。
A:欧氏距离 B:Minkowski距离 C:马氏距离 D:切比雪夫距离答案:马氏距离2.不具有单调性的系统聚类方法有()。
A:离差平方和法 B:最短距离法 C:中间距离法 D:重心法 E:类平均距离法答案:中间距离法;重心法3.聚类分析是研究分类问题的一种多元统计分析方法。
()A:对 B:错答案:对4.聚类分析是有监督学习。
()A:错 B:对答案:错5.动态聚类法的凝聚点可以人为主观判别。
()A:对 B:错答案:对第三章测试1.判别分析是通过对已知类别的样本数据的学习、构建判别函数来最大程度区分各类,Fisher判别的准则要求()。
A:各类之间各个类内部变异尽可能大B:各类之间和各类内部变异尽可能小 C:各类之间变异尽可能大、各类内部变异尽可能小D:各类之间变异尽可能小、各类内部变异尽可能大答案:各类之间变异尽可能大、各类内部变异尽可能小2.常用判别分析的方法有()。
A:逐步判别法 B:贝叶斯判别法 C:费舍尔判别法 D:距离判别法答案:逐步判别法;贝叶斯判别法;费舍尔判别法;距离判别法3.较聚类分析,判别分析是根据已知类别的样本信息,对新样品进行分类。
(完整版)多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
应用多元统计分析课后答案-朱建平版
, =
, =
=
, ,
即样品X属于总体 第五章
5.1 判别分析和聚类分析有何区别?
答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言, 设有n个样本,对每个样本测得p项指标(变量)的数据,已知每个样本 属于k个类别(或总体)中的某一类,通过找出一个最优的划分,使得 不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分 析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我 们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚 合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况 下进行分类,而聚类分析是在不知道类的情况下进行分类。 5.2 试述系统聚类的基本思想。 答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距 离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到 合适的类中。 5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要 说明为什么这样构造? 答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为 我们把n个样本看作p维空间的n个点。点之间的距离即可代表样品间的 相似度。常用的距离为 (一)闵可夫斯基距离: q取不同值,分为 (1)绝对距离(), (2)欧氏距离(), (3)切比雪夫距离(), (二)马氏距离
则费希尔判别与距离判别等价。当判别变量服从正态分布时,二者与贝 叶斯判别也等价。 ③当
时,费希尔判别用
作为共同协差阵,实际看成等协差阵,此与距离判别、贝叶斯判别不 同。 ④ 距离判别可以看为贝叶斯判别的特殊情形。贝叶斯判别的判别规则 是X
,W(X)
多元统计分析应用 第四章课后习题
第四章判别分析习题4.8(1)根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
(2)现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味评分为8,信任度评分平均为5,试预测该饮料的销售情况。
将数据导入SPSS,分析得到以下结果:1.典型判别函数的特征函数的特征值表表1-1 特征值表表1-1所示是典型判别函数的特征值表,只有两个判别函数,所以特征值只有2个。
函数1的特征值为17.791,函数2的特征值为0.720,判别函数的特征值越大,说明函数越具有区别判断力。
函数1方差的累积贡献率高达96.1%,且典型相关系数为0.973,而函数2方差的贡献率仅为3.9%,典型相关系数为0.647。
由此,说明函数1的区别判断力比函数2的强,函数1更具有区别判断力。
2.Wilks检验结果表1-2 Wilks 的Lambda上表中判别函数1和判别函数2的Wilks’Lambda值为0.031,判别函数2的Wilks’Lambda值为0.581。
“1到2”表示两个判别函数的平均数在三个类间的差异情况,P值=0.002<0.05表示差异达到显著水平“2”表示在排除了第一个判别函数后,第二个判别函数在三个组别间的差异情况,P值=0.197>0.05表示判别函数2未达到显著水平。
3.建立贝叶斯判别函数表1-3 贝叶斯判别法函数系数上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:第一组:F1=-81.843-11.689X1+12.97X2+16.761X3第二组:F2=-94.536-10.707X1+13.361X2+17.086X3第三组:F3=-17.499-2.194X1+4.960X2+6.447X3将新品牌饮料样品的自变量值分别代入上述三个贝叶斯判别函数,得到三个函数值为:F1=65.271,F2=65.661,F3=47.884比较三个值,可以看出F2=65.661最大,据此得出新品牌饮料样品应该属于第二组,即该饮料的销售情况为平销。
