扫描电镜原理及提高图像质量的方法.

合集下载

扫描电镜工作原理

扫描电镜工作原理

扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种重要的高分辨率显微镜,广泛应用于材料科学、生物科学、纳米技术等领域。

它通过利用电子束与样品相互作用产生的信号来获取样品的表面形貌和成份信息。

本文将详细介绍扫描电镜的工作原理。

一、电子源扫描电镜的电子源通常采用热阴极电子枪。

在电子枪中,热阴极加热产生高能电子,经过聚焦系统聚焦成一束电子束。

二、电子束的聚焦电子束经过聚焦系统,通过磁场或者电场的作用,使电子束聚焦成一束细小的电子束。

这样可以提高电子束的空间分辨率。

三、样品准备在进行扫描电镜观察之前,需要对样品进行准备。

常见的样品准备方法包括金属涂覆、冷冻切片、化学固定等。

样品的准备对于获得高质量的图象至关重要。

四、电子束与样品的相互作用电子束照射到样品表面后,与样品原子发生相互作用。

主要的相互作用方式包括电子与原子的散射、透射、吸收等。

这些相互作用会产生一系列的信号。

五、信号的检测与放大扫描电镜通过检测和放大样品表面反射、散射、透射的信号来获取样品的信息。

常用的信号检测器包括二次电子检测器(SE)和反射电子检测器(BSE)等。

这些信号经过放大器放大后,转化为电信号。

六、图象的生成电信号经过放大后,通过扫描线圈控制电子束在样品表面的扫描路径,逐点地获取样品表面的信号。

这些信号经过处理和转换,最平生成图象。

图象的亮度和对照度代表了样品表面形貌和成份的信息。

七、图象的分析与处理获得图象后,可以对图象进行进一步的分析和处理。

常见的图象处理方法包括增强对照度、去噪、三维重建等。

这些处理方法可以提高图象的质量和清晰度,匡助研究人员更好地理解样品的结构和性质。

总结:扫描电镜通过利用电子束与样品相互作用产生的信号来获取样品的表面形貌和成份信息。

它具有高分辨率、高放大倍数和大深度视场等优点,广泛应用于材料科学、生物科学、纳米技术等领域。

了解扫描电镜的工作原理对于正确操作和解读扫描电镜图象至关重要。

扫描电镜工作原理

扫描电镜工作原理

扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它利用电子束代替光束进行成像,可以观察到物质的表面形貌和微观结构。

下面将详细介绍扫描电镜的工作原理。

一、电子源扫描电镜的电子源通常采用热阴极电子枪,利用热电子发射原理产生高能电子束。

热阴极电子枪由电子发射体、聚焦极和加速极组成。

当电子发射体受到加热后,产生的热电子经过聚焦极的聚焦作用,形成一个细束电子束。

二、电子束的聚焦和加速经过电子源产生的电子束,会经过一系列的透镜系统进行聚焦和加速。

透镜系统由一组磁透镜和电透镜组成,它们分别通过调节磁场和电场来控制电子束的聚焦和加速。

通过透镜系统的调节,可以使电子束变得更加细致和聚焦,从而提高成像的分辨率。

三、样品的准备和固定在进行扫描电镜观察之前,需要对样品进行准备和固定。

通常情况下,样品需要经过化学固定、脱水、金属浸渍等处理步骤,以保持样品的形态结构和细节,并提高电子束的透射性。

四、样品的扫描和成像在样品固定后,将样品放置在扫描电镜的样品台上。

电子束从电子源发射出来后,经过透镜系统的聚焦和加速后,进入扫描线圈系统。

扫描线圈系统通过控制电子束的扫描范围和速度,使电子束在样品表面进行扫描。

扫描过程中,电子束与样品表面相互作用,产生多种信号。

五、信号的检测和处理样品与电子束相互作用后,会产生多种信号,包括二次电子、反射电子、背散射电子、X射线等。

这些信号被检测器接收到后,会转换成电信号,并经过放大和处理。

最终,通过将信号转换为图像,可以观察到样品表面的形貌和微观结构。

六、图像的显示和分析通过信号的检测和处理后,得到的图像可以通过显示器进行观察。

扫描电镜图像通常呈现出高对比度和高分辨率的特点,可以清晰地显示样品表面的细节和结构。

同时,还可以利用图像处理软件对图像进行后期处理和分析,如测量样品表面的尺寸、形状等。

总结:扫描电镜通过利用电子束代替光束进行成像,能够观察到物质的表面形貌和微观结构。

扫描电镜成像技术参数测量和图像处理优化

扫描电镜成像技术参数测量和图像处理优化

扫描电镜成像技术参数测量和图像处理优化扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察物质表面微观形貌的重要仪器。

扫描电镜的成像质量直接影响到我们对样品微观结构的理解和分析。

因此,对扫描电镜的成像技术参数进行准确测量和图像处理的优化是非常重要的。

一、扫描电镜成像技术参数测量1. 分辨率测量分辨率是衡量扫描电镜成像质量的重要参数之一。

常用的测量方法是利用聚苯乙烯球(PSL)标准样品进行测量。

首先将PSL标准样品放置在扫描电镜的样品台上,选择合适的放大倍数进行观察。

然后,通过测量PSL标准样品像素尺寸和球的直径,可以计算出扫描电镜的分辨率。

2. 加速电压测量扫描电镜的加速电压对成像结果有重要影响。

一般来说,较高的加速电压可以得到更好的穿透能力和深度信息,但也会导致成像分辨率的降低。

因此,选择合适的加速电压非常重要。

可以使用金刚石颗粒(DOS)标准样品来测量加速电压。

测量时,将DOS标准样品放置在扫描电镜的样品台上,选择合适的放大倍数观察颗粒的形态,并根据颗粒直径与厚度的关系来确定适宜加速电压。

3. 焦点调谐测量扫描电镜的焦点位置是影响成像质量的重要因素之一。

为了获得更好的成像效果,需要进行焦点调谐。

一种常用的焦点调谐方法是利用铜膜标准样品。

将铜膜标准样品放置在扫描电镜样品台上,选择适当的放大倍数,通过观察铜膜的清晰度调整扫描电镜的焦距,以获得最佳的成像效果。

二、图像处理优化1. 噪声抑制扫描电镜图像中常常存在各种噪声,如高斯噪声和斑点噪声等。

为了提高图像质量,可以采用数字滤波技术来抑制噪声。

常用的滤波方法包括均值滤波、中值滤波和高斯滤波等。

选择合适的滤波器和滤波参数可以有效地去除噪声,并保留有用的图像细节。

2. 对比度增强对比度是衡量图像中不同灰度级之间差异程度的参数。

较低的对比度会导致图像细节不清晰。

为了增强图像的对比度,可以采用直方图均衡化、对比度拉伸和灰度映射等图像增强技术。

扫描电镜的工作原理和应用

扫描电镜的工作原理和应用

扫描电镜的工作原理和应用1. 扫描电镜的工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束与样品相互作用来获取图像的仪器。

