第一部分 树脂锚杆金属杆体及其附件概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省机械产品质量监督检验站
树脂锚杆锚固剂质量检验检测计量认证项目
冯治国 61696577@
第一部分树脂锚杆金属杆体及其附件概述
一、简介:
树脂锚杆:英文(Resin anchor bolts)是指树脂金属杆体型锚杆以及附件。是当代煤矿当中巷道支护的最基本的组成部分,他将巷道的围岩加固在一起,使围岩自身支护自身。现在锚杆不仅用于矿山,也用于工程技术中,对边坡,隧道,坝体进行主动加固。
组成锚杆必须具备几个因素:
(1)一个抗拉强度高于岩土体的杆体;
(2)杆体一端可以和岩土体紧密接触形成摩擦(或粘结)阻力;
(3)杆体位于岩土体外部的另一端能够形成对岩土体的径向阻力。
锚杆作为深入地层的受拉构件,它一端与工程构筑物连接,另一端深入地层中,整根锚杆分为自由段和锚固段,自由段是指将锚杆头处的拉力传至锚固体的区域,其功能是对锚杆施加预应力;锚固段是指水泥浆体将预应力筋与土层粘结的区域,其功能是将锚固体与土层的粘结摩擦作用增大,增加锚固体的承压作用,将自由段的拉力传至土体深处。锚杆是岩土体加固的杆件体系结构。通过锚杆杆体的纵向拉力作用,克服岩土体抗拉能力远远低于抗压能力的缺点。表面上看
是限制了岩土体脱离原体,宏观上看是增加了岩土体的粘聚性。从力学观点上是主要是提高了围岩体的粘聚力C和内摩擦角φ。其实质上锚杆位于岩土体内与岩土体形成一个新的复合体。这个复合体中的锚杆是解决围岩体的抗拉能力低的关键。从而使得岩土体自身的承载能力大大加强。锚杆是当代地下开采的矿山当中巷道支护的最基本的组成部分,他将巷道的围岩束缚在一起,使围岩自身支护自身。现在锚杆不仅用于矿山,也用于工程技术中,对边坡,隧道,坝体等进行主动加固。
锚杆的力学作用主要有悬吊作用、组合梁作用、组合拱作用、减跨作用、加固作用。
1、悬吊理论
1952—1962年路易斯阿·帕内科(Louis A·Panek)等发表了悬吊理论,悬吊理论认为锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳固的岩层上。对于回采巷道揭露的层状岩体,直接顶板均有弯曲下沉变形趋势,如果使用锚杆及时将其挤压,并悬吊在老顶上,直接顶板就不会与老顶离层乃至脱落。锚杆的悬吊作用主要取决于所悬吊的岩层的厚度,层数及岩层弯曲时相对的刚度与弹性模量,还受锚杆长度、密度及强度等因素的影响。这一理论提出的较早,满足其前提条件时,有一定的实用价值。但是大量的工程实践证明,即使巷道上部没有稳固的岩层,锚杆亦能发挥支护作用。例如:在全煤巷道中,锚杆就锚固在煤层中也能达到支护的目的,说明这一理论有局限性。
2、组合梁理论
组合梁理论认为巷道顶板中存在着若干分层的层状顶板,可看作是由巷道两帮作为支点的一种梁,这种岩梁支承其上部的岩层载荷。使用锚杆将各层“装订”成一个整体的组合梁,防止岩石沿层面滑动,避免各岩层出现离层现象。在上覆岩层荷载作用下,这种较厚的组合梁比单纯的叠加梁,其最大弯曲应变和应力将大大减小,挠度亦减小。而且各层间摩擦阻力愈大,整体强度愈大,补强效果愈好。但是,这种理论在处理岩层沿巷道纵向有裂缝时梁的连续性问题和梁的抗弯强度问题时有一定的局限性。
3、组合拱理论
组合拱理论是由兰氏(T A Lang)和彭德(Pender)通过光弹试验提出来的。组合拱原理认为,在拱形巷道围岩的破裂区中,安装预应力锚杆时,在杆体两端将形成圆锥形分布的压应力,如果沿巷道周边布置的锚杆间距足够小,各个锚杆的压应力维体相互交错,这样使巷道周围的岩层形成一种连续的组合带(拱)。这个组合拱可承受上部岩石的径向载荷,如同碹体起到岩层补强的作用,承载外围的压力。组合拱理论的不足是缺乏对被加固岩体本身力学行为的进一步探讨,与实际情况有一定差距,在分析过程中没深入探索围岩支护的相互作用。
4、水平应力理论
澳大利亚学者盖尔(W J Gale)在20世纪90年代初提出了最大水平应力理论。该理论认为:矿井岩层的水平应力一般是垂直应力1.3~2.0倍。而且水平应力具有方向性,最大水平应力一般为最小水平应
力的1.5~2.5倍。巷道顶底板的稳定性主要受水平应力影响,且有三个特点:①与最大水平应力平行的巷道受水平应力影响最小,顶底板稳定性最好;②与最大水平应力呈锐角相交的巷道,其顶板变形破坏偏向巷道某一帮;③与最大水平应力垂直的巷道,顶底板稳定性最差。最大水平应力理论,论述了巷道围岩水平应力对巷道稳定性的影响以及锚杆支护所起的作用。在最大水平应力作用下,巷道顶底板岩层发生剪切破坏,因而会出现错动与松动引起层间膨胀,造成围岩变形。锚杆所起的作用是约束其沿轴向岩层膨胀和垂直于轴向的岩层剪切错动,因此要求具备有强度大、刚度大、抗剪阻力大的高强锚杆支护系统。
二、分类:
1、麻花式树脂锚杆(headed twist bars):在金属杆体端部加工成一定规格的左旋麻花形锚头,尾部加工成可上螺母的螺纹;
2、无纵肋螺纹钢式树脂锚杆(ribbed bars with non-longitudinal ribs):杆体由无纵肋左旋螺纹钢制成, 尾部加工成可上螺母的螺纹;
3、等强螺纹钢式树脂锚杆(fully ribbed bars):由右(或左)旋精轧螺纹钢制成,螺纹连续,全长可上螺母。
三、型号编制:
麻花式树脂锚杆金属杆体型号表示方法如下:
M S G M –MPa /O × L
MS:树脂锚杆
G:杆体
M:麻花式
MPa:杆体屈服强度,单位为兆帕(MPa)
O:公称直径,单位为毫米(mm)
L:长度,单位为毫米(mm)
螺纹钢式树脂锚杆金属杆体型号表示方法如下:
M S G L W或者D –MPa / O × A
MS:树脂锚杆
G:杆体
MPa:杆体屈服强度,单位为兆帕(MPa)
L:螺纹钢式
W:无纵肋; D:等强
O:公称直径,单位为毫米(mm)
A:长度,单位为毫米(mm)
示例:公称直径20mm,长度2000mm,屈服强度335MPa的无纵肋螺纹钢式树脂锚杆金属杆体,可表示为MSGLW-335 / 20×2000。