极坐标与参数方程题型及解题方法65164

合集下载

极坐标和参数方程

极坐标和参数方程

极坐标与参数方程的高考题型及解题策略班级 姓名高考题中极坐标与参数方程主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。

高考热点是极坐标与直角坐标的互化、参数方程化为直角坐标方程,推导简单图形的极坐标方程、直角坐标方程化为参数方程。

一、极坐标与直角坐标的互化1.用公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行极坐标方程与直角坐标方程互化时,应注意两点:Ⅰ.注意ρ,θ的取值范围及其影响.Ⅱ.重视方程的变形及公式的正用、逆用、变形使用.例1、在直角坐标系xOy 中。

直线1C :2x =-,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。

(I ) 求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN 的面积二、简单曲线的极坐标方程及应用1.求曲线的极坐标方程,就是找出动点M 的坐标ρ与θ之间的关系,然后列出方程f(ρ,θ)=0,再化简并检验特殊点.2.极坐标方程涉及的是长度与角度,因此列方程的实质是解三角形.3.极坐标方程应用时多化为直角坐标方程求解,然后再转化为极坐标方程,注意方程的等价性.例2、在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=。

(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求||AB 的最大值。

三、简单参数方程及应用1.将参数方程化为普通方程的基本途径就是消参,消参过程注意两点:①准确把握参数形式之间的关系;②注意参数取值范围对曲线形状的影响.2.已知曲线的普通方程求参数方程时,选取不同含义的参数时可能得到不同的参数方程.3.一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.例3、坐标系与参数方程已知曲线C:22149x y+=,直线l:222x ty t=+⎧⎨=-⎩(t为参数).(Ⅰ)写出曲线C的参数方程,直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为o30的直线,交l于点A,求||PA的最大值与最小值.四、参数方程与极坐标方程的综合应用第一步:消去参数,将曲线C1的参数方程化为普通方程;第二步:将曲线C1的普通方程化为极坐标方程;第三步:将曲线C2的极坐标方程化为直角坐标方程;第四步:将曲线C1与曲线C2的直角坐标方程联立,求得交点的直角坐标;第五步:把交点的直角坐标化为极坐标.例4、在直角坐标系xOy中,直线l1的参数方程为2+,,x ty kt=⎧⎨=⎩(t为参数),直线l2的参数方程为2,,x mmmyk=-+⎧⎪⎨=⎪⎩(为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sinθ),M为l3与C的交点,求M的极径.。

极坐标与全参数方程题型及解题方法

极坐标与全参数方程题型及解题方法

Ⅰ复习提问1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的?2、 如何把极坐标系转化为直角坐标系?答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。

如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立:ρθρθysin xcos ==3、 参数方程{cos sin x r y r θθ==表示什么曲线?4、 圆(x-a)2+(y-b)2=r2的参数方程是什么?5、 极坐标系的定义是什么?答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ.ρ和θ的值确定了,则P 点的位置就确定了。

ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。

显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?Ⅱ 题型与方法归纳1、 题型与考点(1){极坐标与普通方程的互相转化极坐标与直角坐标的互相转化(2){参数方程与普通方程互化参数方程与直角坐标方程互化(3) {利用参数方程求值域参数方程的几何意义2、解题方法及步骤 (1)、参数方程与普通方程的互化化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)例1、方程2222t tt tx t y --⎧=-⎪⎨=+⎪⎩(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆解析:注意到2t t与2t-互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()()222222224t tt t x y ---=--+=-,即有224y x -=,又注意到202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B练习1、与普通方程210x y +-=等价的参数方程是( )(t 为能数)222sin cos ....cos 1sin x t x tgt x t x A B C D y t y tg t y t y t===⎧⎧⎧⎧=⎪⎨⎨⎨⎨==-==⎪⎩⎩⎩⎩ 解析:所谓与方程210x y +-=等价,是指若把参数方程化为普通方程后不但形式一致而且,x y 的变化范围也对应相同,按照这一标准逐一验证即可破解.对于A 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,;对于B 化为普通方程为210(1]x y x R y +-=∈∈-∞,,,; 对于C 化为普通方程为210[0)(1]x y x y +-=∈+∞∈-∞,,,,; 对于D 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,.而已知方程为210(1]x y x R y +-=∈∈-∞,,,,显然与之等价的为B.练习2、设P 是椭圆222312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 .分析:注意到变量(),x y 的几何意义,故研究二元函数2x y +的最值时,可转化为几何问题.若设2x y t +=,则方程2x y t +=表示一组直线,(对于t 取不同的值,方程表示不同的直线),显然(),x y 既满足222312x y +=,又满足2x y t +=,故点(),x y 是方程组2223122x y x y t⎧+=⎨+=⎩的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式0∆≥问题.解析:令2x y t +=,对于(),x y 既满足222312x y +=,又满足2x y t +=,故点(),x y 是方程组2223122x y x y t⎧+=⎨+=⎩的公共解,依题意得()221182120y t y t -⋅+-=,由()22644112120t t ∆=-⨯⨯-≥,解得:t ≤≤所以2x y +,最小值为(2)、极坐标与直角坐标的互化 利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(2)极轴与x 轴正方向重合;(3)取相同的单位长度.设点P 的直角坐标为(),x y ,它的极坐标为(),ρθ,则 222cos sin x y x yy tg x ρρθρθθ⎧=+=⎧⎪⎨⎨==⎩⎪⎩或;若把直角坐标化为极坐标,求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.例2、极坐标方程24sin52θρ⋅=表示的曲线是( )A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由21cos 4sin422cos 522θθρρρρθ-⋅=⋅=-=,化为直角坐标系方程为25x =,化简得22554y x =+.显然该方程表示抛物线,故选D.练习1、已知直线的极坐标方程为sin 42πρθ⎛⎫+= ⎪⎝⎭,则极点到该直线的距离是解析:极点的直角坐标为()0,0o,对于方程sin sin cos 4222πρθρθθ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,可得sin cos 1ρθρθ∴+=,化为直角坐标方程为10x y +-=,因此点到直线的距离为2练习2、极坐标方程2cos 0ρθρ-=转化成直角坐标方程为( )A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:(cos 1)0,0,cos 1x ρρθρρθ-=====或,因此选C.练习3、点M的直角坐标是(-,则点M 的极坐标为( ) A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈解析:2(2,2),()3k k Z ππ+∈都是极坐标,因此选C.(3)、参数方程与直角坐标方程互化例题3:已知曲线1C 的参数方程为⎪⎩⎪⎨⎧=+-=θθsin 10cos 102y x (θ为参数),曲线2C 的极坐标方程为θθρsin 6cos 2+=.(1)将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程; (2)曲线1C ,2C 是否相交,若相交请求出公共弦的长,若不相交,请说明理由.解:(1)由⎪⎩⎪⎨⎧=+-=θθsin 10cos 102y x 得10)2(22=++y x∴曲线1C 的普通方程为10)2(22=++y x ∵θθρsin 6cos 2+= ∴θρθρρsin 6cos 22+=∵θρθρρsin ,cos ,222==+=y x y x∴y x y x 6222+=+,即10)3()1(22=-+-y x∴曲线2C 的直角坐标方程为DAFEOBC10)3()1(22=-+-y x(2)∵圆1C 的圆心为)0,2(-,圆2C 的圆心为)3,1( ∴10223)30()12(C 2221<=-+--=C∴两圆相交设相交弦长为d ,因为两圆半径相等,所以公共弦平分线段21C C∴222)10()223()2(=+d ∴22=d∴公共弦长为22 练习1、坐标系与参数方程.已知曲线C :θ⎩⎨⎧θ+=θ+=(sin 21cos 23y x 为参数,0≤θ<2π), (Ⅰ)将曲线化为普通方程;(Ⅱ)求出该曲线在以直角坐标系原点为极点,x 轴非负半轴为极轴的极坐标系下的极坐标方程.解析:(Ⅰ)023222=--+y x y x(Ⅱ)()θ+θ=ρsin cos 32(4)利用参数方程求值域 例题4、在曲线1C :⎩⎨⎧=+=)y x 为参数θθθ(sin cos 1上求一点,使它到直线2C:12(112x t t y t⎧=-⎪⎪⎨⎪=-⎪⎩为参数)的距离最小,并求出该点坐标和最小距离。

极坐标与参数方程 题型总结归纳 附答案

极坐标与参数方程   题型总结归纳 附答案

《极坐标与参数方程》高考高频题型除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及(一)有关圆的题型题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较相离,无交点;:r d > 个交点;相切,1:r d = 个交点;相交,2:r d <用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。

