连续系统的频域分析

合集下载

连续系统频域分析

连续系统频域分析

系统函数定义: H ( j ) Y ( j ) F ( j )
系统函数计算:
(1)h(t)旳傅立叶变换; (2)描述系统频率特性。
1) H ( j ) h(t)e j tdt 2) H ( j ) Y ( j ) F ( j )
3) H ( j) H ( p) p j
响应相量
4) H ( j) 激励相量 10
(t)
t

H j G2c ()e jto
Sac2(S2aCt[S) aGc((t(2tC)tt) Go )]( S2a(G)G 222c2C()( G)) e( 已 ((令 j知)to (2(对 )时称移C性性) ))
ht
c
Sa c
t
t0
20
讨论:
1、h(t)与(t)比较,严重失真; 2、h(t)为抽样函数,峰值为 kωc
A [ H ( j) e j()e jt H ( j) e e j() jt ] 2
H ( j) H ( j) () ()
y(t ) A H ( j) [e j[t ()] e j[t ()] ] 2
A H ( j) cos[t ()]
激励与响应为同频率的 正弦量。
3
二、正弦信号 : f (t) Acos t
h(t) 1 H ( j )e jt d
2
19
二. 单位冲激响应h(t)
h(t) 1
2
H ( j )e j t d 1 c 1 e j t0 e j td
2 c
1
t
1 t0
1 2j
e jC t t0
e jC t t0
c
sin c
c t
t
t0

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告
本实验的目的是研究连续时间系统的复频域分析。

首先,构建了一个由推力继电器组
成的系统,其模型为图1所示。

再将此系统内建模,得到开环传递函数
G(s)=K/[(s+1)(s+1)(s+2)],其中1为系统参数,s为复频变量。

然后使用MATLAB编程,实现基于Laplace变换计算复频域函数和系统振型,并以一系列频率点绘制系统频率响应
曲线等曲线,从而评估系统性能。

实验结果表明,当系统参数K处于[6.5,9.2]中时,系统的复频响应表现出了各向同
性的性能(图2),表明系统具有更一致的响应特性,并且误差幅值在0.03以内保持稳定,说明系统具有良好的稳定性性能。

此外,系统振型(图3)也说明了系统的稳定性,振型
稳定时间较短,且交叉率较小,说明系统具有良好的稳定性能。

综上,连续时间系统的复频域分析中,MATLAB编程在系统参数K为[6.5,9.2]范围内时,运用Laplace变换和求和函数,成功绘制出系统的复频响应曲线,以及相应的系统振型,从而对系统的复频响应、稳定行为等做出定量性、全面性的评估,为系统运行提供了
可靠的参考。

连续时间系统的频域分析-资料

连续时间系统的频域分析-资料
对离散时间LTI系统,也有同样的结论。但对线性 相位系统,当相位特性的斜率是整数时,只引起信号 的时域移位。若相位特性的斜率不是整数,由于离散 时间信号的时移量只能是整数,需要采用其他手段实 现,其含义也不再是原始信号的简单移位。
傅里叶变换形式的系统函数
et ht rt

E H R
若e(t) E(), 或E(j)

7

二维傅里叶变换的模
模相同,相位为零
模为1,相位相同

8

相位相同,模为(g)图的
(g)图
4.2 LTI系统频率响应的模和相位表示
The Magnitude-Phase Representation of the Frequency Response of LTI Systems
• LTI系统对输入信号所起的作用包括两个方面: 1.
求 稳 v2 (t)态 响 应
解:
V 1 ( j) j π ( 0 ) ( 奇函0 ) 数
V 2 (j) H (j)V 1 (j)
偶函数
H () j e j ( ) j π ( 0 ) ( 0 )
所 V 2 ( j ) H ( j 0 ) 以 j π ( 0 ) e j ( 0 ) ( 0 ) e j ( 0 )
这说明:一个信号所携带的全部信息分别包含在 其频谱的模和相位中。
因此,导致信号失真的原因有两种: 1.幅度失真:由于频谱的模改变而引起的失真。 2.相位失真:由于频谱的相位改变引起的失真。
在工程实际中,不同的应用场合,对幅度失真 和相位失真有不同的敏感程度,也会有不同的 技术指标要求。
原图像 傅里叶变换的相位
第四章 连续时间系统频域分析 齐开悦