相比传统的光学显微镜,扫描电镜具有更高的分辨率和更大的深度感,可以观察到更细微的细节。

扫描电镜的工作原理如下:1.电子发射: 扫描电镜通过热发射或场发射的方式产生高能电子束。

这个电子束经过加速电压,使电子获得足够大的能量。

2.聚焦: 电子束经过一系列的聚焦透镜,使其在样品表面形成一个非常小的聚焦点,以提高分辨率。

3.扫描: 电子束通过控制扫描线圈的方式,沿着样品表面进行扫描。

在每一个扫描点,样品上的电子与电子束发生相互作用。

4.信号检测: 所有与电子束相互作用的信号都被收集和检测,包括次级电子、反射电子、散射电子等。

5.图像生成: 通过扫描电镜的控制系统将所有收集到的信号转换为图像。

这些图像可以显示出样品表面的形貌、结构和组成。

2. 扫描电镜的应用扫描电镜广泛应用于各个领域,包括材料科学、生物学、医学等。

下面列举一些常见的应用:1.纳米材料研究: 扫描电镜可以观察到纳米级别的材料结构和形貌,对于纳米材料的制备和性质研究非常重要。

2.生物学研究: 扫描电镜可以观察生物样品的微观结构,如细胞、细胞器和微生物等。

它可以帮助研究者了解生物体的形态、组织和功能。

3.医学检测: 扫描电镜可以用于医学领域中的病理学研究和临床诊断。

例如,可以观察病毒、细菌、组织断面等微小结构,帮助医生进行疾病诊断和治疗。

4.材料表征: 扫描电镜能够观察材料的粗糙度、晶体结构、颗粒分布等参数,对于材料研究和工程应用具有重要意义。

5.环境科学研究: 扫描电镜可以用于观察和分析大气颗粒物、水中微生物和污染物等的形貌和组成,有助于环境污染的起因和后果研究。

6.艺术文物保护: 扫描电镜可以帮助对文物进行分析,如绘画的颜料、雕塑的材料等。

这对于文物的保护和修复具有重要价值。

扫描电镜工作原理科普

扫描电镜工作原理科普

扫描电镜工作原理科普扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察材料表面形貌和获得微观结构图像的仪器。

与传统的光学显微镜相比,扫描电镜能够提供更高的分辨率和更大的放大倍数,因此在材料科学、生物学、纳米技术等领域被广泛应用。

下面将从工作原理、构成和应用角度对扫描电镜进行科普。

一、工作原理:扫描电镜的工作原理主要是利用电子的特性来实现高分辨率成像。

其基本原理可以概括为以下几个步骤:1.电子束的产生:扫描电镜中使用的是电子束而非光线,电子束通过热发射、场致发射等方式产生。

2.电子束的聚焦:电子束通过聚焦系统进行聚焦,使其能够更准确地照射到样品表面。

3.电子束的扫描:电子束通过扫描系统进行规律的扫描,以便覆盖样品表面的各个区域。

4.电子束与样品的相互作用:电子束照射到样品表面时,会与样品中的电子、原子发生相互作用,产生散射、透射、反射等现象。

5.信号的采集:根据与样品相互作用产生的信号,通过相应的探测器进行采集。

6.图像的生成:通过采集到的信号,经过信号处理和图像重构,最终生成样品的形貌图像。

二、构成:扫描电镜由以下几部分组成:1.电子枪:用于产生电子束的装置,通常采用热阴极或场致发射阴极。

2.聚焦系统:用于将电子束进行准确的聚焦,以便更好地照射到样品表面。

3.扫描系统:用于对样品表面进行规律的扫描,以便获取样品的整体形貌图像。

4.样品台:用于固定和导热样品,通常具有多种移动方式,以适应不同样品的观察需要。

5.检测器:用于采集样品与电子束相互作用所产生的信号,常用的检测器有二次电子检测器和反射电子检测器等。

6.显示和控制系统:用于显示图像、实时调节仪器参数以及采集和处理数据等。

三、应用:扫描电镜在科学研究、工业材料分析和教学实验等领域具有广泛的应用。

其主要应用如下:1.材料科学:扫描电镜可以用于研究材料的表面形貌、结构和成分,对于纳米材料、金属和非金属材料等的表面缺陷、晶体结构以及纳米结构等进行观察和分析。

扫描电镜原理

扫描电镜原理
因此,随着原子序数Z的增大,背散射电子产 生的数额越多。故荧光屏上的图像较亮。 利用原子序数造成的衬度变化 可以对各种金属和合金进行定 性的成分分析。 重元素区域:图像上是亮区; 轻元素区域:图像上是暗区。
用背散射电子进行成分分析时,为了避免形貌 程度对原子序数衬度的干扰,背分析样品只进 行抛光,不进行腐蚀。
Be窗
锂漂移硅能谱仪原理方框图
16
3、电子探针能谱仪的分析方法及应用(1)
(1)定点成分分析:电子束固定在需要分析的微区上,能谱仪收集X射 线信号,几分钟内即可直接得到微区内全部元素的谱线, 描出一张特 征 X射线按能量大小分布的图谱。
18-8不锈钢的能谱图