题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法)思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=第二步:判断直线与圆的位置关系第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d =题型三:直线与圆的弦长问题弦长公式222d r l -=,d 是圆心到直线的距离延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义”(二)距离的最值: ---用“参数法”1.曲线上的点到直线距离的最值问题2.点与点的最值问题“参数法”:设点---套公式--三角辅助角①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ①套公式:利用点到线的距离公式①辅助角:利用三角函数辅助角公式进行化一例如:【2016高考新课标3理数】在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为(I )写出的普通方程和的直角坐标方程;(II )设点在上,点在上,求的最小值及此时的直角坐标的直角坐标方程为.这里没有加减移项省去,直接化同,那系数除到左边(①)由题意,可设点的直角坐标为 因为是直线,所以的最小值即为到的距离的最小值,xOy 1C ()sin x y ααα⎧=⎪⎨=⎪⎩为参数x 2C sin()4ρθπ+=1C 2C P 1C Q 2C PQ P 2C 40x y +-=P ,sin )αα2C ||PQ P 2C ()d α.(欧萌说:利用点到直接的距离列式子,然后就是三角函数的辅助公式进行化一)当时)(13sin =+πα即当时,,此时的直角坐标为.(三)直线参数方程的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程()sin()2|3d παα==+-2()6k k Z παπ=+∈()d αP 31(,)22第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。

高考极坐标与参数方程题型及解题方法

高考极坐标与参数方程题型及解题方法

高考极坐标与参数方程题型及解题方法1. 引言在高考数学考试中,极坐标与参数方程是比较常见的题型。

掌握这些题型的解题方法对于考生来说非常重要。

本文将针对高考中常见的极坐标与参数方程题型进行介绍,并给出相应的解题方法。

2. 极坐标题型及解题方法2.1 求曲线方程在给定了极坐标方程$r=f(\\theta)$的情况下,求曲线的方程是比较常见的题型。

要解决这类题目,一般有以下步骤:•首先,观察函数$f(\\theta)$的性质,判断是否是一个周期函数,通过实例来确定周期。

•根据这个周期,可以得到对应的关系式。

•使用关系式消去r和$\\theta$,得到曲线的直角坐标方程。

•最后,通过画图或其他方式,验证所得方程是否正确。

2.2 求曲线的长度求曲线的长度也是一个常见的问题,一般分为以下几步:•根据给定的极坐标方程$r=f(\\theta)$,利用弧长公式进行求解。

公式为:$$L=\\int_{\\alpha}^{\\beta}\\sqrt{[f'(\\theta)]^2+f^2(\\theta)}d\\theta$$ •其中$\\alpha$和$\\beta$为曲线所在区间,$f'(\\theta)$为导数。

•确定曲线所在区间,并计算导数$f'(\\theta)$。

•将上述求得的值带入弧长公式中,进行计算。

2.3 求曲线与极轴的夹角有时候,我们需要求出曲线与极轴的夹角。

对于这类问题,一般可以按照以下步骤进行求解:•首先,通过给定的极坐标方程$r=f(\\theta)$求出曲线与极轴的交点。

•然后,求出曲线在交点处的切线斜率k。

斜率的求解公式为:$$k=\\tan(\\pi/2-\\theta)=-\\frac{dr}{d\\theta}/r$$•最后,利用切线的斜率k求出曲线与极轴的夹角。

3. 参数方程题型及解题方法3.1 求曲线方程对于给定的参数方程x=f(t)和y=g(t),求曲线的方程也是常见的高考题型。

【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型汇总题型一.直线参数方程t 的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. 直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。

1.以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|P A|+|PB|的值.2.在直角坐标系xOy中,直线l过点P(0,1)且斜率为1,以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2sinθ+2cosθ.(Ⅰ)求直线l的参数方程与曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C的交点为A、B,求|P A|+|PB|的值.3.在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)写出直线l的普通方程及曲线C的直角坐标方程;(2)已知点P(0,1),点Q(,0),直线l过点Q且曲线C相交于A,B两点,设线段AB的中点为M,求|PM|的值.4.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|P A|•|PB|=1,求实数m的值.5.在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.6.在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的极坐标方程为.(Ⅰ)写出曲线和直线的直角坐标方程;(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.7.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线普通方程和曲线的直角坐标方程;(2)过点,且与直线平行的直线交于两点,求.8.在平面直角坐标系中,直线过点,且倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出直线的参数方程及曲线的直角坐标方程;(Ⅱ)若直线与曲线交于,两点,且弦的中点为,求的值.9.在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)若点的直角坐标为,求直线及曲线的直角坐标方程;(2)若点在上,直线与交于两点,求的值.10.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数),其中,直线与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若点满足,求的值.11.在平面直角坐标系xOy中,点P(0,−1),直线l的参数方程为{x=tcosαy=−1+tsinα(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ= 8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=409时,求sinα的值.12.在直角坐标系xOy 中,曲线C 1的参数方程为{x =1−√22t y =1+√22t(t 为参数),以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cosθ. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A,B 两点,点P 的极坐标为(√2,π4),求1|PA|+1|PB|的值.题型二.极径的应用:一直线与两曲线分别相交,求交点间的距离(1)思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可,|=AB |B A 2B A B A 4)(||ρρρρρρ-+=-(2)过原点,倾斜角为α的直线的极坐标方程为:)(R ∈=ραθ 1.在平面直角坐标系中,直线l 的参数方程是(t 为参数),以坐标原点为极点,x 轴的正半轴为板轴,建立极坐标系,已知曲线C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ﹣2ρsin θ﹣3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求AB 的长.2.已知曲线,是曲线上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点绕点逆时针旋转得到点,设点的轨迹方程为曲线.(Ⅰ)求曲线,的极坐标方程;(Ⅱ)射线与曲线,分别交于,两点,定点,求的面积.3.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosφy=2sinφ(φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C1的普通方程和C2的直角坐标方程;(2)已知直线C3的极坐标方程为θ=α(0<α<π,ρ∈R),A是C3与C1的交点,B是C1与C2的交点,且A,B均异于原点O,|AB|=4√2,求a的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的参数方程为{x =tcosβy =tsinβ(t 为参数,0≤β<π),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 与曲线C 相交于A 、B 两点,且|OA |−|OB |=2,求β.5.在直角坐标系xOy 中,直线l 的参数方程为{x =34+√3t y =a +√3t(t 为参数),圆C 的标准方程为(x −3)2+(y −3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程;(2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.题型三.距离、最值、取值范围 (一)与圆有关的题型1.圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。

极坐标与参数方程题型及解题方法

极坐标与参数方程题型及解题方法

极坐标与参数方程题型及解题方法极坐标系是一种特殊的坐标系,它使用极轴(以原点为焦点)和极角来标识一个点。

极坐标系很方便表示和解决有关复平面中圆形定位或者曲线的问题,因此极坐标系经常会出现在数学题目中,可以提高解题的效率。

由极坐标可以唯一确定一个点的位置,也就是说,使用极坐标可以确定一个点的横纵坐标。

极坐标系的参数方程是指用参数方程的形式,用极坐标确定一个点的坐标。

参数方程表示为:x=rcosθ,y=rsinθ。

其中,r表示该点与原点的距离,θ表示该点与x轴正方向夹角的大小。

解极坐标方程的思路是,根据极坐标系和参数方程,我们可以先分析极坐标系中给出的两个参数和它们之间的关系,然后才可以求得它们组成的参数方程,最后将这个参数方程求出解析解,就可以得到该点的位置。

求解的过程可以分为两个步骤:1、求解极坐标系中的角θ:r=rcosθ.sinθ=関数,根据极坐标系中给出的两个参数,可以求得θ的大小;2、求解极坐标系中的半径r:x=rcosθ,y=rsinθ,可以求得r的大小。

有了极坐标中的两个参数r和θ的大小,就可以求出参数方程的解析解,即求出该点的横纵坐标。

把极坐标系中参数求出来以后,可以利用两个步骤进行解题:第一步:把极坐标系的两个坐标(r,θ)代入原参数方程:x=rcosθ,y=rsinθ,得到:x=rcosθ,y=rsinθ.第二步:根据第一个步骤得到的结果,可以求出点P的横坐标和纵坐标,即可求得极坐标系中点P的位置。

总结以上,极坐标与参数方程可能出现在数学试题中,解题步骤是:首先分析极坐标系中给出的两个参数r和θ;其次把极坐标系中的参数代入参数方程;最后根据第一步的结果,求出点的位置。

在解出练习题的参数方程时,尽量利用极坐标系。

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳极坐标与参数方程题型和方法归纳题型一:极坐标方程与直角坐标方程的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。

具体方法如下:1)极坐标方程转直角坐标方程:begin{cases}\rho=x\cos\theta+y\sin\theta\\\tan\theta=\dfrac{y }{x}\end{cases}\Rightarrow\begin{cases}x=\rho\cos\theta\\y=\rho \sin\theta\end{cases}$$其中,$\rho$表示点到原点的距离,$\theta$表示点与$x$轴正半轴的夹角。

2)参数方程转直角坐标方程:begin{cases}x=f(t)\\y=g(t)\end{cases}\RightarrowF(x,y)=0$$其中,$F(x,y)$为$x,y$的函数,$t$为参数。

3)极坐标方程转参数方程:begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\Rightarr ow\begin{cases}r=f(\theta)\\ \theta=g(r)\end{cases}$$题型二:三个常用的参数方程及其应用1)圆的参数方程:begin{cases}x=a+r\cos\theta\\y=b+r\sin\theta\end{cases}$$其中,$(a,b)$为圆心坐标,$r$为半径。

