2019届北师大版(理科数学) 平面向量的概念及其线性运算 单元测试
2019版同步优化探究理数(北师大版)练习:第四章 第一节 平面向量的概念及其线性运算
课时作业 A 组——基础对点练1.(2017·杭州模拟)在△ABC 中,已知M 是BC 中点,设CB →=a ,CA →=b ,则AM →=( )A.12a -b B.12a +b C .a -12bD .a +12b解析:AM→=AC →+CM →=-CA →+12CB →=-b +12a ,故选A.答案:A2.已知AB→=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( )A .A ,B ,C B .A ,B ,D C .B ,C ,DD .A ,C ,D解析:因为AD→=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A .所以A ,B ,D 三点共线. 答案:B3.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =( ) A .a B .b C .cD .0解析:依题意,设a +b =mc ,b +c =na ,则有(a +b )-(b +c )=mc -na ,即a -c =mc -na .又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0. 答案:D4.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.BC→ B.12AD →C.AD →D.12BC →解析:如图,EB→+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD→=AD →. 答案:C5.已知O ,A ,B ,C 为同一平面内的四个点,若2 AC →+CB →=0,则向量OC →等于( )A.23OA →-13OB → B .-13OA →+23OB → C .2 OA→-OB → D .-OA→+2 OB → 解析:因为AC →=OC →-OA →,CB →=OB →-OC →,所以2 AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2 OA →+OB →=0,所以OC →=2 OA →-OB →. 答案:C6.已知点G 是△ABC 的重心,过点G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM→=x AB →,AN →=y AC →,则xy x +y 的值为( )A .3 B.13 C .2D.12解析:由已知得M ,G ,N 三点共线,所以AG→=λ AM →+(1-λ)AN →=λx AB →+(1-λ)y AC →.∵点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13(AB →+AC →), ∴⎩⎪⎨⎪⎧λx =13,(1-λ)y =13,即⎩⎪⎨⎪⎧λ=13x ,1-λ=13y ,得13x +13y =1,即1x +1y =3,通分得x +y xy =3,∴xy x +y=13.答案:B7.在△ABC 中,已知D 是AB 边上的一点,若AD→=2DB →,CD →=13CA →+λCB →,则λ等于( ) A.23 B.13 C .-13D .-23解析:∵AD→=2DB →,即CD →-CA →=2(CB →-CD →),∴CD→=13CA →+23CB →,∴λ=23. 答案:A8.设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( ) A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b |解析:a |a |=b |b |⇔a =|a |b|b |⇔a 与b 共线且同向⇔a =λb 且λ>0.B ,D 选项中a 和b 可能反向.A 选项中λ<0,不符合λ>0. 答案:C9.设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD→=-13AB →+43AC → B.AD→=13AB →-43AC →C.AD→=43AB →+13AC →D.AD→=43AB →-13AC →解析:由题意得AD→=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A. 答案:A10.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+y AC →,则x= ;y = .解析:∵AM →=2MC →,∴AM →=23AC →. ∵BN→=NC →,∴AN →=12(AB →+AC →), ∴MN→=AN →-AM →=12(AB →+AC →)-23AC → =12AB →-16AC →.又MN→=xAB →+yAC →,∴x =12,y =-16. 答案:12 -1611.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA→+OC →=OB →+OD →,则四边形ABCD 的形状为 . 解析:由OA→+OC →=OB →+OD →得OA →-OB →=OD →-OC →,所以BA →=CD →,所以四边形ABCD 为平行四边形. 答案:平行四边形12.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →= .(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC→=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2). 答案:52e 1+32e 213.已知A (1,0),B (4,0),C (3,4),O 为坐标原点,且OD→=12(OA →+OB →-CB →),则|BD→|等于 . 解析:由OD→=12(OA →+OB →-CB →)=12(OA →+OC →),知点D 是线段AC 的中点,故D (2,2),所以BD→=(-2,2),故|BD →|=(-2)2+22=2 2.答案:2 2B 组——能力提升练1.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn 等于( ) A .