2
1、扫描电镜的构造和工作原理(1)
扫描电镜构造: 1. 电子光学系统; 2. 信号收集处理、图像显 示和记录系统; 3. 真空系统; 4. 电气系统 四个基本部分组成。
扫描电镜结构原理方框图
3
1、扫描电镜的构造和工作原理(2) 基本工作原理:
通过对电子枪内的钨灯丝加-20KV的高电压,使电子枪处 于热激发状态,在阳极的作用下,处于热激发状态的电子 枪就可以激发出电子束,这个电子束就是光源。但是刚刚 激发出的电子束束斑比较粗,大概7-10微米左右,不利于 清晰成像,因此,有必要对该电子束进行细化,这就是要 在样品与电子枪之间加3级“聚光镜”,我们这里的“聚 光镜”不是光学中应用的棱镜,而是一对对的电磁透镜, 因为,在真空状态下,磁场中高速运行的电子束会发生偏 转,我们利用这个原理对电子束进行“聚焦”约束。三个 电磁透镜中的前两个是强磁透镜,可起到把电子束光斑缩 小的作用,而第三个非对称磁场为弱磁透镜,它起到的作 用是延长焦距。布置这个末级透镜(习惯上成为物镜)的 目的在于使样品和透镜之间留有一定的空间,以便装入各 种信号探测器。扫描电子显微镜中照射到样品上的电子束 直径越小,就相当于成像单元尺寸越小,相应的分辨率就 越高。采用普通的热阴极电子枪时,扫描电子束的束径可 达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电 子束束径可进一步缩小。在扫描线圈作用下,在样品表面 扫 描,激发出各种物理信号, 其强度随样品表面特征而 变 化。通过检测器检测信号, 并经放大,调制图像。

论述扫描电镜的原理及应用

论述扫描电镜的原理及应用

论述扫描电镜的原理及应用一、扫描电镜的原理扫描电镜(Scanning Electron Microscope,简称SEM)是一种利用电子束与样本相互作用产生的信号来获取样本表面信息的仪器。

它能够提供高分辨率、高深度的表面和形貌信息,成为材料科学、生物科学等领域的重要工具。

扫描电镜的原理主要包括以下几个方面:1. 电子光源扫描电子显微镜是使用高能电子束进行成像的,因此需要一个电子光源。

一般采用热阴极或冷阴极发射电子的电子枪作为电子光源。

电子光源在电子束形成中起到了核心的作用。

2. 准直与聚焦准直与聚焦系统是扫描电镜中的重要组成部分。

它通常由准直系统、导向系统和聚焦系统组成。

准直系统用于控制电子束的方向和角度,导向系统用于控制电子束的位置,而聚焦系统则用于将电子束聚焦到一个细小的区域。

3. 样本与扫描盘样本与扫描盘是扫描电镜中的另外两个重要部分。

样本是待观察的对象,它需要被放置在扫描盘上以便与电子束相互作用。

样本的制备与处理对于扫描电镜成像的质量有着重要的影响。

4. 信号检测与处理扫描电子显微镜中,样本与电子束的相互作用会产生多种信号,如二次电子发射、后向散射电子等。

这些信号需要经过特定的检测器进行捕捉,并经过处理后形成最终的图像。

常用的检测器包括二次电子检测器、信号放大器等。

二、扫描电镜的应用扫描电镜具有很多应用领域,下面列举了几个主要的应用方向:1. 材料科学扫描电镜可以用于对材料表面形貌和结构的观察和分析。

通过扫描电镜的高分辨率成像,可以研究材料的晶体结构、相界面、缺陷等信息。

这对于材料的研发、改进和质量控制具有重要意义。

2. 生物科学生物科学中常常需要观察和研究生物细胞、组织和器官的形态和结构。

扫描电镜能够提供高分辨率、高深度的图像,可用于观察细胞表面的超微结构、细胞器的形态以及细胞间相互作用等情况。

扫描电镜在生物学研究中有着广泛的应用。

3. 纳米技术纳米技术是当今科技领域的一个热点,扫描电镜作为纳米尺度下表面形貌观测的有效手段,在纳米技术研究领域得到了广泛应用。

扫描电镜原理及提高图像质量的方法ppt课件

扫描电镜原理及提高图像质量的方法ppt课件

在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
(2)扫描系统
扫描系统是扫描电镜的特殊部件,它由扫 描发生器和扫描线圈组成。它的作用是:1)使入 射电子束在样品表面扫描,并使阴极射线显像管 电子束在荧光屏上作同步扫描;2)改变入射束在 样品表面的扫描振幅,从而改变扫描像的放大倍 数。
(1) 背散射电子像衬度
背散射系数η随原子序数Z的变化如图所示 (δ为二次电子产率)。可见,背散射电子信号 强度随原子序数Z增大而增大,样品表面上平均 原子序数较高的区域,产生较强的信号,在背 散射电子像上显示较亮的衬度。因此,可以根 据背散射电子像衬度来判断相应区域原子序数 的相对高低。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
(3)信号收集系统
扫描电镜应用的物理信号可分为: 1)电子信号,包括二次电子、背散射电子、 透射电子和吸收电子。吸收电子可直接用电流表 测,其他电子信号用电子收集器; 2)特征X射线信号,用X射线谱仪检测; 3)可见光讯号(阴极荧光),用可见光收 集器。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
电子能谱图
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
特征X射线

扫描电镜的结构原理及图像衬度观察.

扫描电镜的结构原理及图像衬度观察.