第五章1-连续LTI系统频域分析

第五章1-连续LTI系统频域分析
第5章 系统的频域分析
连续时间LTI系统的频域分析 离散时间LTI系统的频域分析 信号的幅度调制和解调
时域分析的要点是,以冲激函数为基本信号,
任意输入信号可分解为一系列冲激函数;而系统零 状态响应yzs(t) = x(t)*h(t)。 由单位冲激函数δ (t)所引起的零状态响应称为单位 冲激响应,简称冲激响应,记为h(t)。
解: 利用H(j)与h(t)的关系
H ( j) F[h(t)] 1 1 j 1 j 2

1
( j)2 3( j) 2
只有当连续系统是稳定的LTI系统时,才存在H(j), 且可以由h(t)计算出H(j)。
电路系统的频率响应:
分析电路系统的频率响应,主要有两种方法。
H ( j) Yzs ( j)
( j) 3
X ( j) ( j)2 3( j) 2
在实际应用中, 只有当连续系统是稳定的LTI系统时,
才存在H(j),且频响函数才有意义。
例 已知某LTI系统的冲激响应为
h(t) = (e-t-e-2t) u(t),求系统的频率响应H(j)。
vR (t) RiR (t)
VR ( jw) R IR ( jw)
ZR

VR ( IR(
jw) jw)

R
vL
(t)

L
diL (t) dt
VL ( jw) jwLIL ( jw)
ZL
VL ( jw) IL ( jw)

jwL
iC
(t)

C
d
vC (t) dt
IC ( jw) jwCVC ( jw)
例 已知某LTI系统的动态方程为 y"(t) + 3y'(t) + 2y(t) = x(t),

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

连续时间系统的频域分析

连续时间系统的频域分析

d
ln(e2 )
12
d
1
2
2
d
1
1 2
1
d
lim
B
tg 1
B B
lim 2(B tg1B) 2 lim (B )
B
B
2
发散的,物 理不可实现
5.7 希尔伯特变换*(Hilbert)
物理可实现系统的实质是具有因果性 因果系统的实部和虚部之间相互限制 因果系统的模和相角之间相互限制
e
j
2
arctg (
2
)
2 2
V2 ( j )
j
E (1 e j )
j
E (1 e j ) E (1 e j )
j
j
v2 (t) E(1 et )u(t) E(1 e(t ) )u(t )
v2 (t )
t
5.3 周期信号激励下的系统响应*
一、正弦周期信号激励下的系统响应 正弦周期激励信号的傅氏变换
ln H ( j) ln H ( j) j( j)
ln H ( j ) 1 () d
( j ) 1
ln H ( j) d
因果系统的频谱模被已知的相位唯一地确 定,反过来也一样.
5.8 调制与解调
调制:
g(t) 相乘 g(t) cos0t f (t) g(t) cos0t
R( j) [ () 1 ](1 e j )e j t0 j
r(t) 1 R( j)e j t d 2
1
Si[(t
t0
)
Si[(t
t0
)]
Y=处,为Si(y)第一个峰起点, Si()=1.8514.
r(t)
|max

连续系统的复频域分析

连续系统的复频域分析

连续系统的复频域分析1、信号f(t)=sin(t)u(t)拉普拉斯变换的曲面图:程序为:曲面图为:ft=sym('sin(t)*Heaviside(t)');Ft=laplace(ft)x=-0.35:0.03:0.35;y=-2:0.03:2;[x,y]=meshgrid(x,y);s=x+j*y;s2=s.*s;c=ones(size(x));Fs=abs(1./(s2+c));mesh(s,y,Fs)surf(x,y,Fs)colormap(hsv)axis([-0.35,0.35,-2,2,0,45])xlabel('σ'),ylabel('jw'),zlabel('F(s)')title('f(t)的曲面图')2、求[(1- e-at)]/t拉普拉斯变换:程序为:ft=sym('(1-exp(-a*t))/t');Fs=laplace(ft)结果为:Fs = -log(s)+log(s+a)3、求F(s)= -log(s)+log(s+a)的拉普拉斯逆变换:程序为:Fs=sym('-log(s)+log(s+a)');ft=ilaplace(Fs)结果为: ft = (1-exp(-a*t))/t4、系统函数H(s)=(s2+3s+2)/(8s4 +2 s3 +3 s2 +5)的零极点分布图:程序为:b=[1 3 2];a=[8 2 3 0 5];zs=roots(b)ps=roots(a)plot(real(zs),imag(zs),'o',real(ps),imag(ps),'kx','markersize',12);axis([-2 2 -2 2]);grid on;legend('零点','极点');xlabel('s'),ylabel('f(s)'),title('零极点分布图')结果为:zs = -2-1ps =-0.6175 + 0.7099i-0.6175 - 0.7099i0.4925 + 0.6808i0.4925 - 0.6808i图形为:5、信号H(s)=(s+1)/(s2+s+1)的阶跃响应、冲激响应、频率响应的图形:程序为:num=[1 1];den=[1 1 1]; 图形为sys=tf(num,den);t=0:0.01:10;h=impulse(sys,t);g=step(sys,t);subplot(3,1,1),plot(t,h);gridaxis([0 10 -0.25 1]);title('冲击响应');xlabel('时间(t)'),ylabel('h(s)')subplot(3,1,2),plot(t,g);gridaxis([0 10 0 1.5]);title('阶跃响应');xlabel('时间(t)'),ylabel('g(s)')[H,w]=freqs(num,den);subplot(3,1,3),plot(w,abs(H));gridaxis([0 10 0 1.5]);title('频率响应');xlabel('jw0'),ylabel('H(jw)')。