2)椭圆的参数方程:begin{cases}x=a\cos\theta\\y=b\sin\theta\end{cases}$$其中,$a,b$为椭圆的长短半轴。

3)过定点倾斜角为$\alpha$的直线$l$的标准参数方程为:dfrac{x-x_0}{\cos\alpha}=\dfrac{y-y_0}{\sin\alpha}=p$$其中,$(x_0,y_0)$为直线$l$上的一点,$p$为直线$l$到原点的距离。

极坐标与参数方程题型及解题方法

极坐标与参数方程题型及解题方法

极坐标与参数方程题型及解题方法极坐标与参数方程题型及解题方法高考数学中,极坐标与参数方程主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。

这些题目通常属于中等难度,要求掌握基本概念、基本知识和基本运算。

这类题目常以选考题的形式出现,也有可能出现在高考数学的选择题和填空题中。

极坐标与直角坐标的互化1.曲线的极坐标方程化成直角坐标方程:对于简单的曲线,我们可以直接代入公式ρcosθ=x,ρsinθ=y,ρ²=x²+y²,但有时需要作适当的变化,如将式子的两边同时平方,或两边同时乘以ρ等。

2.直角坐标(x,y)化为极坐标(ρ,θ)的步骤:1) 运用ρ²=x²+y²,tanθ=y/x;2) 在[0,2π)内,由tanθ=y/x求θ时,由直角坐标的符号特征判断点所在的象限(即θ的终边位置)。

解题时必须注意:①确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可。

②平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一。

当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点。

③进行极坐标方程与直角坐标方程互化时,应注意两点:Ⅰ注意ρ、θ的取值范围及其影响。

Ⅱ重视方程的变形及公式的正用、逆用、变形使用。

例1:在直角坐标系xOy中,直线I) 求C1,C2的极坐标方程;II) 若直线C3的极坐标方程为θ=π/4,设C2与C3的交点为M和N,求C2MN的面积。

解:(I) 因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ²-2ρcosθ-4ρsinθ+4=0.II) 将θ=π/4代入ρ²-2ρcosθ-4ρsinθ+4=0,得ρ1=2√2,ρ2=2/√2.故MN=ρ1-ρ2=2.由于C2的半径为1,所以C2MN的面积为2π/8-1/2=π/8-1/2.参数方程是一种表示曲线的方式,其中x和y都是关于一个参数t的函数。

极坐标与参数方程经典题型(附含详细解答)

极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。

极坐标与参数方程题型和方法归纳.doc

极坐标与参数方程题型和方法归纳.doc

极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。

方法如下:x cos(1) 极坐标方程y sin直角坐标方程2x 2y 2或x 2y2tany ( xx(2) 参数 方程消参(代 入法、加 减法、 sin 2+cos21等)直角坐 标方程圆、椭圆 、直线的参数方程(3) 参数方程 直角坐标方程 (普通方程 ) 极坐标方程1、已知直线 l 的参数方程为x1 1 t( t 为2y3 3t参数)以坐标原点 O 为极点,以 x 轴正半轴为极轴,建立极坐标系,曲线 C 的方程为sin3 cos 2.(Ⅰ)求曲线 C 的直角坐标方程;(Ⅱ)写出直线 l 与曲线 C 交点的一个极坐标 .题型二:三个常用的参数方程及其应用(1)圆(x a)2( y b)2r 2的参数方程是:( 为参数)x a r cosy b r sinx2y2(2)椭圆a2b21(a0, b0, a b) 的参数方程是:x a cos,( 为参数 )y b sin(3)过定点P( x0, y0)倾斜角为的直线l的标准x x0 t cos参数方程为:y y0 ,( t为参数 )t sin对( 3)注意:P点所对应的参数为 t 0 0 ,记直线l 上任意两点A, B 所对应的参数分别为 t1 ,t2,则①AB t1t2,②PA PA t1t2 t1 t2 ,t1 t2 0,t1 t 2 , t1 t2 0③PA PA t1t2t 1t22、在直角坐标系xoy中,曲线C的参数方程为x a cost( t 为参数, a 0 )以坐标原点 O y 2sin t为极点,以 x 轴正半轴为极轴,建立极坐标系,已知直线的极坐标方程为4 .l cos2 2(Ⅰ)设 P 是曲线 C 上的一个动点,当 a2时,求点 P 到直线 l 的距离的最小值;(Ⅱ)若曲线 C 上的所有点均在直线 l 的右下方,求 a 的取值范围.x 12cos3、已知曲线C1:y 4sin(参数R ),以坐标原点 O 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线 C2的极坐标方程为3,点 Q 的极坐标为 (4 2, ) .cos( ) 43(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点 Q 的直角坐标;(2)设P为曲线C1上的点,求PQ中点M到曲线 C2上的点的距离的最小值.x 1 1 t4、已知直线 l :2( t 为参数),曲线 C 1 : y3t2xcos( 为参数) .y sin( 1)设 l 与 C 1相交于两点 A, B ,求 | AB |;( 2)若把曲线 C 1上各点的横坐标压缩为原来的 1倍,纵坐标压缩为原来的 22曲线 C 2,设点 P 是曲线 C 2上的一个动点,求它到直线 l 的距离的最小值 .5、在平面直角坐标系xOy 中,已知曲线C :x 3 cos( 为参数),在以坐标原点 O 为极 y sin点,以 x 轴正半轴为极轴建立的极坐标系 中,直线 l 的极坐标方程为2 )1.cos(24( 1)求曲线 C 的普通方程和直线 l 的直角坐标方程;( 2)过点 M ( 1,0) 且与直线 l 平行的直线 l 1交 C(3倍,得到于 A, B 两点,求弦AB 的长.6、面直角坐标系中,曲线 C 的参数方程为x=5 cosα,(α为参数).以坐标原点O y=sin α为极点, x 轴正半轴为极轴建立极坐标系,π直线 l 的极坐标方程为ρcos(θ+4)= 2.l 与 C交于 A、B 两点.(Ⅰ)求曲线 C 的普通方程及直线l 的直角坐标方程;(Ⅱ)设点 P(0,-2),求:①| PA| +| PB| ,1 1②PA PB ,③PA PB,④ AB题型三:过极点射线极坐标方程的应用出现形如:(1)射线OP: 6 (0);(1)直线OP: 6(R )7、在直角坐标系xOy中,圆C的方程为( x3) 2 ( y 1)2 9,以O为极点, x 轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线OP:6(R)与圆 C 交于点 M 、N,求线段 MN 的长.8、在直角坐标系xOy中,圆C的参数方程为x 5cosy( 为参数),以坐标原点为极点,x 6 5sin轴正半轴为极轴建立极坐标系(1)求圆C的极坐标方程;(2)直线l的极坐标方程为足 tan 0 5 , l 与C交于A, B两点,求2 .0,其中0满AB的值.9、在直角坐标系xOy中,直线l经过点P( 1,0),其倾斜角为,以原点 O 为极点,以x轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线 C 的极坐标方程为 2 6 cos 5 0 .(Ⅰ)若直线l 与曲线 C 有公共点,求的取值范围;(Ⅱ)设 M ( x, y) 为曲线C上任意一点,求x y 的取值范围.10、在直角坐标系中xOy 中,已知曲线 E 经过点 P 1, 2 3,其参数方程为x a cos (为参3 y2 sin数),以原点 O 为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA OB,求证:为定值,并求出这个定值.1 2 1 2OA OB11、在平面直角坐标系 xOy 中,曲线 C 1和C2的2x cos , 参数方程分别是x 4t( t 是参数)和y 1 siny 4t( 为参数) .以原点 O 为极点, x 轴的正半轴为极轴建立极坐标系 .( 1)求曲线 C 1的普通方程和曲线 C 2的极坐标方程;(2)射线 OM :( [6 , 4 ])与曲线 C 1的交点为 O ,P,与曲线C2的交点为 O , Q ,求 |OP| |OQ |的最 大值 .。

【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。

极坐标与参数方程知识点+典型例题与详解(可编辑修改word版)

极坐标与参数方程知识点+典型例题与详解(可编辑修改word版)