实验四扫描电镜的结构原理及图像衬度观察一实验目的1 结合扫描电镜实物,介绍其基本结构和工作原理,加深对扫描电镜结构及原理的了解。

2选用合适的样品,通过对表面形貌衬度和原子序数衬度的观察,了解扫描电镜图像衬度原理及其应用。

3 利用二次电子像对断口形貌进行观察。

二实验原理1 扫描电镜基本结构和工作原理扫描电子显微镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号.这些信号经检测器接收、放大并转换成调制信号.最后在荧光屏上显示反映样品表面各种特征的图像。

扫描电镜具有景深大、图像大体感强、放大倍数范围大连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。

图4-1为扫描电镜结构原理方框图。

扫描电镜所需的加速电压比透射电镜要低得多,一般约在1—30kV、实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。

扫描电镜的图像放大倍数在一定范围内,(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。

扫描电镜镜的光光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束.作为使样品产生各种物理信号的激发源。

扫描电镜最常使用的是二电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。

图4-1 扫描电镜结构原理方框图扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。

这一部分的实验内容可参照教材(材料分析方法),并结合实验室现有的扫描电镜进行,在此不作详细介绍。

主要介绍两种扫描电镜Quanta环境扫描电子显微镜和场发射扫描电镜。

2表面形貌衬度原理及应用二次电子信号主要用于分析样品的表面形貌。

二次电子只能从样品表面层5—10nm 深度范围内被入射电子束激发出来,大于10nm时,虽然入射电子也能使核外电子脱离原子而变成自由电子,但因其能量较低以及平均自由程较短,不能逸出样品表面,最终只能被样品吸收。

扫描电镜的原理与应用

扫描电镜的原理与应用

扫描电镜的原理与应用1. 扫描电镜的原理扫描电镜(Scanning Electron Microscopy,SEM)是一种高分辨率、高放大倍数的显微镜,它利用电子束对样本进行扫描,通过收集样本产生的散射电子和二次电子来生成图像。

其原理主要包括以下几个步骤:1.电子发射:在扫描电子显微镜中,首先需要产生高能的电子束。

这通常通过热力发射或场致发射来实现。

对于热力发射,根据石鹢-德拜方程,利用电子枪通过加热金属丝或陶瓷发射体,使其发射出的电子能够获得足够的能量进入到显微镜的系统中。

2.电子透镜系统:扫描电子显微镜中的电子束需要通过一系列的电子透镜系统进行聚焦。

这些电子透镜包括磁透镜、电透镜和取向透镜等。

通过精确控制这些电子透镜,可以获得较小的电子束尺寸和良好的分辨率。

3.样本交互:样本位于电子束进入样品室的位置。

当电子束与样品相互作用时,会产生多种相互作用,包括透射、反射、散射等。

通过控制电子束的扫描方式,可以对不同相互作用的电子进行收集和分析。

4.信号检测和图像生成:通过探测电子束与样品相互作用产生的信号,可以获取样品表面上的丰富细节信息。

最常用的信号检测方法包括二次电子检测和散射电子检测。

通过收集这些信号,并进行信号处理和图像生成,可以获得样品的高分辨率图像。

2. 扫描电镜的应用扫描电镜在各个领域中都有广泛的应用,其高分辨率和高放大倍数的特点使其成为了研究和观察微观结构的重要工具。

以下列举了几个扫描电镜应用的领域:2.1 材料科学•纳米材料研究和观察:扫描电镜可以对纳米材料进行表面和内部结构的观察,有助于研究纳米材料的物理性质和化学反应过程。

•材料表面形貌观察:扫描电镜可以观察材料表面的形貌特征,如晶体结构、表面缺陷、孔洞分布等,有助于研究材料的结构与性能。

2.2 生物科学•细胞观察:扫描电镜可以观察细胞的形态和结构,包括细胞壁、细胞膜、细胞核、细胞器等,有助于研究细胞的功能和生理过程。

•组织结构研究:扫描电镜可以观察组织的微观结构,有助于研究组织的生物学特性和病理学变化。

扫描电镜的工作原理与应用

扫描电镜的工作原理与应用

扫描电镜的工作原理与应用扫描电镜是一种高分辨率、高清晰度的显微镜,主要用于观察各种微观物体的形态、结构和组成。

其工作原理相比传统的光学显微镜要复杂得多。

在本文中,我将详细介绍扫描电镜的工作原理和应用。

一、扫描电镜的基本原理扫描电镜(Scanning Electron Microscopy,SEM)采用电子束而非光束照射样品,因此它具有高于光学显微镜的空间分辨率和深度清晰度。

SEM 使用高能电子束扫描样品表面,并探测所产生的次级电子、后向散射电子或荧光X射线等信号信号。

通过对这些信号的分析和数字处理,可以产生像素级的扫描图像,并确定样品的组成和结构。

扫描电子显微镜采用的主要原理是:将样品表面上的电子自主子级电子转换为信号,再将此信号放大、处理和记录。

SEM 中大多数扫描电子必须通过所用的样品形成的电荷屏障,否则将被折回光子元件中。

样品的电子子级电子外激发过程产生的信号,即次级电子,是包含有样品表面信息的电流信号,探针数据采集设备可将其转换成像素级图像。

SEM 所存在的分解能力是电子束在样品表面的扩散、散射和返回时波长的比值决定的。

二、扫描电镜的应用1.生物学:扫描电镜可帮助生物学家观察细胞和细胞器在微观尺度上的结构以及病毒的形态和特征。

它是研究生物体的材料性质、微观形态和结构,解析其细节显微解剖形态以及结构的最佳选择,对于肿瘤、心血管疾病、神经退行性疾病等疾病的发病机理及防治研究都有重要的应用价值。