-12 B.12 C .-2D .2解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m -λ=2,故mn =-2.答案:C2.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP→=m AB →+25AC →,则实数m 的值为( ) A .-4 B .-1 C .1D .4解析:根据题意设BP →=n BN →(n ∈R),则AP →=AB →+BP →=AB →+n BN →=AB →+n (AN →-AB →)=AB →+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →,又AP →=m AB →+25AC →,∴⎩⎨⎧1-n =m ,n 5=25,解得⎩⎪⎨⎪⎧n =2,m =-1,故选B.答案:B3.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( ) A .(0,52] B .(52,72] C .(52,2]D .(72,2]解析:由题意得点B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心、半径为12的圆内,又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→,所以点A 在以B 1B 2为直径的圆上,当点P 与点O 重合时,|OA→|最大,为2,当点P 在半径为12的圆周上时,|OA →|最小,为72,故选D. 答案:D4.在△ABC 中,BD →=3 DC →,若AD →=λ1 AB →+λ2 AC →,则λ1λ2的值为( )A.116B.316C.12D.109解析:由题意得,AD→=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →,∴λ1=14,λ2=34,∴λ1λ2=316. 答案:B5.若点M 是△ABC 所在平面内的一点,且满足5 AM →=AB →+3 AC →,则△ABM与△ABC 的面积的比值为( ) A.15 B.25 C.35D.45解析:设AB 的中点为D ,如图,连接MD ,MC ,由5 AM →=AB →+3 AC→,得5 AM →=2 AD →+3 AC → ①,即AM →=25AD →+35AC →,即25+35=1,故C ,M ,D 三点共线,又AM→=AD →+DM → ②,①②联立,得5 DM→=3 DC →,即在△ABM 与△ABC 中,边AB 上的高的比值为35,所以△ABM 与△ABC 的面积的比值为35.答案:C6.设M 是△ABC 所在平面上的一点,且MB→+32MA →+32MC →=0,D 是AC 的中点,则|MD →||BM →|的值为( ) A.13 B.12 C .1D .2解析:∵D 是AC 的中点,延长MD 至E ,使得DE =MD (图略),∴四边形MAEC 为平行四边形,∴MD→=12ME →=12(MA →+MC →).∵MB→+32MA →+32MC →=0,∴MB →=-32(MA →+MC →)=-3MD →,∴|MD →||BM →|=|MD →||-3MD →|=13,故选A. 答案:A7.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点, 若DE→=λ AB →+μ AD →(λ,μ为实数),则λ2+μ2=( )A.58B.14 C .1D.516解析:DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A. 答案:A8.在△ABC 上,点D 满足AD →=2AB →-AC →,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上 解析:AD →=2AB →-AC →=AB →+AB →-AC → =AB →+CB →; 如图,作BD ′→=CB →,连接AD ′,则: AB →+CB →=AB →+BD ′→=AD ′→=AD →; ∴D ′和D 重合;∴点D 在CB 的延长线上. 答案:D9.如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC边上一点,BC →=3 EC →,F 为AE 的中点,则BF →=( ) A.23AB →-13AD → B.13AB →-23AD →C .-23AB →+13AD →D .-13AB →+23AD →解析:如图,取AB 的中点G ,连接DG ,CG ,则易知四边形DCBG 为平行四边形,所以BC →=GD →=AD →-AG →=AD →-12AB →,∴AE →=AB →+BE →=AB →+23BC →=AB →+23⎝ ⎛⎭⎪⎫AD →-12AB →=23AB →+23AD →,于是BF→=AF →-AB →=12AE →-AB →=12⎝ ⎛⎭⎪⎫23AB →+23AD →-AB →=-23AB →+13AD →,故选C. 答案:C10.设D 为△ABC 所在平面内一点,且BC→=3BD →,则AD →=( )A.23AB →+13AC →B.13AB →+23AC →C.43AB →+13AC →D.23AB →+53AC → 解析:∵BC→=3BD →∴BD →=13BC →=13(AC →-AB →),则AD→=AB →+BD →=AB →+13(AC →-AB →)=23AB →+13AC →. 答案:A11.已知O 为坐标原点,B 、D 分别是以O 为圆心的单位圆与x 轴正半轴、y 轴正半轴的交点,点P 为单位圆劣弧BD 上一点,若OB →+OD →=xDB →+yOP →,∠BOP =π3, 则x +y =( ) A .1 B. 3 C .2D .4-3 3解析:如图,DB→=OB →-OD →,∴OB→+OD →=x (OB →-OD →)+yOP →, ∴yOP→=(1-x )OB →+(1+x )OD →,① ∵∠BOP =π3,∴OP →=12OB →+32OD →, ∴yOP →=y 2OB →+32yOD →,② 由①②得⎩⎪⎨⎪⎧1-x =y2,1+x =32y ,解得x =2-3,y =23-2,∴x +y =3,故选B. 答案:B12.已知向量e 1、e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ= .