⎩ ⎩ 极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标 x 、y 都是某个变数 t 的函数,即⎧x = ⎨y = f (t ) f (t )并且对于 t 每一个允许值,由方程组所确定的点 M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1. 过定点(x 0,y 0),倾角为α的直线:x = x 0 + t cos y = y 0 + t sin(t 为参数)其中参数 t 是以定点 P (x 0,y 0)为起点,对应于 t 点 M (x ,y )为终点的有向线段 PM 的数量,又称为点 P 与点 M 间的有向距离. 根据 t 的几何意义,有以下结论.○1 .设 A 、B 是直线上任意两点,它们对应的参数分别为 t A 和 t B ,则 AB = t B -t A =.t A + t B.线段 AB 的中点所对应的参数值等于 .22. 中心在(x 0,y 0),半径等于 r 的圆:x = x 0 + r cosy = y 0 + r s in(为参数)3. 中心在原点,焦点在 x 轴(或 y 轴)上的椭圆:x = a c os y = b s in(为参数) (或x = b c os )y = a s in中 心 在 点 ( x0,y0) 焦 点 在 平 行 于 x 轴 的 直 线 上 的 椭 圆 的 参 数 方 程⎧x = x 0 + a cos ,⎨y = y + b sin (为参数) .4. 中心在原点,焦点在 x 轴(或 y 轴)上的双曲线:(t B - t A ) - 4t ⋅ t2A B○2 0x = a s ec (为参数) (或x = b tg)y = b tgy = a s ec5. 顶点在原点,焦点在 x 轴正半轴上的抛物线:x = 2 pt 2 y = 2 pt(t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x ,y ),倾斜角为的直线的参数方程是⎧x = x 0 + t cos(t 为参数).⎨⎩ y = y 0+ t sin(三)极坐标系1、定义:在平面内取一个定点 O ,叫做极点,引一条射线 Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

极坐标与参数方程知识点及题型归纳总结

极坐标与参数方程知识点及题型归纳总结

极坐标与参数方程知识点及题型归纳总结知识点精讲一、极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.二、极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). 三、极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)四、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图16-33所示).五、圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.六、椭圆的参数方程椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤).七、双曲线的参数方程双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z .八、抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).题型归纳即思路提示题型1 极坐标方程化直角坐标方程 思路提示对于极坐标方程给出的问题解答一般都是通过化为直角坐标方程,利用直角坐标方程求解.这里需注意的是极坐标系与直角坐标系建立的对应关系及其坐标间的关系cos sin x y ρθρθ=⎧⎨=⎩. 例16.7 在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=(ρ∈R )的距离是 .分析 将极坐标方程转化为平面直角坐标系中的一般方程求解.解析 极坐标系中的圆4sin ρθ=转化为平面直角坐标系中的一般方程为224x y y +=,即22(2)4x y +-=,其圆心为(0,2),直线6πθ=转化为平面直角坐标系中的方程为:y x =,即0x =.圆心(0,2)到直线0x ==. 变式1 已知曲线12,C C 的极坐标方程分别为cos 3ρθ=,4cos ρθ=,(0,0)2πρθ≥≤<,则曲线1C 与2C 交点的极坐标为 .变式2 ⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程; (2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.变式3已知一个圆的极坐标方程是5sin ρθθ=-,求此圆的圆心和半径. 例16.8 极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( )A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线分析 将极坐标方程化为直角坐标方程.解析 因为(1)()0(0)ρθπρ--=≥,所以1ρ=或θπ=(0)ρ≥.11ρ=⇒=,得221x y +=,表示圆心在原点的单位圆;(0)θπρ=≥表示x 轴的负半轴,是一条射线.故选C.变式1 极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 变式2 在极坐标系中,点(2,)6P π-到直线:sin()16l πρθ-=的距离是 .变式3 直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .题型2 直角坐标方程化为极坐标方程思路提示如果题目中已知的曲线为直角坐标方程,而解答的问题是极坐标系下的有关问题,这里要利用直角坐标与极坐标关系式cos sin x y ρθρθ=⎧⎨=⎩,将直角坐标方程化为极坐标方程.例16.9 在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(1)在以O 为极点,x 轴为极轴的极坐标系中,分别写出圆1C , 2C 的极坐标方程,并求出圆1C , 2C 的交点坐标(用极坐标表示);(2)求出1C 与2C 的公共弦的参数方程.解析 (1)圆1C 的极坐标方程为2ρ=,圆2C 的极坐标方程为4cos ρθ=.24cos ρρθ=⎧⎨=⎩解得2ρ=,3πθ=±,故圆1C 与圆2C 的交点的坐标为(2,),(2,)33ππ-. 注:极坐标系下点的表示不唯一.(2)解法一:由cos sin x y ρθρθ=⎧⎨=⎩,得圆1C 与圆2C 的交点的坐标分别为.故圆1C 与2C 的公共弦的参数方程为1(x t y t=⎧≤≤⎨=⎩.解法二: 将1x =代入cos sin x y ρθρθ=⎧⎨=⎩得cos 1ρθ=,从而1cos ρθ=.于是圆1C 与2C 的公共弦的参数方程为1()tan 33x y ππθθ=⎧-≤≤⎨=⎩.变式1 曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极抽建立极坐标系,则曲线C 的极坐标方程为 _.题型3 参数方程化普通方程 思路提示已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法,三角法)转化为普通方程解答.例16.10 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)没有公共点,则实数m 的取值范围是 . 解析 将圆的参数方程1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)化为普通方程22(1)(2)1x y -++=,圆心(1,2)-,半径1r =.直线与圆无公共点,则圆心到直线的距离大于半径,|38|15m -+>|5|5m ⇒->,得10m >或0m <,即m 的范围是(,0)(10,)-∞+∞.变式 1 在平面直角坐标系xOy 中,直线l 的参数方程33x t y t=+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θ∈π),则圆C 圆心坐标为 _,圆心到直线l 的距离为 . 变式2 (2013湖北理16)在庄角坐标系xOy 中,椭圆C 的参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l与圆O 的极坐标方程分别为sin()4πρθ+=(m 为非零数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 . 变式3 参数方程sin cos sin cos x y θθθθ=+⎧⎨=⎩(θ是参数)的普通方程是 .例16.11 已知动圆22:2cos 2sin 0C x y ax by θθ+--=(,a b 是正常数,a b ≠,θ是参数),则圆心的轨迹是 .解析 由动圆22:2cos 2sin 0C x y ax by θθ+--=得222222(cos )(sin )cos sin x a y b a b θθθθ-+-=+.圆心坐标为(cos ,sin )a b θθ(θ为参数),设cos x a θ=,sin y b θ=,则221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22221x y a b +=为所求轨迹方程,所以圆心的轨迹是椭圆.变式1 方程2232(05)1x t t y t ⎧=+⎪≤≤⎨=-⎪⎩表示的曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线变式2 已知直线11cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),2cos :sin x C y θθ=⎧⎨=⎩(θ为参数).(1)当3πα=时,求1C 与2C 的交点坐标;(2)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点.当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.题型4 普通方程化参数方程 思路提示对于直线与圆锥曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里有代数换元(如抛物线22y px =的参数方程222x pt y pt =⎧⎨=⎩)或三角换元(如椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩).例16.12 在平面直角坐标系xOy 中,设(,)P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值.分析 利用椭圆的参数方程,建立,x y 与参数θ的关系,运用三角函数最值的求法,求解x y +的最大值.解析 点(,)P x y 是椭圆2213x y +=上的一个动点,则sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),[0,2]θ∈π,则sin x y θθ+=+2sin()3πθ=+,[0,2]θ∈π,故max ()2x y +=.变式1 已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 变式2 直线l 过(1,1)P ,倾斜角6πα=.(1) 写出l 的参数方程;(2)l 与圆224x y +=相交于,A B 两点,求P 到,A B 两点的距离之积.变式3 已知抛物线2:4C y x =,点(,0)M m 在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =时,l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.题型5 参数方程与极坐标方程的互化 思路提示参数方程与极坐标方程的互化问题,需要通过普通方程这一中间桥梁来实现,先将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).例16.13 已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .分析 把曲线C 的参数方程化为普通方程,求出切线l 的普通方程,然后把求出的直线l 的普通方程化为极坐标方程.解析 由22sin cos 1t t +=得曲线C 的普通方程为222x y +=,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为1-,所以切线l 的方程为1(1)y x -=--,即20x y +-=.把cos x ρθ=,sin y ρθ=代入直线l 的方程可得cos sin 20ρθρθ+-=sin()204πθ+-=,化简得sin()4πθ+=变式1 设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .有效训练题 1.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A. 一条射线和一个圆B. 两条直线C. 一条直线和一个圆D. 一个圆 2.圆cos )ρθθ=-的圆心的一个极坐标是( )A. (B. (2,)4πC. 3(2,)4π D. 7(2,)4π3.在极坐标系中,若等边△ABC 的两个顶点是(2,)4A π,5(2,)4B π.那么顶点C 的坐标可能是( )A. 3(4,)4πB. 3)4πC. )πD. (3,)π4.直线的参数方程为sin 501cos50x t y t ⎧=-⎪⎨=-⎪⎩(t 为参数),则直线的倾斜角为( )A. 40B. 50C. 140D.1305.过点(2,3)A 的直线的参数方程为232x ty t =+⎧⎨=+⎩(t 为参数),若此直线与直线30x y -+=相交于点B ,则||AB =( )6.设曲线C 的参数方程23cos 13sin x y θθ=+⎧⎨=-+⎩( θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l的点的个数为( ) A. 1 B. 2 C.3 D.4 7.已知直线l的极坐标方程为sin()42πρθ-=,圆M 的参数方程为22cos 12sin x y θθ=+⎧⎨=-+⎩( θ为参数),则圆M 上的点到直线l 的最短距离为 .8.在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为 . 9.已知抛物线的参数方程为222x pt y pt=⎧⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作准线l 的垂线,垂足为E ,若||||EF MF =,点M 的横坐标是3,则p = .10.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,)4π,求△OMN 的面积. 11.已知椭圆221164x y +=,O 为坐标原点,,P Q 为椭圆上的两动点,若OP OQ ⊥,求22||||OP OQ +的最大值.12. 已知曲线12cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线2247:cos 016C ρθ-+=.(1)若,P Q 分别是曲线1C 和曲线2C 上的两个动点,求线段PQ 长度的最小值;(2)若曲线1C 上与x 轴、y 轴的正半轴分别交于,A B 点,P 是曲线1C 上第一象限内的动点,O 是坐标原点,试求四边形OAPB 面积的最大值.。