《连续系统频域分析》课件

《连续系统频域分析》课件
频域分析的优势
频域分析能够提供系统的频率响应和稳定性分析 ,适用于系统的稳定性和性能评估。
3
互补性
在实际应用中,时域分析和频域分析各有优势, 应结合使用以全面了解系统的特性和性能。
CHAPTER
06
总结与展望
频域分析的总结
频域分析的定义和
意义
频域分析是一种研究系统频率响 应的方法,通过将时域问题转换 为频域问题,可以更方便地分析 系统的频率特性、稳定性、传递 函数等。
CHAPTER
05
频域分析的局限性
频域分析的假设条件
线性时不变系统
频域分析适用于线性时不变系统,对于非线性或时变系统则不适 用。
周期信号
频域分析主要针对周期信号进行分析,对于非周期信号,需要采用 其他方法。
无初始条件
频域分析假设系统无初始条件,对于有初始条件的情况,需要进行 特殊处理。
频域分析的局限性
Z变换
01
Z变换是分析离散时间信号在复平面上的工具,它可以求解差分方程 和离散时间系统。
02
Z变换具有收敛性、唯一性和线性等性质,这些性质使得Z变换在解决 实际问题时具有广泛的应用。
03
Z变换的逆变换是将复平面上的函数转换回实数轴上的过程,它也是 通过数学公式实现的。
04
在实际应用中,Z变换被广泛用于数字信号处理、数字图像处理和数 字控制系统等领域。
拉普拉斯变换
拉普拉斯变换具有收敛性、唯一性和线性等性 质,这些性质使得拉普拉斯变换在解决实际问
题时具有广泛的应用。
在实际应用中,拉普拉斯变换被广泛用于电路分析、 控制系统分析和信号处理等领域。
拉普拉斯变换是分析线性时不变连续系统的工 具,它可以求解常微分方程和偏微分方程。

信号与系统第四章连续系统的频域分析

信号与系统第四章连续系统的频域分析

极点对系统频率响应的影响更为显著。极点 会使系统频率响应在某些频率处产生谐振峰 或反谐振峰,具体取决于极点的位置和数量。 极点越靠近虚轴,对频率响应的影响越显著。 同时,极点的实部决定了系统的阻尼程度, 虚部决定了谐振频率。
05 连续系统频域性能指标评 价方法
幅频特性曲线绘制方法
确定系统的传递函数
周期信号频谱特性
离散性
周期信号的频谱是离散的,即只在某些特定的频率点 上有值。
谐波性
周期信号的频谱由基波和各次谐波组成,各次谐波的 频率是基波频率的整数倍。
收敛性
随着谐波次数的增加,谐波分量的幅度逐渐减小,即 周期信号的频谱具有收敛性。
02 傅里叶变换及其在频域分 析中应用
傅里叶变换定义与性质
信号调制与解调
在通信系统中,通过傅里叶 变换实现信号的调制与解调 过程,将信息加载到载波信 号上进行传输。
信号滤波与处理
利用傅里叶变换设计数字滤 波器,对信号进行滤波处理 以去除噪声或提取特定频率 成分。
03 拉普拉斯变换及其在频域 分析中应用
拉普拉斯变换定义与性质
定义
拉普拉斯变换是一种线性积分变换,用于 将时间域的函数转换为复平面上的函数。 对于连续时间信号$x(t)$,其拉普拉斯变 换定义为$X(s) = int_{0}^{infty} x(t) e^{st} dt$,其中$s$是复数频率。
VS
性质
拉普拉斯变换具有线性性、时移性、频移 性、微分性、积分性、初值定理和终值定 理等重要性质。这些性质使得拉普拉斯变 换在信号与系统的分析中非常方便和有效 。
典型信号拉普拉斯变换举例
单位阶跃信号
指数信号
正弦信号
余弦信号
单位阶跃信号的拉普拉斯变 换为$frac{1}{s}$。