解析:因为a 与b 共线,所以a =xb ,⎩⎪⎨⎪⎧x =2λx =-1,故λ=-12. 答案:-1213.如图,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH 的中点.若AM →=λAB →+μBC →,则λ+μ= .解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1.因为点M 为AH 的中点,所以AM →=12AH →=12(AB →+BH →)=12⎝ ⎛⎭⎪⎫AB →+13BC →=12AB →+16BC →,又AM→=λAB →+μBC →,所以λ=12,μ=16,所以λ+μ=23.答案:2314.(2018·临汾模拟)如图,△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB→=b .若CP →=ma ,CQ →=nb ,CG ∩PQ =H ,CG →=2CH →,则1m +1n = .解析:由GA→+GB →+GC →=0,知G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG →=13CD →=16(CA →+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6. 答案:615.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为 .解析:由AN →=13NC →,可知AN →=14AC →,又∵AP →=mAB →+211AC →=mAB →+811AN →,且B 、P 、N 共线,∴m +811=1,∴m =311. 答案:311。
北师大版2019版理数练习:第四章第一节平面向量的概念及其线性运算含解析
课时作业 A 组——基础对点练1.(2017·杭州模拟)在△ABC 中,已知M 是BC 中点,设CB →=a ,CA →=b ,则AM →=( )A.12a -b B.12a +b C .a -12bD .a +12b解析:AM →=AC →+CM →=-CA →+12CB →=-b +12a ,故选A.答案:A2.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( )A .A ,B ,C B .A ,B ,D C .B ,C ,DD .A ,C ,D解析:因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A .所以A ,B ,D 三点共线. 答案:B3.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =( ) A .a B .b C .cD .0解析:依题意,设a +b =mc ,b +c =na ,则有(a +b )-(b +c )=mc -na ,即a -c =mc -na .又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0. 答案:D4.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC →B.12AD →C.AD →D.12BC → 解析:如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 答案:C5.已知O ,A ,B ,C 为同一平面内的四个点,若2 AC →+CB →=0,则向量OC →等于( )A.23OA →-13OB → B .-13OA →+23OB →C .2 OA →-OB →D .-OA →+2 OB →解析:因为AC →=OC →-OA →,CB →=OB →-OC →,所以2 AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2 OA →+OB →=0,所以OC →=2 OA →-OB →. 答案:C6.已知点G 是△ABC 的重心,过点G 作一条直线与AB ,AC 两边分别交于M ,N两点,且AM →=x AB →,AN →=y AC →,则xyx +y 的值为( )A .3 B.13 C .2D.12解析:由已知得M ,G ,N 三点共线,所以AG →=λ AM →+(1-λ)AN →=λx AB →+ (1-λ)y AC →.∵点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13(AB →+AC →),∴⎩⎪⎨⎪⎧λx =13, 1-λ y =13,即⎩⎪⎨⎪⎧λ=13x ,1-λ=13y ,得13x +13y =1,即1x +1y=3, 通分得x +y xy =3,∴xy x +y =13.答案:B7.在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( ) A.23 B.13 C .-13D .-23解析:∵AD →=2DB →,即CD →-CA →=2(CB →-CD →), ∴CD →=13CA →+23CB →,∴λ=23.答案:A8.设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( ) A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b |解析:a |a |=b |b |⇔a =|a |b|b |⇔a 与b 共线且同向⇔a =λb 且λ>0.B ,D 选项中a 和b 可能反向.A 选项中λ<0,不符合λ>0. 答案:C9.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解析:由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A.答案:A10.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+y AC →,则x = ;y = .解析:∵AM →=2MC →,∴AM →=23AC →.∵BN →=NC →,∴AN →=12(AB →+AC →),∴MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →. 