用极坐标与参数方程解高考题型及解题策略

用极坐标与参数方程解高考题型及解题策略

用极坐标与参数方程解高考题型及解题策略高考题中极坐标与参数方程主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。

高考热点是极坐标与直角坐标的互化、参数方程化为直角坐标方程,推导简单图形的极坐标方程、直角坐标方程化为参数方程。

其中以考查基本概念,基本知识,基本运算为主,一般属于中档难度题。

常以选考题的形式出现,此外在高考数学的选择题和填空题中,用参数方程与极坐标解决问题常能收到事半功倍的效果,必须引起教与学的足够。

因此,对常见题型及解题策略进行探讨。

一、极坐标与直角坐标的互化1.曲线的极坐标方程化成直角坐标方程:对于简单的我们可以直接代入公式QCOS e=x, PSin G=y, P2=r+/,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以Q等.2.直角坐标(X,劝化为极坐标(Q , 0)的步骤:⑴运用P =心+护,tan ^=-(^≠0);X(2)在[0, 2兀)内由tan θ=-{χ≠Q)求“时,由直角坐标的符X号特征判断点所在的象限(即〃的终边位置).解题时必须注意:①确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.②平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一•当规定QMO, 0≤ ^<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.③进行极坐标方程与直角坐标方程互化时,应注意两点:I .注意Q, 〃的取值范围及其影响.II.重视方程的变形及公式的正用、逆用、变形使用.例如、(2015年全国卷)在直角坐标系XOy中。

直线Cj x=-2, 圆C2: (X-I)2÷(y-2)2=l,以坐标原点为极点,X轴的正半轴为极轴建立极坐标系。

(I)求q, G的极坐标方程;(II)若直线G的极坐标方程为e=fs∈R),设G与G的交点为M , N ,求K,MN的面积解:(I)因为X = QCOS= QsinO ,所以C∖的极坐标方程为PCOSe =-2 , C2的极坐标方程为p2 -2pcos^-4psiιι^+4 = 0(II )将8 =兰代入Q2-2QCOS&-4Qsin0+4 = 0 ,得4p2-3√2p + 4 = 0,解得p1= 2√2,p,≈√2 ,故p1-p2=√2,即IMNl=√Σ由于G的半径为1,所以A CMN的面积为丄- - 2二、简单曲线的极坐标方程及应用1. 求曲线的极坐标方程,就是找出动点M 的坐标P 与θ之间的关 系,然后列出方程f(p, 0)=0,再化简并检验特殊点.2. 极坐标方程涉及的是长度与角度,因此列方程的实质是解三 角形.3. 极坐标方程应用时多化为直角坐标方程求解,然后再转化为 极坐标方程,注意方程的等价性.例如.(2015全国卷)在直角坐标系航夕中,曲线G : =Iy = / sm α为参数,t ≠ 0),其中OW σ <刀,在以0为极点,/轴正半轴 为极轴的极坐标系中,曲线G : Q = 2si∏e, G: ρ = 2√3cos^ o(1)求G 与G 交点的直角坐标; (2) 若G 与G 相交于点?1, G 与G 相交于点0,求IABl 的最大 值。