2.物理学:扫描电镜可以测量微观物体的形态和结构,被广泛应用于材料凝聚态物理、力学和地质学等领域。

在材料科学领域中,它用于研究新材料的结构和形态,以及材料性能的变化。

3.化学:因其高分辨率和高清晰度,扫描电镜是研究化学领域中的重要工具。

它可以用于观察表面结构和相互作用,包括材料的结构、质量分析和表面成像。

此外,扫描电镜也可以用于探测微细结构和纳米级结构。

4.电子学:扫描电镜可以被用于测试电子元件的性能和结构,以及电路板等电子产品的质量控制。

扫描电镜操作手册

扫描电镜操作手册

扫描电镜操作手册一、前言扫描电镜(Scanning Electron Microscope,SEM)是一种采用电子束来形成高分辨率图像的仪器。

它可以通过扫描样品表面并检测反射电子的方式,将样品的微观形貌和表面结构进行观察和分析。

本操作手册将向您介绍扫描电镜的基本原理和操作步骤,以及一些常见的技巧和注意事项。

二、扫描电镜的基本原理扫描电镜的基本原理是利用高能电子束与样品相互作用产生的各种信号来获取样品表面形貌的信息。

当电子束扫描到样品表面时,会产生次级电子、反射电子、散射电子等不同的信号。

这些信号被探测器接收并转换成电压信号,再通过信号处理系统转换成图像。

三、扫描电镜的操作步骤1. 准备工作在操作扫描电镜之前,需要进行一些准备工作。

首先,打开电镜主机,并确保它与电源连接。

其次,检查样品架是否干净,并将待观察的样品放置在样品架上。

注意,样品表面应干净且不含有尘埃和油污等杂质。

2. 开机和预热按下电源按钮,等待电镜主机启动。

在启动过程中,电子枪和样品室会开始预热。

预热时间一般为15-20分钟,以确保电子枪和样品室达到稳定的工作温度。

3. 样品安装当电镜主机预热完成后,打开样品室的门,并将准备好的样品放置在样品架上。

然后,仔细关闭样品室门,并确保它完全密封。

4. 参数调整根据样品的性质和需求,进行相应的参数调整。

主要包括加速电压、放大倍数、扫描速度等参数的选择和调整。

调整参数时,应根据所需的观察效果进行实时调整和反馈。

5. 图像观察和采集在参数调整完成后,可以开始观察和采集图像。

选择观察区域并调整对焦,然后点击图像采集按钮进行图像保存。

在观察和采集图像时,注意保持样品和电子束之间的距离适当,以避免样品受到过度辐照。

6. 关机和清理在使用完毕后,进行关机和清理工作。

首先,将加速电压调至最低,然后按下关机按钮。

等待电镜主机完全关闭后,进行样品架的清理和样品的取出。

清理时,使用压缩空气吹扫样品架和电子束光路,以去除附着在上面的灰尘和杂质。

扫描电镜二次成像原理

扫描电镜二次成像原理

扫描电镜二次成像原理一、电子束与样品相互作用扫描电镜的成像原理基于电子束与样品之间的相互作用。

当电子束打到样品上时,会与样品原子发生碰撞,产生多种信号。

这些信号包括散射的电子、透射的电子、X射线等,每种信号都携带了样品的不同信息。

二、信号收集与处理扫描电镜中设有多种探测器,用于收集各种信号。

如二次电子探测器用于收集二次电子,背散射电子探测器用于收集背散射电子。

这些探测器将收集到的信号转换为电信号,再经过放大、处理和数字化,最终形成图像。

三、图像显示与记录经过处理的信号被送到图像显示系统,将电信号还原为图像。

现代的扫描电镜通常配备高分辨率显示器,能够实时展示样品的微观形貌。

同时,图像也可以被记录下来,以便后续的分析和处理。

四、二次电子成像二次电子是指被激发的样品原子逸出的电子。

由于二次电子的产额与样品表面的形貌密切相关,因此通过收集和分析二次电子可以获取样品表面的形貌信息。

这是扫描电镜中最为常用的成像方式。

五、背散射电子成像背散射电子是指被样品反射后偏离原束线的电子。

与二次电子相比,背散射电子受到样品原子序数的影响较大,因此可以用于显示样品中元素的分布。

六、X射线能谱分析当电子束打到样品上时,除了产生电子信号外,还会产生X射线。

通过对X射线能谱的分析,可以确定样品中元素的种类和含量。

因此,X射线能谱分析是扫描电镜的一个重要功能。

七、图像分辨率与对比度扫描电镜的图像分辨率一般在数纳米至数十纳米之间,受多种因素的影响,如电子束直径、探测器的分辨率等。

对比度是指图像中不同区域间的明暗差异,对于显微观察至关重要。

影响对比度的因素有样品表面的形貌、组成等。