又MN →=xAB→+yAC →,∴x =12,y =-16. 答案:12 -1611.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为 .解析:由OA →+OC →=OB →+OD →得OA →-OB →=OD →-OC →,所以BA →=CD →,所以四边形ABCD 为平行四边形. 答案:平行四边形12.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →= .(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2).答案:52e 1+32e 213.已知A (1,0),B (4,0),C (3,4),O 为坐标原点,且OD →=12(OA →+OB →-CB →),则|BD →|等于 .解析:由OD →=12(OA →+OB →-CB →)=12(OA →+OC →),知点D 是线段AC 的中点,故D (2,2),所以BD →=(-2,2),故|BD →|= -2 2+22=2 2.答案:2 2B 组——能力提升练1.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则m n等于( ) A .-12B.12 C .-2D .2解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎨⎧λn =m-λ=2,故m n=-2. 答案:C2.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=m AB →+25AC →,则实数m 的值为( ) A .-4 B .-1 C .1D .4解析:根据题意设BP →=n BN →(n ∈R),则AP →=AB →+BP →=AB →+n BN →=AB →+n (AN →-AB →)=AB →+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →,又AP →=m AB →+25AC →,∴⎩⎨⎧1-n =m ,n 5=25,解得⎩⎨⎧n =2,m =-1,故选B.答案:B3.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( ) A .(0,52] B .(52,72] C .(52,2]D .(72,2]解析:由题意得点B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心、半径为12的圆内,又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→,所以点A 在以B 1B 2为直径的圆上,当点P 与点O 重合时,|OA →|最大,为2,当点P 在半径为12的圆周上时,|OA →|最小,为72,故选D.答案:D4.在△ABC 中,BD →=3 DC →,若AD →=λ1 AB →+λ2 AC →,则λ1λ2的值为( ) A.116 B.316 C.12D.109解析:由题意得,AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →,∴λ1=14,λ2=34,∴λ1λ2=316.答案:B5.若点M 是△ABC 所在平面内的一点,且满足5 AM →=AB →+3 AC →,则△ABM 与△ABC 的面积的比值为( ) A.15 B.25 C.35D.45解析:设AB 的中点为D ,如图,连接MD ,MC ,由5 AM →=AB →+3 AC →,得5 AM →=2 AD →+3 AC → ①,即AM →=25AD →+35AC →,即25+35=1,故C ,M ,D 三点共线,又AM →=AD →+DM → ②,①②联立,得5DM →=3 DC →,即在△ABM 与△ABC 中,边AB 上的高的比值为35,所以△ABM 与△ABC 的面积的比值为35.答案:C6.设M 是△ABC 所在平面上的一点,且MB →+32MA →+32MC →=0,D 是AC 的中点,则|MD →||BM →|的值为( ) A.13 B.12 C .1D .2解析:∵D 是AC 的中点,延长MD 至E ,使得DE =MD (图略),∴四边形MAEC 为平行四边形,∴MD →=12ME →=12(MA →+MC →).∵MB →+32MA →+32MC →=0,∴MB →=-32(MA →+MC →)=-3MD →,∴|MD →||BM →|=|MD →||-3MD →|=13,故选A. 答案:A7.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点, 若DE →=λ AB →+μ AD →(λ,μ为实数),则λ2+μ2=( )A.58B.14 C .1D.516解析:DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A. 答案:A8.在△ABC 上,点D 满足AD →=2AB →-AC →,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上 解析:AD →=2AB →-AC →=AB →+AB →-AC → =AB →+CB →; 如图,作BD ′→=CB →,连接AD ′,则: AB →+CB →=AB →+BD ′→=AD ′→=AD →; ∴D ′和D 重合;∴点D 在CB 的延长线上. 答案:D9.如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3 EC →,F 为AE 的中点,则BF →=( ) A.23AB →-13AD → B.13AB →-23AD → C .-23AB →+13AD →D .-13AB →+23AD →解析:如图,取AB 的中点G ,连接DG ,CG ,则易知四边形DCBG 为平行四边形,所以BC →=GD →=AD →-AG →=AD →-12AB →,∴AE→=AB →+BE →=AB →+23BC →=AB →+23⎝ ⎛⎭⎪⎫AD →-12AB →=23AB →+23AD →,于是BF →=AF →-AB →=12AE →-AB→=12⎝ ⎛⎭⎪⎫23AB →+23AD →-AB →=-23AB →+13AD →,故选C.答案:C10.