极坐标与参数方程题型归纳

极坐标与参数方程题型归纳

极坐标与参数方程一、极坐标与参数方程的题型框架二、极坐标与参数方程的知识点1.参数方程的概念:设在平面上取定一个直角坐标系xOy ,把坐标y x ,表示为第三个变量t 的函数:⎩⎨⎧==)()(t g y t f x ,b t a ≤≤……………………①如果对于t 的每一个值(b t a ≤≤),①式所确定的点),(y x M 都在一条曲线上;而这条曲线上任意一点),(y x M ,都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.2.参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程0),(=y x F 化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围.3.直线、圆、椭圆的参数方程:(1)经过一定点),(000y x P ,倾斜角为α 的直线l 的参数方程为:⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数);(2)直线参数方程的一般形式为⎩⎨⎧+=+=bt y y at x x 00,(t 为参数);(3)圆的参数方程为⎩⎨⎧+=+=θθsin ,cos 00r y y r x x (θ为参数);(5)椭圆)0(12222>>=+b a b y a x 的参数方程为⎩⎨⎧==θθsin ,cos b y a x (θ,ρ为参数).4.极坐标系的概念:在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离OM 叫做点M 的极径,记作ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对),(θρ叫做点M 的极坐标.一般情况下,约定0≥ρ.5.极坐标系与直角坐标系的互化:直角坐标化极坐标:θρcos =x ,θρsin =y ;极坐标化直角坐标:222y x +=ρ,).0(tan =/=x xyθ三、轨迹问题1.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于π(,)2M a ,半径为a :ρ=2a sin θ.2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin (θ0-α).几个特殊位置的直线的极坐标方程(1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过π(,)2M b 且平行于极轴:ρsin θ=b .例题【例1】在极坐标系中,已知圆的圆心(6,)3C π,半径3r =,Q 点在圆C 上运动.以极点为直角坐标系原点,极轴为x 轴正半轴建立直角坐标系.(1)求圆C 的参数方程;(2)若P 点在线段OQ 上,且:2:3OP PQ =,求动点P 轨迹的极坐标方程.【解析】(1)由已知得,圆心(6,)3C π的直角坐标为C ,3r =,所以C的直角坐标方程为22(3)(9x y -+-=,所以圆C的参数方程为33cos 3sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数).(2)由(1)得,圆C的极坐标方程为26(cos )270ρρθθ-++=,即212sin(276ρρθπ=+-,设(),P ρθ,()1,Q ρθ,根据:2:3OP PQ =,可得1:2:5ρρ=,将152ρρ=代入C 的极坐标方程,得225120sin()10806ρρθπ-++=,即动点p 轨迹的极坐标方程为225120sin()10806ρρθπ-++=.【例2】在平面直角坐标系xOy 中,圆C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),以点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)过极点O 作直线与圆C 交于点A ,求OA 的中点所在曲线的极坐标方程.【解析】(1)圆C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),转换为直角坐标方程为:()2224x y -+=,转换为极坐标方程为:4cos ρθ=.(2)过极点O 作直线与圆C 交于点A ,设OA 的中点坐标为()00,ρθ,所以()00,2A ρθ,所以0024cos ρθ=,即002cos ρθ=,所以OA 中点所在的曲线的极坐标方程为2cos ρθ=.【例3】已知圆C 经过点P )3,2(π,圆心C 为直线ρsin )3(πθ-=-3与极轴的交点,求圆C 的极坐标方程.【解析】解法1在直线的极坐标方程ρsin )3(πθ-=-3中,令θ=0,得ρ=2,所以C(2,0).因为△POC 是边长为2的正三角形,所以圆C 的半径r =2.因为圆C 经过极点O ,所以圆C 极坐标方程为ρ=4cos θ.解法2以极点为坐标原点,极轴为x 轴建立平面直角坐标系,则直线方程为y =3x -23,P 的直角坐标为(1,3),令y =0,得x =2,所以C(2,0),所以圆C 的半径PC =(2-1)2+(0-3)2=2,所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0,所以圆C 的极坐标方程为ρ=4cos θ.变式训练【练习1】(2019年高考全国Ⅱ卷理数)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==.由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos(||23OP ρθπ-==,经检验,点(2,)3P π在曲线cos(23ρθπ-=上.所以,l 的极坐标方程为cos()23ρθπ-=.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=.因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是[,42ππ.所以P 点轨迹的极坐标方程为4cos ,[,42ρθθππ=∈.【练习2】在极坐标系中,已知圆C 经过点P )4,22(π,圆心为直线ρsin(θ-π3)=-3与极轴的交点,求圆C 的极坐标方程.【解析】在直线方程ρsin (θ-π3)=-3中,令θ=0,得ρ=2,所以圆心为C(2,0).在△POC 中,由余弦定理,得圆C 的半径r =CP =2.圆C 经过极点,其极坐标方程为ρ=4cos θ.【练习3】(2019年高考全国Ⅲ卷理数)如图,在极坐标系Ox 中,(2,0)A ,4B π,2,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧 ,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos (0)4ρθθ=≤≤,2M 的极坐标方程为π3π2sin ()44ρθθ=≤≤,3M 的极坐标方程为3π2cos (π)4ρθθ=-≤≤.(2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=,解得π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π)6或π3或2π)3或5π6.四、几何意义问题(一)直线参数方程t 的几何意义1、直线参数方程:(1)注意必须是标准形式;(2)直线的参数方程⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数)中参数t 的几何意义:t 表示直线上任一点),(y x M 到直线上定点),(000y x M 的距离;2、直线与二次曲线相交问题:将直线的参数方程与曲线的普通方程联立,通过判断∆的符号来确定交点的个数;若0>∆,则有两个交点,此时的1t 、2t 分别表示交点B A 、与直线所过定点),(000y x M 的距离.例题【例1】在平面直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数,0πα≤<),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为222.1sin ρθ=+(1)求曲线C 的直角坐标方程;(2)设点M 的坐标为(1,0),直线l 与曲线C 相交于A ,B 两点,求11MA MB+的值.【解析】(1)曲线2221sin ρθ=+,即222sin 2ρρθ+=,222,sin x y y ρρθ=+= ,∴曲线C 的直角坐标方程为2222x y +=,即2212x y +=.(2)将1cos sin x t y t αα=+⎧⎨=⎩代入2222x y +=并整理得22(1sin )2cos 10t t αα++-=,1212222cos 1,1sin 1sin t t t t ααα-∴+=-=++,121211···MA MB AB t t MA MB MA MB MA MB t t +-∴+===-,122221sin t t α-===+,2222111sin 11sin MA MBαα+∴+==+【例2】在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t xy t x =+⎧⎨=-+⎩(t 为参数,0α<<π),以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为(12cos 2)8cos ρθθ-=.(1)判断直线l 与曲线C 的公共点的个数,并说明理由;(2)设直线l 与曲线C 交于不同的两点,A B ,点()1,1P -,若114||3PA PB -=,求tan α的值.【解析】(1)由()1cos 28cos ρθθ-=得2sin 4cos ρθθ=,所以22sin 4cos ρθρθ=,即24y x =,将直线l 的参数方程代入24y x =,得()()21sin 41cos t t αα-+=+,即()22sin2sin 4cos 30t t ααα⋅-+⋅-=,由0α<<π知2sin 0α>,()222sin 4cos 12sin 0∆ααα=++>,故直线l 与曲线C 有两个公共点;(2)由(1)可设方程()22sin 2sin 4cos 30t t ααα⋅-+⋅-=的两根为12t t ,,则1222sin 4cos sin ααα++=t t ,12230sin α-⋅=<t t ,故12121124||sin 2cos 33PA PB t t PA PB PA t t αα-+-===+=⋅,∴22sin 4sin cos 4cos 4αααα++=,即24sin cos 3sin ααα=,∴4tan 3α=.2变式训练【练习1】在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为212cos 110ρρθ++=.(1)求圆C 的直角坐标方程;(2)设(1,0)P ,直线l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),已知l 与圆C 交于,A B两点,且34PA PB =,求l 的普通方程.【解析】(1)将222,cos x y x ρρθ=+=代入圆C 的极坐标方程212cos 110ρρθ++=,得2212110x y x +++=,化为圆的标准方程为22(6)25x y ++=.(2)将直线l 的参数方程1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)代入圆C 的直角坐标方程()22625x y ++=中,化简得214cos 240t t α++=,设,A B 两点所对应的参数分别为12,t t ,由根与系数的关系知121214cos ,24t t t t α+=-=,①∴12,t t 同号,又34PA PB =,∴1234t t =,②由①②可知12t t ⎧⎪⎨⎪⎩或12==t t ⎧-⎪⎨-⎪⎩∴14cos α-=或14cos α-=-,解得2cos 2α=±,∴tan 1k α==±,∴l 的普通方程为(1)y x =±-.【练习2】在直角坐标系xOy 中,直线1C的参数方程为3623x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3sin ρθθ=.(1)求1C 和2C 的直角坐标方程;(2)设点(0,2)P ,直线1C 交曲线2C 于,M N 两点,求22PMPN +的值.【解析】(1)直线1C 的参数方程为33623x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数),消去t可得20y +-=;由2cos 3sin ρθθ=,得22cos 3sin ρθρθ=,则曲线2C 的直角坐标方程为23x y =.(2)将直线1C的参数方程3323x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩代入23x y =,得2180t --=,设,M N 对应的参数分别为12,t t,则121218t t t t ⎧+=⎪⎨=-⎪⎩,()2221212290PM PN t t t t +=+-=.(二)极坐标中极径的几何意义极坐标方程中ρ的几何意义:M 是平面内任意一点,极点O 与点M 的距离OM 叫做点M 的极径,记作ρ;即OM=ρ例题【例1】在直角坐标系中,已知曲线的方程为,的方程为,是一条经过原点且斜率大于的直线,以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.(1)求与的极坐标方程;(2)若与的一个公共点(异于点),与的一个公共点为,求的取值范围.【解析】(1)曲线的方程为,的极坐标方程为,的方程为,其极坐标力程为.(2)是一条过原点且斜率为正值的直线,的极坐标方程为,,,联立与的极坐标方程,得,即,联立与的极坐标方程,得,即,所以,又,所以.【例2】在平面直角坐标系xOy 中,已知椭圆的方程为:2212012x y+=,动点P 在椭圆上,O 为原点,线段OP 的中点为Q .(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点Q 的轨迹的极坐标方程;(2)设直线l 的参数方程为1,232x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),l 与点Q 的轨迹交于M 、N 两点,求弦长MN .【解析】(1)设点Q 的坐标为(,)x y ,Q 为线段OP 的中点,∴点P 的坐标为(2,2)x y .由点P 在椭圆上得22(2)(2)12012x y +=,化简得点Q 的轨迹的直角坐标方程为22153x y+=,①将cos x ρθ=,sin y ρθ=,代入①得2222cos sin 153ρθρθ+=,化简可得点Q 的轨迹的极坐标方程为22(32sin )15ρθ+=.(2)方法1:由直线l 的参数方程1,232x t y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)知,直线l 过极点,倾斜角为π3,∴直线l 的极坐标方程为π()3θρ=∈R .由22π,3(32sin )15,θρθ⎧=⎪⎨⎪+=⎩解得:1π,330,3θρ⎧=⎪⎪⎨⎪=⎪⎩和2π,330.3θρ⎧=⎪⎪⎨⎪=-⎪⎩∴弦长122303MN ρρ=-=.方法2:把直线l 的参数方程1,232x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)代入①得22344153t t +=,化简得2103t =,123030,,33t t ∴==-设M 、N 两点对应的参数分别为1t ,2t ,由直线参数方程t 的几何意义得弦长122303MN t t =-=.方法3:由直线l 的参数方程1,232x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)知,直线l 的普通方程为3y x =,联立22153y x y ⎧=⎪⎨+=⎪⎩,,解得11306102x y ⎧=⎪⎪⎨⎪=⎪⎩和2230610.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩弦长2303MN ==.变式训练【练习1】在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系.(1)求1C ,2C 的极坐标方程;(2)若直线3C 的极坐标方程θπ=4()ρ∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.【解析】(1)222cos ,sin ,x y x y ρθρθρ==+= 1C ∴的极坐标方程为cos 2ρθ=-.由2C 的直角坐标方程22(1)(2)1x y -+-=,展开得222440x y x y +--+=,2C ∴的极坐标方程为22cos 4sin 40ρρθρθ--+=.(2)将4θπ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1212,,ρρρρ==-=∴即||MN =.由于2C 的半径为1,即221C M C N ==.易知22222||C MC N MN +=,即2C MN ∆为等腰直角三角形,2111122C MN S ∆=⨯⨯=∴.【练习2】在平面直角坐标系中,曲线1C 的参数方程为cos 2sin x r y r ϕϕ=⎧⎨=+⎩,(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点π(2,)6P ,曲线2C 的极坐标方程为2(2cos 2)6ρθ+=.(1)求曲线1C 的极坐标方程;(2)若1(,)A ρα,2π(,)2B ρα+是曲线2C 上两点,求2211||||OA OB +的值.【解析】(1)将曲线1C 的参数方程cos 2sin x r y r ϕϕ=⎧⎨=+⎩,化为普通方程为222(2)x y r +-=,即222440x y y r +-+-=.由222x y ρ=+,sin y ρθ=,得曲线1C 的极坐标方程为224sin 40r ρρθ-+-=.由曲线1C 经过点π(2,6P ,则22π242sin4026r r -⨯⨯+-=⇒=(2r =-舍去),故曲线1C 的极坐标方程为4sin ρθ=.(2)由题意可知21(2cos 2)6ρα+=,2222π[2cos 2((2cos 2)62ραρα++=-=,所以22221211112cos 22cos 22||||663OA OB ααρρ+-+=+=+=.【练习3】在极坐标系中,曲线1C 的极坐标方程为4cos ρθ=,曲线2C 的极坐标方程为4sin ρθ=,以极点O 为坐标原点,极轴为x 的正半轴建立平面直角坐标系xOy .(1)求1C 和2C 的参数方程;(2)已知射线1:(0)2l πθαα=<<,将1l 逆时针旋转6π得到2:6l πθα=+,且1l 与1C 交于,O P 两点,2l 与2C 交于,O Q 两点,求OP OQ ⋅取得最大值时点P 的极坐标.【解析】(Ⅰ)在直角坐标系中,曲线1C 的直角坐标方程为()2224x y -+=所以1C 参数方程为22(2x cos y sin ααα=+⎧⎨=⎩为参数).曲线2C 的直角坐标方程为()2224x y +-=.所以2C 参数方程为2(22x cos y sin βββ=⎧⎨=+⎩为参数)(Ⅱ)设点P 极坐标为()1,ρα,即14cos ρα=,点Q 极坐标为2,6πρα⎛⎫+⎪⎝⎭,即24sin 6πρα⎛⎫=+ ⎪⎝⎭.则124cos 4sin 6OP OQ πρραα⎛⎫⋅==⋅+⎪⎝⎭3116cos sin cos 22ααα⎛⎫=⋅+ ⎪ ⎪⎝⎭8sin 246πα⎛⎫=++ ⎪⎝⎭70,.2,2666ππππαα⎛⎫⎛⎫∈∴+∈ ⎪ ⎪⎝⎭⎝⎭ 当2,626πππαα+==时OP OQ ⋅取最大值,此时P 点的极坐标为23,6π⎛⎫ ⎪⎝⎭.五、最值问题1.距离最值(点到点、曲线点到线、)距离的最值:---用“参数法”(1)曲线上的点到直线距离的最值问题(2)点与点的最值问题“参数法”:设点---套公式--三角辅助角①设点:设点的坐标,点的坐标用该点在所在曲线的的参数方程来设②套公式:利用点到线的距离公式③辅助角:利用三角函数辅助角公式进行化一2.面积的最值问题面积最值问题一般转化成弦长问题+点到线的最值问题例题【例1】在直角坐标系xOy 中,已知曲线1C 的方程为221106x y +=,曲线2C 的参数方程为1,2382x t y t ⎧=⎪⎪⎨⎪=--⎪⎩(t 为参数).(1)求1C 的参数方程和2C 的普通方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值.【解析】(1)由曲线1C 的方程为221106x y +=,得曲线1C的参数方程为,x y θθ⎧=⎪⎨=⎪⎩(θ为参数),由曲线2C 的参数方程为1,2382x t y t ⎧=⎪⎪⎨⎪=--⎪⎩(t 为参数),得曲线2C的普通方程为80y ++=.(2)设)P θθ,点P 到直线2C 的距离为d ,则PQ 的最小值即为d 的最小值,因为()6sin 82d θϕ++=,其中tan ϕ=当sin()1θϕ+=-时,d 的最小值为1,此时min 1PQ =.【例2】已知直线)(23211:为参数t ty t x l ⎪⎪⎩⎪⎪⎨⎧=+=,曲线)(sin cos :1为参数θθθ⎩⎨⎧==y x C .(1)设l 与1C 相交于B A ,两点,求||AB ;(2)若把曲线1C 上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最小值.【解析】(1)l 的普通方程为1),1(3C x y -=的普通方程为.122=+y x联立方程组⎪⎩⎪⎨⎧=+-=,1),1(322y x x y 解得l 与1C 的交点为)0,1(A ,)23,21(-B ,则1||=AB .(2)2C 的参数方程为θθθ(.sin 23,cos 21⎪⎪⎩⎪⎪⎨⎧==y x 为参数).故点P 的坐标是)sin 23,cos 21(θθ,从而点P 到直线 的距离是]2)4sin(2[432|3sin 23cos 23|+-=--=πθθθd ,由此当1)4sin(-=-πθ时,d 取得最小值,且最小值为)12(46-.【例3】已知直线11: x t l y =+⎧⎪⎨⎪⎩(t为参数),曲线1cos : 2sin x C y θθ⎧=+⎪⎨=+⎪⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系.(1)求曲线1C 的极坐标方程,直线1l 的普通方程;(2)把直线1l 向左平移一个单位得到直线2l ,设2l 与曲线1C 的交点为M ,N ,P 为曲线1C 上任意一点,求PMN △面积的最大值.【解析】(1)把曲线1cos : 2sin x C y θθ⎧=⎪⎨=+⎪⎩消去参数可得(()2221x y +-=,令cos x ρθ=,sin y ρθ=,代入可得曲线1C 的极坐标方程为2cos 4sin 60ρθρθ--+=.把直线11: x tl y =+⎧⎪⎨=⎪⎩化为普通方程)1y x -.(2)把直线1l 向左平移一个单位得到直线2l的方程为y =,其极坐标方程为π3θ=.联立2cos 4sin 60π3ρθρθθ⎧--+==⎪⎨⎪⎩所以260ρ-+=,所以12126ρρρρ⎧+=⎪⎨=⎪⎩,故12ρρ-==圆心到直线2l的距离为12d ==,圆上一点到直线2l 的最大距离为13122+=,所以PMN △面积的最大值为1333224S =⨯⨯.变式训练【练习1】已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.解析(1)由圆的方程222x y y +=得()2211x y +-=,得[]()cos 0,21sin x y θθθπθ=⎧∈⎨=+⎩为参数,。