信号与系统实验报告实验三 连续时间LTI系统的频域分析报告

信号与系统实验报告实验三   连续时间LTI系统的频域分析报告

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

信号与系统 郑君里 第三章 连续系统频域分析

信号与系统  郑君里 第三章 连续系统频域分析

编辑状态下,图形演示平移T1/2再翻转。
第3章 连续时间信号频域分析
1.三角型傅里叶级数
让· 巴普蒂斯· 约瑟夫· 傅立叶(Jean
Baptiste Joseph Fourier,1768 –1830), 法国著名数学家、物理学家,1817年当 选为科学院院士,1822年任该院终身秘 书,后又任法兰西学院终身秘书和理工 科大学校务委员会主席,主要贡献是在 研究热的传播时创立了一套数学理论。 小行星10101号傅里叶星、他是名字被刻在埃菲尔铁塔的七十二位法国 科学家与工程师其中一位、约瑟夫.傅立叶大学 1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方 程,提出任一函数都可以展成三角函数的无穷级数。
������=−1
������ ������������1 ej������������1������
因此得到指数形式的傅里叶级数

������(������) =
������=−∞
������(������������1 )ej������������1������
第3章 连续时间信号频域分析
2.指数型傅里叶级数
������=1
������ ������ = ������0 +
������0 = ������0 = ������0
������������ = ������������ =
2 2 ������������ + ������������
������������ = ������������ cos ������������ = ������������ sin ������������
第3章 连续时间信号频域分析
(1) 三角型傅里叶级数系数的计算

连续系统复频域分析报告附MATLAB实现信号与系统实验报告

连续系统复频域分析报告附MATLAB实现信号与系统实验报告

计算机与信息工程学院设计性实验报告专业:通信工程年级/班级:2011级第二学年第二学期一、实验目的1.掌握用matlab分析系统时间响应的方法2.掌握用matlab分析系统频率响应的方法3.掌握系统零、极点分布与系统稳定性关系二、实验原理1.系统函数H(s)系统函数:系统零状态响应的拉氏变换与激励的拉氏变换之比.H(s)=R(s)/E(s)在matlab中可采用多种方法描述系统,本文采用传递函数(系统函数)描述法.在matlab中, 传递函数描述法是通过传递函数分子和分母关于s降幂排列的多项式系数来表示的.例如,某系统传递函数如下则可用如下二个向量num和den来表示:num=[1,1];den=[1,1.3,0.8]2.用matlab分析系统时间响应1)脉冲响应y=impulse(num,den,T)T:为等间隔的时间向量,指明要计算响应的时间点.2)阶跃响应y=setp(num,den,T)T同上.3)对任意输入的响应y=lsim(num,den,U,T)U:任意输入信号. T同上.3.用matlab分析系统频率响应特性频响特性: 系统在正弦激励下稳态响应随信号频率变化的特性.|H(jω)|:幅频响应特性.ϕ(ω):相频响应特性(或相移特性).Matlab求系统频响特性函数freqs的调用格式:h=freqs(num,den,ω)ω:为等间隔的角频率向量,指明要计算响应的频率点.4.系统零、极点分布与系统稳定性关系系统函数H(s)集中表现了系统的性能,研究H(s)在S平面中极点分布的位置,可很方面地判断系统稳定性.1) 稳定系统: H(s)全部极点落于S左半平面(不包括虚轴),则可以满足系统是稳定的.2)不稳定系统: H(s)极点落于S右半平面,或在虚轴上具有二阶以上极点,则在足够长时间后,h(t)仍继续增长, 系统是不稳定的.3)临界稳定系统: H(s)极点落于S平面虚轴上,且只有一阶,则在足够长时间后,h(t)趋于一个非零数值或形成一个等幅振荡.系统函数H(s)的零、极点可用matlab的多项式求根函数roots()求得.极点:p=roots(den)零点:z=roots(num)根据p和z用plot()命令即可画出系统零、极点分布图,进而分析判断系统稳定性.三、实验内容设①p1=-2,p2=-30; ②p1=-2,p2=31.针对极点参数①②,画出系统零、极点分布图, 判断该系统稳定性.2.针对极点参数①②,绘出系统的脉冲响应曲线,并观察t→∞时, 脉冲响应变化趋势.3.针对极点参数①, 绘出系统的频响曲线.四、实验要求1.预习实验原理;2.对实验内容编写程序(M文件),上机运行;3.绘出实验内容的各相应曲线或图。