设D 为△ABC 所在平面内一点,且BC →=3BD →,则AD →=( ) A.23AB →+13AC → B.13AB →+23AC →C.43AB →+13AC →D.23AB →+53AC → 解析:∵BC →=3BD →∴BD →=13BC →=13(AC →-AB →),则AD →=AB →+BD →=AB →+13(AC →-AB →)=23AB →+13AC →.答案:A11.已知O 为坐标原点,B 、D 分别是以O 为圆心的单位圆与x 轴正半轴、y 轴正半轴的交点,点P 为单位圆劣弧BD 上一点,若OB →+OD →=xDB →+yOP →,∠BOP =π3, 则x +y =( ) A .1 B. 3 C .2D .4-3 3解析:如图,DB →=OB →-OD →, ∴OB →+OD →=x (OB →-OD →)+yOP →, ∴yOP →=(1-x )OB →+(1+x )OD →,① ∵∠BOP =π3,∴OP →=12OB →+32OD →, ∴yOP →=y 2OB →+32yOD →,②由①②得⎩⎪⎨⎪⎧1-x =y 2,1+x =32y ,解得x =2-3,y =23-2,∴x +y =3,故选B. 答案:B12.已知向量e 1、e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ= .解析:因为a 与b 共线,所以a =xb ,⎩⎨⎧x =2λx =-1,故λ=-12.答案:-1213.如图,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH 的中点.若AM →=λAB →+μBC →,则λ+μ= .解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1.因为点M 为AH 的中点,所以AM →=12AH →=12(AB →+BH →)=12⎝ ⎛⎭⎪⎫AB →+13BC →=12AB →+16BC →,又AM →=λAB →+μBC →,所以λ=12,μ=16,所以λ+μ=23.答案:2314.(2018·临汾模拟)如图,△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=ma ,CQ →=nb ,CG ∩PQ =H ,CG →=2CH →,则1m +1n= .解析:由GA →+GB →+GC →=0,知G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG →=13CD →=16(CA →+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n=6.答案:615.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB→+211AC →,则实数m 的值为 . 解析:由AN →=13NC →,可知AN →=14AC →,又∵AP→=mAB→+211AC→=mAB→+811AN→,且B、P、N共线,∴m+811=1,∴m=311.答案:31111。
2019年高考数学 4.1平面向量的概念及线性运算课时提升作业 理 北师大版
2019年高考数学 4.1平面向量的概念及线性运算课时提升作业理北师大版一、选择题1.(xx·合肥模拟)下列命题中是真命题的是()①对任意两向量a,b,均有:|a|-|b|<|a|+|b|;②对任意两向量a,b,a-b与b-a是相反向量;③在△ABC中,+-=0;④在四边形ABCD中,(+)-(+)=0;⑤在△ABC中,-=.(A)①②③(B)②④⑤(C)②③④(D)②③2.如图所示,在△ABC中,=,=3,若=a,=b,则等于()(A)a+b (B)-a+b(C)a+b(D)-a+b3.(xx·宜春模拟)在以下各命题中,假命题的个数为()①“|a|=|b|”是“a=b”的必要不充分条件②任一非零向量的方向都是唯一的③“a∥b”是“a=b”的充分不必要条件④若|a|-|b|=|a|+|b|,则b=0(A)1(B)2(C)3(D)44.(xx·海口模拟)已知O是△ABC所在平面内一点,D为BC边中点,且2++=0,那么()(A)= (B)=2(C)=3 (D)2=5.若O是A,B,P三点所在直线外一点且满足条件:=a1+a4021,其中{a n}为等差数列,则a2011等于()(A)-1(B)1(C)-(D)6.设a,b是非零向量,则下列不等式中不恒成立的是()(A)|a+b|≤|a|+|b|(B)|a|-|b|≤|a+b|(C)|a|-|b|≤|a|+|b|(D)|a|≤|a+b|7.已知O是平面上的一定点,在△ABC中,动点P满足条件=+λ(+),其中λ∈[0,+∞),则点P的轨迹一定通过△ABC的()(A)内心(B)重心(C)垂心(D)外心8.(xx·西安模拟)在△ABC中,M是BC边上一点,N是AM的中点,=λ+μ,则λ+μ=()(A) (B)(C) (D)9.(xx·蚌埠模拟)已知点P为△ABC所在平面上的一点,且=+t,其中t为实数,若点P落在△ABC的内部,则t 的取值范围是()(A)0<t< (B)0<t<(C)0<t< (D)0<t<10.(能力挑战题)设A1,A2,A3,A4,A5是平面上给定的5个不同点,则使++++=0成立的点M的个数为()(A)0 (B)1 (C)5 (D)10二、填空题11.如图,在正六边形ABCDEF中,已知=c,=d,则=(用c与d表示).12.M,N分别在△ABC的边AB,AC上,且=,=,BN与CM交于点P,设=a,=b,若=x a+y b(x,y∈R),则x+y=.13.(xx·吉安模拟)如图所示,=3,O在线段CD上,且O不与端点C,D重合,若=m+(1-m),则实数m的取值范围为.14.(能力挑战题)已知△ABC中,=a,=b,对于平面ABC上任意一点O,动点P满足=+λa+λb,则动点P的轨迹所过的定点为.三、解答题15.(能力挑战题)如图,在△ABC中,在AC上取点N,使得AN=AC,在AB上取点M,使得AM=AB,在BN的延长线上取点P,使得NP=BN,在CM的延长线上取一点Q,使MQ=λCM时,=,试确定λ的值.答案解析1.【解析】选D.①假命题.∵当b=0时,|a|-|b|=|a|+|b|,∴该命题不成立.②真命题.∵(a-b)+(b-a)=a+(-b)+b+(-a)=a+(-a)+b+(-b)=(a-a)+(b-b)=0,∴a-b与b-a是相反向量.③真命题.∵+-=-=0,∴命题成立.