提高对比度的方法包括改变样品的倾斜角度、选择合适的成像模式等。

八、样品制备与处理为了获得清晰的显微图像,需要对样品进行适当的制备和处理。

这包括切割、抛光、蚀刻等步骤,以便去除表面的杂质和损伤,并突出样品的特定特征。

在样品制备过程中需注意保持样品的原始状态,避免引入新的污染或损伤。

扫描电镜成像技术参数测量和图像处理优化

扫描电镜成像技术参数测量和图像处理优化

扫描电镜成像技术参数测量和图像处理优化摘要:扫描电镜是一种重要的材料分析工具,被广泛应用于科学研究和工业领域。

本文将介绍扫描电镜成像技术参数测量和图像处理优化的相关内容。

首先,我们将详细解释扫描电镜的工作原理和主要成像参数。

然后,我们将介绍如何测量扫描电镜的不同参数,并提供一些建议以优化图像的质量。

最后,我们将讨论图像处理的一些常见技术,包括去噪、增强和三维重建等。

1. 引言扫描电镜是一种利用电子束对样品进行高分辨率成像的仪器。

它具有比光学显微镜更高的分辨率和更大的放大倍数。

扫描电镜广泛应用于材料科学、生物科学、化学和地质学等领域,对于研究和分析微观结构和形貌起着重要作用。

2. 扫描电镜的工作原理和主要成像参数扫描电镜由电子源、透镜系统、样品台和探测器等部分组成。

电子源产生的电子束经过透镜系统聚焦后,照射在样品表面,被探测器接收并转化为电信号,最后通过图像处理显示出样品的图像。

主要成像参数包括分辨率、放大倍数、深度和信噪比等。

3. 参数测量方法3.1 分辨率测量分辨率是扫描电镜成像的重要参数之一,它决定了样品表面细节的可见程度。

分辨率可以通过测量扫描电镜图像中两个最小可分辨的线条或颗粒之间的距离来确定。

常用的测量方法有峰-谷法、污斑法和线距法等。

3.2 放大倍数测量放大倍数指的是扫描电镜图像中样品实际大小与显示的图像大小之间的比例关系。

放大倍数可以通过在图像中测量已知物体的实际大小,并与其显示的像素大小进行比较来确定。

3.3 样品深度测量样品深度是指样品表面上某一点到最深处的垂直距离。

扫描电镜常常被用于表面形貌和纹理的研究,因此准确测量样品深度十分重要。

常用的测量方法有垂直描迹法和切割法等。

3.4 信噪比测量信噪比是指图像中有用信息与噪声信号之间的比值。

在扫描电镜成像过程中,由于各种因素(如电子源稳定性、探测器灵敏度等)的影响,图像中会有噪声。

通过减少噪声源,如改善电子源和探测器的质量,可以提高图像的信噪比。

电镜的基本原理(2)扫描电镜

电镜的基本原理(2)扫描电镜

• 工作距离的选择:
从物镜对样品的距离称为工作距离(WD),一般扫描电镜 的工作距离是在5~40mm之间。在高分辨率工作时, 希望提高分辨率,要求获得较小的束斑,就必须使用短焦 距的强磁物镜。因为强磁透镜像差小,从而能获得较小的 束斑。而强透镜的焦距小,就要求小的工作距离,如 WD=5mm。在低倍观察时,样品凹凸不平,要求图像 有较大的焦深,则要使用大的工作距离,如WD=40mm。
察用 拉扫 伸描 情电 况镜 观
喷 金 的 样 品
扫描电子显微镜的工作内容
微区形貌观测
①二次电子像 可得到物质表面形貌反差的信息,即微观形貌像。 ②背反射电子像 可得到不同区域内平均原子序数差别的信息,即组成分布像。 ③X射线元素分布像 可得到样品表面元素及其X射线强度变化的分布图像。
• 聚光镜电流的选择:
在扫描电镜中聚光镜的作用是缩小束斑直径。聚光镜电流增大,透镜变 强,聚光作用也大,束斑直径变小,则图像分辨率提高,但是,束流变 弱,结果信号变弱,信噪比降低,噪音影响大,图像质量下降。因此, 在要求高分辨率工作时;使用大的聚光镜电流。在低倍工作时用小聚光 镜电流,以减少噪音影响。
◆ ◆ 溶剂刻蚀是用某些溶剂选择溶解高聚物材料
中的一个相,而暴露出另一相的结构。
六、扫描电镜的观察条件
• 加速电压效应:
加速电压越低,扫描图像的信息越限于表面,图像就越能反 映表面真实面貌。 加速电压越低,荷电效应越小,使图像质量改善,灰度层次 丰富而且电子束造成的损伤也减弱。 但加速电压越低,样品表面对于污染变得更敏感。 加速电压扰也较少,故合适于高倍工作。
衬度
表面形貌衬度 原子序数衬度
表面形貌衬度
表面形貌衬度主要是样品表面的凹凸(称为表面地 理)决定的。一般情况下,入射电子能从试详表面 下约5nm厚的薄层激发出二次电子,加速电压大时 会激发出更深层内的二次电子,从而面下薄层内的 结构可能会反映出来,并更加在表面形貌信息上。