多元统计分析课后习题解答_第四章
第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。
答: 设p 维欧几里得空间中得两点X =与Y =。
则欧几里得距离为。
欧几里得距离得局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲得影响。
设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。
4、2 试述判别分析得实质。
答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。
设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。
判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4、3 简述距离判别法得基本思想与方法。
答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。
其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。
①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章判别分析4.1 简述欧几里得距离与马氏距离的区别和联系。
答:设p维欧几里得空间中的两点X=和Y=。
则欧几里得距离为。
欧几里得距离的局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲的影响。
设X,Y是来自均值向量为,协方差为的总体G中的p维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是μ1和μ2,对于一个新的样品X,要判断它来自哪个总体。
计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),则X,D2(X,G1)D2(X,G2)X ,D 2(X ,G 1)> D 2(X ,G 2,具体分析,记 则判别规则为X ,W(X)X ,W(X)<0②多个总体的判别问题。
设有k 个总体k G G G ,,,21 ,其均值和协方差矩阵分别是和k ΣΣΣ,,,21 ,且ΣΣΣΣ====k 21。
计算样本到每个总体的马氏距离,到哪个总体的距离最小就属于哪个总体。
具体分析,2212(,)(,)D G D G -X X 111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ()()W '=-X αX μk μμμ,,,21 21(,)()()D G ααα-'=--X X μΣX μ111122()C ααααα----'''=-+''=-+X ΣX μΣX μΣμX ΣX I X取ααμΣI 1-=,αααμΣμ121-'-=C ,k ,,2,1 =α。
可以取线性判别函数为, k ,,2,1 =α 相应的判别规则为 若4.4 简述贝叶斯判别法的基本思想和方法。
基本思想:设k 个总体,其各自的分布密度函数)(,),(),(21x x x k f f f ,假设k 个总体各自出现的概率分别为k q q q ,,,21 ,0≥i q ,11=∑=ki iq。
设将本来属于i G 总体的样品错判到总体j G 时造成的损失为)|(i j C ,。
设k 个总体相应的p 维样本空间为 ),,,(21k R R R R =。
在规则R 下,将属于的样品错判为j G 的概率为x x d f R i j P jR i )(),|(⎰= j i kj i ≠=,,2,1,则这种判别规则下样品错判后所造成的平均损失为∑==kj R i j P i j C R i r 1)],|()|([)|( k i ,,2,1 =则用规则R 来进行判别所造成的总平均损失为∑==ki i R i r q R g 1),()(∑∑===k i kj i R i j P i j C q 11),|()|(贝叶斯判别法则,就是要选择一种划分,使总平均损失)(R g 达到极小。
基本方法:∑∑===k i kj i R i j P i j C q R g 11),|()|()(()W C ααα'=+X I X i G ∈X 1()max()i kW C ααα≤≤'=+X I X k G G G ,,,21 k j i ,,2,1, =k G G G ,,,21 i G k R R R ,,,21x x d f i j C q k i kj R i i j∑∑⎰===11)()|(∑⎰∑===k j R ki i i jd f i j C q 11))()|((x x令,则 ∑⎰==kj R j jd h R g 1)()(x x若有另一划分),,,(**2*1*kR R R R =,∑⎰==kj R j jd h R g 1**)()(x x则在两种划分下的总平均损失之差为∑∑⎰==⋂-=-k i kj R R j i ji d h h R g R g 11**)]()([)()(x x x因为在i R 上)()(x x j i h h ≤对一切j 成立,故上式小于或等于零,是贝叶斯判别的解。