④假命题.∵+=,+=,∴(+)-(+)=-=+≠0,∴该命题不成立.⑤假命题.∵-=+=≠,∴该命题不成立.2.【思路点拨】结合图形,根据三角形法则把未知向量一步步地转化为已知向量进行求解.【解析】选B.=+=+=+(+)=++=-+×=-+(+)=-+=-a+b.3.【解析】选A.∵a,b方向不同⇒a≠b;∴仅有|a|=|b|a=b;但反过来,有a=b⇒|a|=|b|.故命题①是正确的.命题②正确.∵a∥ba=b,而a=b⇒a∥b,故③不正确.∵|a|-|b|=|a|+|b|,∴-|b|=|b|,∴2|b|=0,∴|b|=0,即b=0,故命题④正确.综上所述,4个命题中,只有③是错误的,故选A.4.【解析】选A.由2++=0可知,O是底边BC上的中线AD的中点,故=.5.【解析】选D.因为A,B,P三点共线,且=a1+a4021,所以a1+a4021=1,故a2011==.6.【解析】选D.由||a|-|b||≤|a+b|≤|a|+|b|知A,B,C恒成立,取a+b=0,则D不成立.【误区警示】解答本题时容易忽视向量共线的情形.7.【解析】选A.由条件得=(+),因为,分别是,方向上的单位向量,故+在∠A的平分线上,从而向量也在∠A的平分线上.故选A.8.【解析】选A.设=m+n,∵B,M,C三点共线,∴m+n=1,又=2,∴2=m+n,即=+,∴λ+μ=+=(m+n)=.9.【解析】选D.如图,E,F分别为AB,BC的三等分点,由=+t可知,P点落在EF上,而=,∴点P在E点时,t=0,点P在F点时,t=.而P在△ABC的内部,∴0<t<.10.【思路点拨】类比三角形的“重心”的性质解题.【解析】选B.在平面中我们知道“三角形ABC的重心G满足:++=0”则此题就能很快地答出,点M即为这5个点连线组成的平面图形的重心,即点M只有1个.11.【解析】连接BE,CF,设它们交于点O,则=d-c,由正六边形的性质得===d-c.又=d,∴=+=d+(d-c)=d-c.答案:d-c12.【解析】如图,设=λ,=μ,则在△ABP中,=+=a+λ=a+λ(-)=a+λ(b-a)=(1-λ)a+b.在△ACP中,=+=b+μ=b+μ(-)=b+μ(a-b)=a+(1-μ)b.由平面向量基本定理得解得因此故x+y=.答案:13.【解析】设=k,则k∈(0,).∴=+=+k=+k(-)=(1+k)-k,又=m+(1-m),∴m=-k,∵k∈(0,),∴m∈(-,0).答案:(-,0)14.【解析】依题意,由=+λa+λb,得-=λ(a+b),即=λ(+).如图,以AB,AC为邻边作平行四边形ABDC,对角线交于点M,则=λ,∴A,P,D三点共线,即P点的轨迹是AD所在的直线,由图可知P点轨迹必过△ABC边BC的中点M.答案:边BC的中点【方法技巧】向量在平面几何中的应用技巧平面向量的知识在解决平面几何中的问题时应用非常广泛:利用共线向量定理,可以证明点共线,两直线平行,并进而判定一些特殊图形;利用向量的模,可以说明线段间的长度关系,并进而求解图形的面积.在后续内容中,向量的应用将更广泛.要注意图形中的线段、向量是如何相互转化的.15.【解析】=-=(-)=(+)=.=-=-λ=+λ.令=,∴+λ=,∴λ=(-)=,∴λ=.【变式备选】如图所示,在△ABC中,点M是BC的中点,点N在边AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM的值.【解析】设=e1,=e2,则=+=-3e2-e1,=2e1+e2.∵A,P,M和B,P,N分别共线,∴存在λ,μ∈R,使=λ=-λe1-3λe2,=μ=2μe1+μe2.故=-=(λ+2μ)e1+(3λ+μ)e2,而=+=2e1+3e2,∴∴∴=,∴=,即AP∶PM=4..。
平面向量及其应用单元测试题+答案 百度文库
一、多选题1.题目文件丢失!2.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( ) A .若a b →→=,则a b →→= B .若a c b c →→→→⋅=⋅,则a b →→= C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是44.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=-6.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为2 7.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S = 8.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 9.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .10.ABC 中,4a =,5b =,面积S =c =( )A BC D .11.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+12.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=13.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-14.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=15.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =二、平面向量及其应用选择题16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=A BC .2D .317.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( )A .23π B .43π C .6πD .3π18.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lg sin a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( )A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形19.