扫描电镜的工作原理

扫描电镜的工作原理

扫描电镜的工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来获取样品表面微观形貌的高分辨率显微镜。

与光学显微镜不同,扫描电镜能够观察到更高放大倍数下的样品细节,并且能够获取三维形貌信息。

那么,扫描电镜是如何工作的呢?接下来我们就来详细了解一下扫描电镜的工作原理。

首先,扫描电镜的工作原理基于电子的波粒二象性。

电子既具有波动性,又具有粒子性。

在扫描电镜中,电子被加速到很高的能量,然后聚焦成一个非常细小的束。

这个电子束会被聚焦到样品表面上,并且沿着样品表面进行扫描。

样品表面与电子束相互作用后,产生的信号被收集并转换成图像。

其次,扫描电镜的工作原理还涉及到电子的散射现象。

当电子束照射到样品表面时,会与样品表面的原子核和电子云发生相互作用,产生散射。

这些散射电子被收集并转换成图像,从而形成样品表面的微观形貌图像。

另外,扫描电镜还需要使用适当的探测器来收集样品表面产生的不同信号。

常用的探测器包括二次电子探测器和反射电子探测器。

二次电子探测器主要用于获取样品表面的形貌信息,而反射电子探测器则用于获取样品的晶体结构信息。

此外,为了获得更加清晰的图像,扫描电镜通常需要对样品进行金属涂层处理,以增加样品表面的导电性。

这样可以减少电子束与样品表面的散射,从而获得更加清晰的图像。

总的来说,扫描电镜的工作原理是基于电子的波粒二象性,通过加速和聚焦电子束,利用电子与样品表面的相互作用产生的信号来获取样品的微观形貌信息。

通过合理选择探测器和样品处理方法,可以获得高分辨率、高对比度的样品图像。

通过本文的介绍,相信大家对扫描电镜的工作原理有了更加深入的了解。

扫描电镜作为一种重要的科研工具,广泛应用于材料科学、生物学、地质学等领域,为科学研究和工程技术提供了重要的支持。

希望本文能够帮助大家更好地理解扫描电镜的工作原理,为相关领域的研究工作提供帮助。

扫描电镜工作原理

扫描电镜工作原理

扫描电镜工作原理扫描电镜是一种高级显微镜,能够提供高分辨率的显微图像。

它的工作原理是利用电子束来扫描样品表面,通过收集反射、透射或者散射的电子信号来生成图像。

下面将详细介绍扫描电镜的工作原理。

一、电子源1.1 电子枪:扫描电镜中的电子源通常是由热阴极电子枪产生的。

电子枪通过加热阴极产生电子,然后通过加速电压加速电子束。

1.2 加速电压:加速电压决定了电子束的能量。

加速电压越高,电子束的穿透能力越强,分辨率也会提高。

1.3 调焦系统:扫描电镜中的调焦系统用于调整电子束的聚焦,以保证在样品表面形成清晰的图像。

二、样品准备2.1 导电涂层:为了避免电荷积累和减少散射,样品通常需要涂上导电涂层,如金属薄膜。

2.2 样品固定:样品需要被固定在样品台上,以保证在扫描过程中不会移动。

2.3 样品表面处理:为了获得清晰的图像,样品表面需要进行适当的处理,如抛光或者蒸镀。

三、扫描系统3.1 扫描线圈:扫描电镜中的扫描线圈用于控制电子束在样品表面的扫描范围,从而形成图像。

3.2 探测器:扫描电镜中的探测器用于接收反射、透射或者散射的电子信号,并将其转换成图像。

3.3 扫描速度:扫描速度决定了图像的分辨率,较高的扫描速度可以获得更高分辨率的图像。

四、信号处理4.1 图像重建:通过收集反射、透射或者散射的电子信号,扫描电镜可以重建样品表面的图像。

4.2 对比度调整:信号处理中可以对图像的对比度进行调整,以提高图像的清晰度。

4.3 图像分析:扫描电镜可以通过信号处理进行图像分析,如测量样品表面的形貌或者化学成分。

五、应用领域5.1 材料科学:扫描电镜在材料科学领域被广泛应用,可以观察材料的微观结构和表面形貌。

5.2 生物学:扫描电镜在生物学领域可以用于观察细胞结构和微生物形态。

5.3 纳米技术:扫描电镜在纳米技术领域可以用于观察纳米材料的结构和性质。

总结:扫描电镜通过利用电子束扫描样品表面,收集电子信号生成图像,具有高分辨率和广泛的应用领域。

扫描电镜基本工作原理

扫描电镜基本工作原理

扫描电镜基本工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来对样品进行高分辨率成像的仪器。

相比传统的光学显微镜,SEM可以提供更高的分辨率和更清晰的图像细节。

其基本工作原理如下:1.电子源:SEM使用热阴极电子源或场发射电子源产生高能电子束。

热阴极电子源通过加热钨丝来产生热电子,而场发射电子源则通过透明导体材料和阳极加电场来发射电子。

2.聚焦系统:电子束通过聚焦系统来提高其聚焦度。

聚焦系统通常由一系列透镜组成,这些透镜通过电场或磁场对电子束进行聚束,使其更紧凑和尖锐,以提高分辨率和深度聚焦能力。

3.样品:待观察的样品被放置在SEM的样品台上。

样品通常需要经过一些处理步骤,如脱水、金属涂覆等,以提高电子的导电性和形状稳定性。

4.扫描系统:SEM的扫描系统由水平和垂直的扫描线圈组成。

扫描系统将电子束在样品表面上进行扫描,从而形成一幅图像。

扫描线圈产生的磁场可以将电子束定位到样品上的不同位置,形成图像的像素点。

5.信号检测:在电子束与样品相互作用时,许多不同类型的信号被产生,包括二次电子(SE)信号、背散射电子(BSE)信号、X射线和荧光等。

这些信号提供了样品的形貌和化学成分的信息。

6.信号处理与图像生成:SEM的检测器将从样品获得的信号转换成电信号,并通过放大、滤波等处理步骤,最后生成一幅与样品形貌和性质相关的图像。

这些图像可以呈现在显示器上供用户观察分析。

SEM的主要优势是其高分辨率和大深度聚焦能力,使得在高放大倍数下观察样品时依然能保持较高的清晰度。

此外,SEM对于不同形态的样品都具有广泛的适用性,可以观察金属、陶瓷、生物组织等各种材料。

然而,SEM也有一些局限性。

首先,SEM对样品的要求较高,如需要处理样品以提高导电性和形状稳定性。

其次,由于SEM是真空环境下工作,所以不适合观察水或有机溶液等非真空可观察样品。

此外,SEM对于非导电样品的成像需要额外的样品表面处理和特殊技术。

扫描电子显微镜的工作原理与应用

扫描电子显微镜的工作原理与应用

扫描电子显微镜的工作原理与应用扫描电子显微镜(Scanning Electron Microscope,SEM)是一种高分辨率的电子显微镜,是目前表面形貌分析的最佳工具之一,适用于多种材料和生物物质的表面形态、结构和组成分析。

SEM的优点在于可以获得非常高的分辨率和清晰度,以及较大的景深,可以将样品内部的形态和组成分析得更加详尽。

下面本文将深入探讨SEM的工作原理和应用。

一、SEM的工作原理SEM是以电子束作为传感器,利用与样品表面发生的各种交互作用过程,探测样品表面带来的信息,再根据这些信息生成像。

其工作原理可以分为五个部分:1. 电子源贡献电子束SEM的电子源通常采用热阴极或冷阴极场发射电子枪,将电子束在空间中聚焦形成高能束,通常在1-40kV范围内操作。