实验5--连续时间系统的复频域分析

实验5--连续时间系统的复频域分析

实验5–连续时间系统的复频域分析实验背景在连续时间系统的频域分析中,复频域分析是非常重要的一个方法。

其可以帮助我们更直观地了解系统的频率响应,包括幅频响应和相频响应,对于系统的设计和优化都有非常实际的应用价值。

因此,在本次实验中,我们将通过对一个特定系统的复频域分析来学习这一方法的基本原理和操作流程。

实验目的1.了解连续时间系统的幅频响应和相频响应2.掌握利用MATLAB对系统进行复频域分析的方法3.学会根据复频域图像对系统进行分析和优化实验原理连续时间系统幅频响应和相频响应在连续时间系统的频域分析中,使用的是拉普拉斯变换。

通过对系统的输入信号和输出信号进行拉普拉斯变换,可以得到它们在复平面上的函数,进而求得系统的传递函数H(s):H(s)=Y(s)/X(s)其中,s为复变量。

系统的幅频响应和相频响应分别定义为:H(s)的模和相位:|H(jw)|=sqrt(H(s)H(s)*) (模) arg(H(jw))=tan^-1[Im{H(jw)}]/Re{H(jw)} (相位) 其中,w为实数,j为虚数单位。

利用MATLAB进行系统复频域分析MATLAB提供了众多用于连续时间系统复频域分析的工具。

其中,最基本的是bode命令。

它可以计算和绘制给定系统的幅频响应和相频响应曲线。

常用命令格式如下:[bode(H,w)]其中,H为系统的传递函数,w为频率范围除此之外,MATLAB还提供了很多其他的命令,如nyquist、margin、freqresp 等。

它们可以帮助我们更全面地分析系统的性能和特点。

实验步骤实验环境1.一台已安装MATLAB的计算机实验流程1.根据给定的系统传递函数H(s),利用MATLAB计算和绘制其幅频响应和相频响应曲线。

%定义系统传递函数H=tf([5+j*10 0.6+0.2*j],[1 2+j 3 4-j 5+j]);%绘制幅频响应和相频响应曲线figure(1)subplot(2,1,1)bode(H);subplot(2,1,2)nyquist(H);2.根据绘制的幅频响应和相频响应曲线,对系统进行分析和优化。

用MATLAB实现连续系统的频域分析

用MATLAB实现连续系统的频域分析

用MATLAB实现连续系统的频域分析
MATLAB是一款具有强大功能的科学数学软件,它用于数值计算、算法设计、函数图形化等,也可以用于连续系统的频域分析。

下面介绍一般的频域分析的基本步骤,并用MATLAB编程实现,从而实现连续系统的频域分析。

首先,将连续时间信号转换为数字,并计算出相应的变换系数。

一般情况下,可以使
用MATLAB中的函数“fft”和“ifft”根据时域输入信号进行傅里叶变换。

具体过程,可
以按照以下步骤逐步实现:
1. 首先,将函数转换成实数集合并将它们用MATLAB以连续信号的形式写出。

2. 接着,遵循N分频原则,解决连续信号的采样问题,然后对其进行频谱分析。

3. 然后,在实际计算中,根据采样时间及相关的参数计算频率及其带宽,并将每个
离散频率的相应信号分量分开。

4. 接着,使用MATLAB的fft()函数进行正变换处理,得到实现的频域模型。

5. 最后,使用disp()或plot()函数,将计算出的频谱信号以可视化的方式展现出来,方便观察和分析。

MATLAB中,提供了多种用于傅里叶变换的函数,可用于连续系统的频域分析,比如
fft()函数和ifft()函数,等等。

使用这些函数,可以在MATLAB中实现连续系统的频域分析,帮助用户轻松地进行频域分析,并展示出可视化的结果,提高效率。

连续时间系统的频域分析

连续时间系统的频域分析

第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。

●简化电路分析与运算,总响应=单元响应之和。

1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。

一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。

2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。

令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。

3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。

物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。

二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。

连续系统的频域分析

连续系统的频域分析

连续系统的频域分析第三章傅⽴叶变换时域分析:f(t) y f(t)=h(t)*f(t)↓分解↑基本信号δ(t)→LTI →h(t)频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt↓分解↑基本信号 sinωt→LTI →H(jω)e jωte jωtH(jω):系统的频域响应函数,是信号⾓频率ω的函数,与t⽆关.主要内容:⼀、信号的分解为正交函数。