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(极坐标与参数方程题型和方法归纳)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为极坐标与参数方程题型和方法归纳的全部内容。

极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。

方法如下:1、已知直线的参数方程为 (为参数)以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为。

(Ⅰ)求曲线的直角坐标方程;(Ⅱ)写出直线与曲线交点的一个极坐标。

题型二:三个常用的参数方程及其应用(1)圆的参数方程是:(2)椭圆的参数方程是:(3)过定点倾斜角为的直线的标准参数方程为:对(3)注意: 点所对应的参数为,记直线上任意两点所对应的参数分别为,则①,②,③ {222c o s s i n t a n (0x y x y y x x ραραρθ==⎧=+⎪⎨=≠+⎪⎩−−−←−−(1)极坐标方程直角坐标方程221θθ=−−−−−−−−−−−−→←−−−−−−−−−−−−消参(代入法、加减法、s i n +c o s 等)圆、椭圆、直线的参数方程(2)参数方程直角坐标方程−−→−−→←−−←−−(3)参数方程直角坐标方程(普通方程)极坐标方程l 112x t y ⎧=+⎪⎨⎪=⎩tOxC2s i n c o s 0θ=ClC222()()xa y b r -+-=c o s s i n ()x a r y b r θθθ=+⎧⎨=+⎩为参数22221(0,0,)x ya b a b a b +=>>≠c o s ,()s i n x a y b θθθ=⎧⎨=⎩为参数00(,)Px y αl00c o s ,()s i n x x t t y y t αα=+⎧⎨=+⎩为参数P00t =l ,A B 12,t t 12AB t t =-1212121212,0,0t t t t P A P A t t t t t t ⎧+⋅>⎪+=+=⎨-⋅<⎪⎩1212PA P A t t tt ⋅=⋅=⋅2、在直角坐标系中,曲线的参数方程为 ( 为参数, )以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.(Ⅰ)设是曲线上的一个动点,当时,求点到直线的距离的最小值; (Ⅱ)若曲线上的所有点均在直线的右下方,求的取值范围.3、已知曲线:(参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)将曲线的极坐标方程化为直角坐标方程,并求出点的直角坐标;(2)设为曲线上的点,求中点到曲线上的点的距离的最小值.4、已知直线:(为参数),曲线:(为参数).(1)设与相交于两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ⅰ复习提问1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的?2、 如何把极坐标系转化为直角坐标系?答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。

如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立:ρθρθysin xcos ==3、 参数方程{cos sin x r y r θθ==表示什么曲线?4、 圆(x-a)2+(y-b)2=r2的参数方程是什么?5、 极坐标系的定义是什么?答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ.ρ和θ的值确定了,则P 点的位置就确定了。

ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。

显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?Ⅱ 题型与方法归纳1、 题型与考点(1){极坐标与普通方程的互相转化极坐标与直角坐标的互相转化(2){参数方程与普通方程互化参数方程与直角坐标方程互化(3) {利用参数方程求值域参数方程的几何意义2、解题方法及步骤 (1)、参数方程与普通方程的互化化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)例1、方程2222t t t tx t y --⎧=-⎪⎨=+⎪⎩(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆解析:注意到2t t与2t-互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()()222222224t tt t x y ---=--+=-,即有224y x -=,又注意到202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B练习1、与普通方程210x y +-=等价的参数方程是( )(t 为能数)222sin cos ....cos 1sin x t x tgt x t x A B C D y t y tg t y t y t===⎧⎧⎧⎧=⎪⎨⎨⎨⎨==-==⎪⎩⎩⎩⎩ 解析:所谓与方程210x y +-=等价,是指若把参数方程化为普通方程后不但形式一致而且,x y 的变化范围也对应相同,按照这一标准逐一验证即可破解.对于A 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,; 对于B 化为普通方程为210(1]x y x R y +-=∈∈-∞,,,; 对于C 化为普通方程为210[0)(1]x y x y +-=∈+∞∈-∞,,,,; 对于D 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,.而已知方程为210(1]x y x R y +-=∈∈-∞,,,,显然与之等价的为B.练习2、设P 是椭圆222312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 .分析:注意到变量(),x y 的几何意义,故研究二元函数2x y +的最值时,可转化为几何问题.若设2x y t +=,则方程2x y t +=表示一组直线,(对于t 取不同的值,方程表示不同的直线),显然(),x y 既满足222312x y +=,又满足2x y t +=,故点(),x y 是方程组2223122x y x y t⎧+=⎨+=⎩的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式0∆≥问题.解析:令2x y t +=,对于(),x y 既满足222312x y +=,又满足2x y t +=,故点(),x y 是方程组2223122x y x y t⎧+=⎨+=⎩的公共解,依题意得()221182120y t y t -⋅+-=,由()22644112120t t ∆=-⨯⨯-≥,解得:t ≤≤所以2x y +,最小值为(2)、极坐标与直角坐标的互化 利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(2)极轴与x 轴正方向重合;(3)取相同的单位长度.设点P 的直角坐标为(),x y ,它的极坐标为(),ρθ,则 222cos sin x y x yy tg x ρρθρθθ⎧=+=⎧⎪⎨⎨==⎩⎪⎩或;若把直角坐标化为极坐标,求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ. 例2、极坐标方程24sin52θρ⋅=表示的曲线是( )A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由21cos 4sin422cos 522θθρρρρθ-⋅=⋅=-=,化为直角坐标系方程为25x =,化简得22554y x =+.显然该方程表示抛物线,故选D.练习1、已知直线的极坐标方程为sin 4πρθ⎛⎫+=⎪⎝⎭,则极点到该直线的距离是解析:极点的直角坐标为()0,0o,对于方程sin 4πρθρθθ⎫⎛⎫+==⎪ ⎪⎪⎝⎭⎝⎭可得sin cos 1ρθρθ∴+=,化为直角坐标方程为10x y +-=练习2、极坐标方程2cos 0ρθρ-=转化成直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y =分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:(cos 1)0,0,cos 1x ρρθρρθ-=====或,因此选C.练习3、点M的直角坐标是(1-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3π D .(2,2),()3k k Z ππ+∈ 解析:2(2,2),()3k k Z ππ+∈都是极坐标,因此选C.(3)、参数方程与直角坐标方程互化例题3:已知曲线1C 的参数方程为⎪⎩⎪⎨⎧=+-=θθsin 10cos 102y x (θ为参数),曲线2C 的极坐标方程为θθρsin 6cos 2+=.(1)将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程; (2)曲线1C ,2C 是否相交,若相交请求出公共弦的长,若不相交,请说明理由. 解:(1)由⎪⎩⎪⎨⎧=+-=θθsin 10cos 102y x 得10)2(22=++y x∴曲线1C 的普通方程为10)2(22=++y x ∵θθρsin 6cos 2+=∴θρθρρsin 6cos 22+=∵θρθρρsin ,cos ,222==+=y x y x∴y x y x 6222+=+,即10)3()1(22=-+-y x ∴曲线2C 的直角坐标方程为10)3()1(22=-+-y x(2)∵圆1C 的圆心为)0,2(-,圆2C 的圆心为)3,1( ∴10223)30()12(C 2221<=-+--=C∴两圆相交设相交弦长为d ,因为两圆半径相等,所以公共弦平分线段21C C∴222)10()223()2(=+d ∴22=d∴公共弦长为22练习1、坐标系与参数方程.已知曲线C :θ⎩⎨⎧θ+=θ+=(sin 21cos 23y x 为参数,0≤θ<2π), (Ⅰ)将曲线化为普通方程;(Ⅱ)求出该曲线在以直角坐标系原点为极点,x 轴非负半轴为极轴的极坐标系下的极坐标方程.解析:(Ⅰ)023222=--+y x y x(Ⅱ)()θ+θ=ρsin cos 32(4)利用参数方程求值域例题4、在曲线1C :⎩⎨⎧=+=)y x 为参数θθθ(sin cos 1上求一点,使它到直线2C:12(112x t t y t⎧=-⎪⎪⎨⎪=-⎪⎩为参数)的距离最小,并求出该点坐标和最小距离。

解:直线C 2化成普通方程是x+y-22-1=0DAFEOBC设所求的点为P (1+cos θ,sin θ) 则C 到直线C 2的距离d=2|122sin cos 1|-+++θθ=|sin(θ+4π)+2| 当234ππθ=+时,即θ=45π时,d 取最小值1此时,点P 的坐标是(1-22,-22)练习1、在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ+--++=(θ∈R )的圆心为(,)P x y ,求2x y -的取值范解:由题设得4c o s ,3s i n x y θθ=⎧⎨=⎩(θ为参数,θ∈R ) 于是.28c o s 3s i 73c o s ()x y θθθϕ-=-+,所以2x y -练习2、已知曲线C 的极坐标方程是θρsin 2=,设直线L 的参数方程是⎪⎩⎪⎨⎧=+-=,54253ty t x (t 为参数).(Ⅰ)将曲线C 的极坐标方程转化为直角坐标方程;(Ⅱ)设直线L 与x 轴的交点是M ,N 曲线C 上一动点,求MN 的最大值.解:(1)曲线C 的极坐标方程可化为:θρρsin 22=又 θρθρρsin ,cos ,222===+y x y x .所以,曲线C 的直角坐标方程为:0222=-+y y x .(2)将直线L 的参数方程化为直角坐标方程得:)2(34--=x y 令 0=y 得 2=x 即M 点的坐标为)0,2(又曲线C 为圆,圆C 的圆心坐标为)1,0(,半径1=r ,则5=MC∴15+=+≤r MC MN(5)直线参数方程中的参数的几何意义例5、已知直线l 经过点(1,1)P ,倾斜角6πα=,①写出直线l 的参数方程;②设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.解 (1)直线的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即1112x y t⎧=⎪⎪⎨⎪=+⎪⎩.(2)把直线1112x y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入422=+y x ,得2221(1)(1)4,1)202t t t +++=+-=,122t t =-, 则点P 到,A B 两点的距离之积为2.练习1、求直线415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩(为参数t)被曲线)4πρθ=+所截的弦长.解:将方程415315x t y t ⎧=+⎪⎪⎨⎪=--⎪⎩,)4πρθ=+分别化为普通方程:3410x y ++=,220,x y x y +-+=17.105d =11圆心C (,-=,弦长=22(6)、参数方程与极坐标的简单应用参数方程和极坐标的简单应用主要是:求几何图形的面积、曲线的轨迹方程或研究某些函数的最值问题.例6、已知ABC ∆的三个顶点的极坐标分别为55623A B C πππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,判断三角形ABC 的三角形的形状,并计算其面积.分析:判断△ABC 的形状,就需要计算三角形的边长或角,在本题中计算边长较为容易,不妨先计算边长.解析:如图,对于55366AOB BOC AOC πππ∠=∠=∠=,,,又5,OA OB OC ===2222cos AC OA OC OA OC AOC=+-⋅⋅∠(225525cos6π=+-⨯⨯ 133=,AC ∴,BC =同理,,AC BC ∴=,ABC ∴∆为等腰三角形,5AB OA OB ===又,所以AB 边上的高h ==, 152ABC S ∆∴==练习1、如图,点A 在直线x=5上移动,等腰△OPA 的顶角∠OPA 为120°(O ,P ,A 按顺时针方向排列),求点P 的轨迹方程.解析:取O 为极点,x 正半轴为极轴,建立极坐标系,则直线5x =的极坐标方程为cos 5ρθ=,设A (0ρ,0θ),P (),ρθ,因点A 在直线cos 5ρθ=上,00cos 51ρθ∴=<> OPA ∆为等腰三角形,且0120OPA OP OA ρρ∠=︒==,而,,以及30POA ∠=︒00302ρθθ∴=-︒<>,且,把<2>代入<1>,得点P 的轨迹的极坐标方程为:()cos 305θ-︒=.Ⅲ趁热打铁1.把方程1xy =化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 解析:D 1xy =,x 取非零实数,而A ,B ,C 中的x 的范围有各自的限制2.曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 解析:B 当0x =时,25t =,而12y t =-,即15y =,得与y 轴的交点为1(0,)5; BAO x Cy P AO x当0y =时,12t =,而25x t =-+,即12x =,得与x 轴的交点为1(,0)23.直线12()2x tt y t=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( )A .125 BCD解析:B11221x x t y t y ⎧=+⎪=+⎧⎪⇒⎨⎨=+⎩⎪=+⎪⎩,把直线122x t y t =+⎧⎨=+⎩代入 229x y +=得222(12)(2)9,5840t t t t +++=+-=12125t t -===12t -=4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t ⎧=⎨=⎩为参数上, 则PF 等于( )A .2B .3C .4D .5解析:C 抛物线为24y x =,准线为1x =-,PF 为(3,)P m 到准线1x =-的距离,即为45.已知曲线22()2x pt t p y pt ⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN =_______________。

相关文档
最新文档