2. 透镜聚焦并控制电子束的扫描SEM利用磁场或电场将电子束聚焦到极小的直径,尽量保证对样品表面的扫描质量。

同时,调整电子束的扫描路径,并均匀地照射样品表面确保得到高分辨率的SEM图像。

3. 样品表面信号当样品表面遇到电子束时,电子束失去动能,被所处原子与电子作用发射出来。

这些发射的电子被称为二次电子。

4. 捕捉和放大由样品表面发射的信号随着电子束被扫描,排放并捕捉由样品表面发射的二次电子,并通过鼠标、显微镜、扫描仪或计算机放大和记录这些信号。

5. 显示和分析像素在计算机屏幕上,用像素来显示SEM图像,并再次利用计算机软件对数据进行分析。

二、SEM的应用SEM的应用范围非常广泛,包括但不限于材料、能源、生命科学、环境科学等领域。

具体应用如下:1. 材料科学SEM是评估材料科学和工程领域性能的关键技术之一。

它可以直接表征材料的微观结构和成分,并评估其性能。

例如,SEM广泛应用于薄膜、涂层、复合材料、纳米材料、高温材料、高分子材料、金属等材料的微观分析。

2. 生命科学SEM用于生物学中的组织和单细胞分析,可提供非常清晰的生物图像。

例如,在细胞培养、细胞表面形态、生物分子以及动植物细胞、组织和器官等领域广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回来的电子。
• 二次电子
它是被入射电子束轰击出来的样品核外电 子,又称为次级电子。 在样品上方装一个电子检测器来检测不同 能量的电子,结果如图所示。二次电子的能量 比较低,一般小于50eV;背散射电子的能量比 较高,其约等于入射电子能量 E0。
电子能谱图
特征X射线
特征 X射线是原子的内层电子受到激发之 后,在能级跃迁过程中直接释放的具有特征能 量和波长的一种电磁波辐射。
反映试样表面形貌的二次电子像。扫描电镜成像的物理信号
特征X射线
• 背散射电子
它是被固体样品中原子反射回来的一部分入射电 子。又分弹性背散射电子和非弹性背散射电子,前者 是指只受到原子核单次或很少几次大角度弹性散射后
即被反射回来的入射电子,能量没有发生变化;后者
主要是指受样品原子核外电子多次非弹性散射而反射
影响扫描电镜像质量的主要因素
1. 入射束在样品中的扩展效应
2. 分辨率(入射电子束斑直径)
3. 信噪比
4. 杂散电磁场及机械振动 5. 样品的自然衬度
1. 入射束在样品中的扩展效应
电子束打到样品上,会发生散射,扩散范围 如同梨状或半球状。入射束能量越大,样品原子 序数越小,则电子束作用体积越大。因此,用不
生各种物理信号。
(2)扫描系统
扫描系统是扫描电镜的特殊部件,它由扫 描发生器和扫描线圈组成。它的作用是:1)使入 射电子束在样品表面扫描,并使阴极射线显像管 电子束在荧光屏上作同步扫描;2)改变入射束在 样品表面的扫描振幅,从而改变扫描像的放大倍 数。
(3)信号收集系统
扫描电镜应用的物理信号可分为: 1)电子信号,包括二次电子、背散射电子、 透射电子和吸收电子。吸收电子可直接用电流表
同一样品, 不同能量电子束
15 kV
5 kV
25 kV
不同样品, 同一能量电子束



2.分辨率(入射电子束斑直径)
入射电子束束斑直径是扫描电镜分辨本 领的极限。
电子束斑直径的计算公式
4 2 1 3 2 d Cs 1.22 2 I p / 2
据背散射电子像衬度来判断相应区域原子序数
的相对高低。
;
(2) 吸收电子像衬度
吸收电子信号强度与二次电子及背散射电 子的发射有关,若样品较厚,即T=0,则 η +δ +α =1。这说明,吸收电子像的衬度是与
背散射电子像和二次电子像是互补的。因此可
以认为,样品表面平均原子序数大的微区,背
散射电子信号强度较高,而吸收电子信号强度
2
2
• 公式中,d为电子束斑直径, α 为孔径角, Cs为末级透镜的球差系数; λ 为入射电子波 长; Ip为电子束电流; β 为电子束的亮度. 式中第一项为球差,第二项是衍射差引起的, 第三项是无像差透镜形成的电子束直径。
对于热发射的钨丝电子枪其亮度可表达为
J c eV / kT A / cm sr
较低,两者衬度正好相反。
(3)特征X射线衬度
利用特征X射线只与元素种类有关的特性,可 对试样作成份检测。
四、影响扫描电镜像质量的主要因素
一幅高质量的图像应满足三个条件:首先
是分辨率高,显微结构清晰可辨;第二是信噪
比好,没有明显的雪花状噪声;第三是衬度适中,
图像中无论白区还是黑区细节都能看清楚。
同的物理信号调制的扫描像有不同的分辨本领。
二次电子扫描像的分辨本领最高,约等于入射电
子束直径,背散射电子为50-200 nm,X射线为
100-1000nm。
电子束-样品交互作用区
一次电子束 ~ 10 nm: 二次电子 ~ 1~2 mm: 背散射电子
~ 2~5mm: X-射线/阴极荧光 交互作用区
如何利用扫描电镜拍出 高质量的图像
西安交通大学材料学院 王 伟
S-2700扫描电镜
如何利用扫描电镜拍出高质量的图像
一、扫描电镜的工作原理
二、扫描电镜的构造
三、扫描电镜的成像(衬度)原理
四、影响扫描电镜像质量的主要因素
五、操作要点
六、样品制备
一、扫描电镜的工作原理
电子枪发射的电子束经两级聚光镜及物镜的 汇聚,形成具有一定能量、一定束流强度和束斑 直径的微细电子束,在扫描线圈驱动下,于试样 表面按一定时间、空间顺序作栅网式扫描。聚焦 电子束与试样相互作用,产生二次电子发射(以 及其它物理信号),二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管得到
2
式中, Jc是电子枪的发射电流密度; V为加速 电压; k为玻尔兹曼常数;T 是电子枪灯丝工 作温度(K); e是电子的电荷.
原子序数衬度又称为化学成分衬度,它是 利用对样品微区原子序数或化学成分变化敏感 的物理信号作为调制信号得到的一种显示微区 化学成分差别的像衬度。这些信号主要有背散 射电子、吸收电子和特征X射线。
(1) 背散射电子像衬度
背散射系数η 随原子序数Z的变化如图所示 (δ 为二次电子产率)。可见,背散射电子信号 强度随原子序数Z增大而增大,样品表面上平均 原子序数较高的区域,产生较强的信号,在背 散射电子像上显示较亮的衬度。因此,可以根
测,其他电子信号用电子收集器;
2)特征X射线信号,用X射线谱仪检测;
3)可见光讯号(阴极荧光),用可见光收
集器。
三、扫描电镜的成像(衬度)原理
1.形貌衬度
若设α 为入射电子束与试样表面法线之间 的夹角,实验证明,当对光滑试样表面、入射 电子束能量大于 1kV且固定不变时,二次电子 产率δ 与α 的关系为
二、 扫描电镜的构造
扫描电镜由六个系统组成
(1) 电子光学系统(镜筒)
(2) 扫描系统
(3) 信号收集系统
(4) 图像显示和记录系统
(5) 真空系统 (6) 电源系统
(1)电子光学系统(镜筒)
由电子枪、聚光镜、物镜和样品室等部件
组成。它的作用是将来自电子枪的电子束聚焦成
亮度高、直径小的入射束来轰击样品,使样品产
δ ∝ 1/cosα
实际样品的形状虽然复杂,但都可以被看 作是由许多位向不同的小平面组成的,扫描电 镜中入射电子束的方向是固定的,由于试样表 面凹凸不平,它对试样表面不同处的入射角是 不同的,由此产生二次电子的产额上的差异, 经调制放大便可得到反映样品形貌的二次电子 像。
2
断口照片
2.原子序数衬度
相关文档
最新文档