⼆、周期信号的频域分析?付⾥叶级数(求和),频谱的特点。

信号三、⾮周期信号的频域分析?付⾥叶变换(积分),性质。

分析四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析)五、抽样定理:连续信号→离散信号.§3.1 信号分解为正交函数⼀、正交:两个函数满⾜φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。

⼆、正交函数集:⼏个函数φi(t)φi(t)dt= 0 当i≠j;K i 当i=j.三、完备正交函数集:在{φ1(t)…φn(t)}之外,不存在ψ(t)满⾜ψ (t)φi(t)dt= 0 (i=1,2,…n).例、三⾓函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt,sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期.满⾜: cosmΩtcosnΩtdt= 0 m≠nT/2 m=n≠0T m=n=0sin(mΩt)sin(nΩt)dt= 0 m≠nT/2 m=n≠0sin(mΩt)cos(nΩt)dt= 0. 所有的m和n.结论:三⾓函数集是完备正交集。

推导: cosmΩtcosnΩtdt=(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt=(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt=(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0]+(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0]=0 当m≠n时.m=n≠0,原式=(1/2) [ cos(m+n)Ωt+1]dt=(1/2)?t =T/2 m=n=0 , 原式=(1/2) [1+1]dt=T.4、复函数的正交函数集:⼏个复函数集{φi(t)},φi(t)φi*(t)dt= 0 i≠jk i i=j例:复函数集{ e jnΩt}(n=0,±1,±2…)区间(t0,t0+T),T=2π/Ω为周期。

连续系统的频域分析

连续系统的频域分析

| E() | d cos[t ()]
0
• 系统旳零状态响应
e(t)
系统h(t)
rzs(t)= e(t)* h(t)
E()
H()
Rzs()= E() H()
rzs
(t)
1
2
Rzs
()e
jt d
0
|
E(
)
||
H
()
|
d
cos[t
E
()
H
()]
意义:(1)输出信号旳零状态响应也是无穷多正弦信号 旳组合,频率成分和输入信号旳相似;
K
0
()
-t0
0
理论上系统旳幅频特性应当在无限大旳频宽中 保持常量,但实际中无法实现,由于实际信号 旳能量总是伴随频率旳增大而减小,因此实际 系统只要在一定旳频率范围内保证信号无失真 传播即可。
7.3 理想低通滤波器
• 一、理想滤波器
理想低通滤波器(LP):容许低于截止频率 c(=2 fc)
旳所有频率分量无失真旳通过,而高于 c旳所有频

H ()
U ()

U s ()
1 R
jL
jC
1
| H () | e j()
1 R jC
• 二、非周期信号鼓励下系统旳响应
1、对鼓励信号作傅立叶变换: E( )= FT[e(t)]; 2、求系统旳系统函数H( ); 3、求出响应旳频谱函数: R( )= E( ) H( ); 4、对R( )作傅立叶反变换,得响应r(t) :
rzs(t)= IFT[R( )]
零输入响应旳求解与时域分析措施相似。
• 例:
如图所示为一RC低通网络,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章傅立叶变换时域分析:f(t) y f(t)=h(t)*f(t)↓分解↑基本信号δ(t)→LTI →h(t)频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt↓分解↑基本信号 sinωt→LTI →H(jω)e jωte jωtH(jω):系统的频域响应函数,是信号角频率ω的函数,与t无关.主要内容:一、信号的分解为正交函数。

二、周期信号的频域分析−付里叶级数(求和),频谱的特点。

信号三、非周期信号的频域分析−付里叶变换(积分),性质。

分析四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)·F(jω). (系统分析)五、抽样定理:连续信号→离散信号.§3.1 信号分解为正交函数一、正交:两个函数满足φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。

二、正交函数集:几个函数φi(t)φi(t)dt= 0 当i≠j;K i 当i=j.三、完备正交函数集:在{φ1(t)…φn(t)}之外,不存在ψ(t)满足ψ (t)φi(t)dt= 0 (i=1,2,…n).例、三角函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt,sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期.满足: cosmΩtcosnΩtdt= 0 m≠nT/2 m=n≠0T m=n=0sin(mΩt)sin(nΩt)dt= 0 m≠nT/2 m=n≠0sin(mΩt)cos(nΩt)dt= 0. 所有的m和n.结论:三角函数集是完备正交集。