从而得到的划分),,,(21k R R R R =为k i ,,2,1 =4.5 简述费希尔判别法的基本思想和方法。
答:基本思想:从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数),,,(21'=p u u u u 可使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
1(|)()()k iiji q C j i f h ==∑x x 1{|()min ()}i i j j kR h h ≤≤==x x x 1122()p p U u X u X u X '=+++=X u X ()U X答:① 费希尔判别与距离判别对判别变量的分布类型无要求。
二者只是要求有各类母体的两阶矩存在。
而贝叶斯判别必须知道判别变量的分布类型。
因此前两者相对来说较为简单。
② 当k=2时,若则费希尔判别与距离判别等价。
当判别变量服从正态分布时,二者与贝叶斯判别也等价。
③ 当时,费希尔判别用作为共同协差阵,实际看成等协差阵,此与距离判别、贝叶斯判别不同。
④ 距离判别可以看为贝叶斯判别的特殊情形。
贝叶斯判别的判别规则是 X,W(X)X ,W(X)<lnd距离判别的判别规则是X ,W(X)X ,W(X)<0二者的区别在于阈值点。
当21q q =,)1|2()2|1(C C =时,1=d ,0ln =d 。
二者完全相同。
4.7 设有两个二元总体和,从中分别抽取样本计算得到,,假设,试用距离判别法建立判别函数和判别规则。
样品X=(6,0)’应属于哪个总体?解:=,= ,==即样品X属于总体4.8 某超市经销十种品牌的饮料,其中有四种畅销,三种滞销,三种平销。
下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。
⑴根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
⑵现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。
解:增加group变量,令畅销、平销、滞销分别为group1、2、3;销售价格为X1,口味评分为X2,信任度评分为X3,用spss 解题的步骤如下:1.在SPSS窗口中选择Analyze→Classify→Discriminate,调出判别分析主界面,将左边的变量列表中的“group”变量选入分组变量中,将X1、X2、X3变量选入自变量中,并选择Enter independents together单选按钮,即使用所有自变量进行判别分析。
2.点击Define Range按钮,定义分组变量的取值范围。
本例中分类变量的范围为1到3,所以在最小值和最大值中分别输入1和3。
单击Continue按钮,返回主界面。
如图4.1图4.1 判别分析主界面3.单击Statistics…按钮,指定输出的描述统计量和判别函数系数。
选中Function Coefficients栏中的Fisher’s:给出Bayes判别函数的系数。
(注意:这个选项不是要给出Fisher判别函数的系数。
这个复选框的名字之所以为Fisher’s,是因为按判别函数值最大的一组进行归类这种思想是由Fisher提出来的。
这里极易混淆,请读者注意辨别。
)如图4.2。
单击Continue按钮,返回主界面。
图4.2 statistics子对话框4.单击Classify…按钮,弹出classification子对话框,选中Display选项栏中的Summary table复选框,即要求输出错判矩阵,以便实现题中对原样本进行回判的要求。
如图4.3。
图4.3 classification对话框5. 返回判别分析主界面,单击OK 按钮,运行判别分析过程。
1) 根据判别分析的结果建立Bayes 判别函数:Bayes 判别函数的系数见表4.1。
表中每一列表示样本判入相应类的Bayes 判别函数系数。
由此可建立判别函数如下:Group1: 3761.162297.121689.11843.811X X X Y ++--= Group2: 3086.172361.131707.10536.942X X X Y ++--= Group3: 3447.62960.41194.2449.173X X X Y ++--=将各样品的自变量值代入上述三个Bayes 判别函数,得到三个函数值。
比较这三个函数值,哪个函数值比较大就可以判断该样品判入哪一类。
表4.1 Bayes 判别函数系数根据此判别函数对样本进行回判,结果如表4.2。
从中可以看出在4种畅销饮料中,有3种被正确地判定,有1种被错误地判定为平销饮料,正确率为75%。
在3种平销饮料中,有2种被正确判定,有1种被错误地判定为畅销饮料,正确率为66.7%。
3种滞销饮料均正确判定。
整体的正确率为80.0%。
表4.2 错判矩阵2) 该新饮料的0.31=X ,82=X ,53=X ,将这3个自变量代入上一小题得到的Bayes判别函数,2Y 的值最大,该饮料预计平销。
也可通过在原样本中增加这一新样本,重复上述的判别过程,并在classification 子对话框中同时要求输出casewise results ,运行判别过程,得到相同的结果。