推导: cosmΩtcosnΩtdt=(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt=(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt=(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0]+(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0]=0 当m≠n时.m=n≠0,原式=(1/2) [ cos(m+n)Ωt+1]dt=(1/2)·t =T/2 m=n=0 , 原式=(1/2) [1+1]dt=T.4、复函数的正交函数集:几个复函数集{φi(t)},φi(t)φi*(t)dt= 0 i≠jk i i=j例:复函数集{ e jnΩt}(n=0,±1,±2…)区间(t0,t0+T),T=2π/Ω为周期。

满足 e jm Ωt(e jnΩt)*dt= e j(m-n)Ωt dt=[1/(j(m-n)Ω)] e j(m-n)Ωt dt =0 m≠n= 1dt=T m=n.结论:{ e jnΩt}是完备正交集。

(n=0,±1,±2…)二、信号分解为正交函数集。

1、分解:二维 A=c1v x + c2y y { v x,v}y二维正交矢量集三维 A= c1v x +c2v y +c3v z { v x,v y,v z }三维正交矢量集n维:{φ1(t)…φn(t)}在(t1 ,t2)构成正交函数集。

f(t)≈c1φ1 (t)+ c2φ2(t)+…c nφn(t)+(t)= c jφj(t)任意一个函数可以用这几个正交函数的线性组合来近似。

2、系数c j的选择。

方均误差定义:=[1/(t2-t1)] [f(t)- c jφj(t)]2dt使最小,对第i个系数c i来说,应使/c i =0.∴c j= [ f(t)φj(t)dt]/ ( [φj(t)]2dt)=(1/K j) f(t)φj(t)dt最佳近似条件下的方均误差:=[1/(t2-t1)]( [f(t)]2 dt - c j2K j).∵≥0,n↑, ↓;∴n→∞,→0. 则 [f(t)]2 dt= c j2K j→称帕斯瓦尔方程。

f(t)= c jφj(t).即函数f(t)在区间(t1 ,t2)可分解为无穷多项正交函数之和。

§3.2付里叶级数一、付里叶级数:(三角形式)f(t)=(a0/2)·1+a1cosΩt+a2cos2Ωt+…+b 1sinΩt+b 2sin2Ωt+…= a0/2+ a n cos(nΩt)+ b n sin(nΩt).积分区间:t 0 t0+T, 0T, -T/2T/2K i= (cos(nΩt))2 dt=T/2.a n=(2/T) f(t)cos(nΩt)dtb n=(2/T)f(t)sin(nΩt)dt形制:a-n=a n是偶函数b-n=-b n时奇函数 (其中n=0,1,2…).2、三角形式二:同频率项合并。

f(t)=a0/2+A1cos(Ωt+φ1)+A2cos(2Ωt+φ2) +…= a0/2+ A n cos(nΩt+φn).A0=a0 a n=b n =-arctg(b n / a n).由性质可知:a0= A0 a n=An cosφn b n= b n sinφn3、物理意义;同周期信号可分解为各次谐波之和。

f(t)= a0/2+A1cos(Ωt+φ1)+A2cos(2Ωt+φ2) +…+A n cos(Ωt+φn)+…例3.2-1 f(t)为方波,分解为付里叶级数。

周期:T 频率:1/T 角频率:Ω=2π/T. 区间:(-T/2,T/2)(1)f(t)= a0/2+ a n cos(nΩt)+ b n sin(nΩt)a n=(2/T) f(t)cos(nΩt)dt =0b n=(2/T) f(t)sin(nΩt)dt= 0 n=2,4,6…. 4/(nπ) n=1,3,5…∴f(t)=(4/π)[sinΩt+(1/3)sin(3Ωt)+…+ (1/n)sin(nΩt)+…]结论:方波只含有1,3,5等奇次谐波分量,无直流分量。

(2)方均误差(有限项逼近)=[1/(t2-t1)][ f2(t)dt- c2]j K j=(1/T)[ 1dt-(T/2) (b j)2]=1-(1/2) (b j)2只取基波:=1-(1/2)(4/π)2=0.189.取基三次谐波:=1-(1/2)[(4/π)2+(4/3π)2=0.0994.基“+”3,”+”5次: =1-(1/2)[(4/π)2+(4/3π)2+(4/5π)2]=0.0669 (3)方波分解的特点1、它包含的基波分量越多,越接近方波,其均方误差越小。

2、当合成波所含基波次数n→∞,在间断点仍有约9%偏差,在间断点出尖峰下的面积非常小以致趋近于零。

二、奇偶函数的付里叶系数的特点:1、为偶函数:f(-t)=f(t),关于纵坐标对称。

a n=(2/T) f(t)cos(nΩt)dt=(2/T)f(t) cos(nΩt)dt +(2/T)f(t) cos(nΩt)dt∴a n=(4/T)f(t) cos(nΩt)dtb n=(2/T) f(t)sin(nΩt)dt+(2/T)f(t)sin(nΩt)dt∴ b n= 0.当f(t)为偶函数时a n=(4/T)f(t) cos(nΩt)dt A n= |a n|b n/ a n=0b n= 0 ϕn= mπ arctgb n/a n角度为0,π2、f(t)为奇函数。

F(-t)=-f(t),波形关于原点对称。

当f(t)为奇函数时:= |b n|ab n=(4/T)f(t)sin(nΩt)dt ϕn= (2m+1)π/2. b n/a n→∞.∴奇函数只有正弦项。

★任意函数f(t)=f od(t)+f ev(t) → f od(t)=(f(t)-f(-t))/2. f(-t)= f od(-t)+f ev(-t)= -f od(t)+f ev(t) f ev(t)=(f(t)+f(-t))/2.3、f(t)为奇谐函数。

(半波对称函数)f(t)=- f(t±T/2),移动T/2后,关于横轴对称。

付里叶级数只含奇次谐波,不含偶次谐波。

a0= a2= a4= a6=⋯ b0= b2= b4=⋯=0例3.2-2 把锯齿波信号展为付里叶级数。

解:方法1:f(t)=t/T既不是偶函数也不是奇函数,直接在[0,T]区间上求a n,b n .方法二:把分为奇偶两部分。

f ev(t)=(1/2)[f(t)-f(-t)]=(1/2)[t/T+(-t+T)/T]=1/2.f od(t)=(1/2)[f(t)+f(-t)]=(1/2)[t/T-(-t+T)/T]=t/T-1/2=(t-T/2)/T. 奇函数部分分解为:a nb n =(4/T)[t/T-1/2]sin(nΩt)dt=(4/T2)[sin(nΩt)-nΩcos(nΩt)]/(nΩ)2+(2/T)[cos(nΩt)]/(nΩ)]=-1/nπ. n=1,2,3…b n sin(nΩt)∴f(t)= f ev(t)+f od(t)=1/2+=1/2-(1/π)[sinΩt+(1/2)sin(2Ωt)+(1/3) sin(3Ωt)+…].锯齿波含直流分量和各次谐波分量。

三、周期信号分解为指数形付里叶级数。

1、定义式:(由三角形式推导)f(t)=A0/2+A n cos(nΩt+φn)= A0/2+ (A n/2)[e j(nΩt+φn)+e -j(nΩt+φn)]。

∴ f(t)= Fne jnΩt2、确定付里叶系数FnFn=(1/2) A n e jφn+(1/2)[A n cosφn)+jA n sinφn]=(1/2)(a n-jb n)=(1/2)(2/T) f(t)cos(nΩt)dt-j(1/2)(2/T) f(t)sin(nΩt)dt=(1/T)f(t)[cos(nΩt)-jsin(nΩt)]dt∴ Fn=(1/T) f(t)e-jnΩt dt. n=0,±1,±2…3、物理意义:周期信号可分解为许多不同频率(nΩ)的虚指数信号(e jnΩt)之和。

每个分量的大小用Fn来表示,分为幅度和相位。

★各三角函数型和指数型付里叶级数及其系数,以及各系数间的关系见表4-1。

§3.3 周期信号的频谱一、频谱的概念:频谱分为☞幅度频谱:以频率ω(或角频率Ω)为横坐标,An/|Fn|为纵坐标。

☞相位频谱:以频率ω(或角频率Ω)为横坐标,φn为纵坐标。

f(t)=A0/2+A n cos(nΩt+φn)A0为直流分量幅度;A n为n次谐波的振幅;φn为n次谐波的初相角。

周期信号的频谱是离散的。

结论:正如波形是信号在时域的表示一样,频谱则是信号在频域的表示。

描述了一个信号的频谱就等于描述了这个信号。

信号分解:从已知信号绘制其频谱图。

合成:根据其频谱图反过来和成原有的信号。

波形f(t)频谱Fn与An比较:An:每条谱线代表一个完整的谐波分量的幅度,物理意义明确。

相关文档
最新文档