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形20.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对21.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13- D .34-22.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:523.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4B .3C .-4D .524.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且303aGA bGB cGC ++=.则BAC ∠等于( ) A .90°B .60°C .45°D .30°25.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2326.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .332C .33D .327.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 28.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 29.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1B .2C .3D .430.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b =②ABC ∆③ABC ∆的周长为4+④ABC ∆外接圆半径3R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个31.已知菱形ABCD 边长为2,∠B =3π,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .12B .-12C .13D .-1332.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A B C D .33.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8334.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .435.在ABC ∆中,601ABC A b S ∆∠=︒=,,则2sin 2sin sin a b cA B C-+-+的值等于( )A B C D .【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同 解析:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD 【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.3.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =, 由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得2324sin 3c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.4.BCD 【分析】本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确;再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,所以B 是的中点,P 是的解析:BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用()∥判断;对于D,利用C 的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量(解析:CD【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用(a b-)∥c判断;对于D,利用C的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量a=(2,1),b=(1,﹣1),则2110a b⋅=-=>,则,a b的夹角为锐角,错误;对于B,向量a=(2,1),b=(1,﹣1),则向量a在b方向上的投影为22a bb⋅=,错误;对于C,向量a=(2,1),b=(1,﹣1),则a b-=(1,2),若(a b-)∥c,则(﹣n)=2(m ﹣2),变形可得2m+n=4,正确;对于D,由C的结论,2m+n=4,而m,n均为正数,则有mn12= (2m•n)12≤(22m n+)2=2,即mn的最大值为2,正确;故选:CD.【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.7.AB【分析】由正弦定理及三角形性质判断A,由余弦定理判断B,由正弦函数性质判断C,由三角形面积公式,余弦定理及正弦定理判断D.【详解】中,,由得,A正确;锐角三角形中,,∴,B正确;中,解析:AB【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D .【详解】 ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确; ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB .【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.8.ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对:因为,又,故可得,故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=.故a 在b 上的投影向量为12a b b b b ⎛⎫⋅ ⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -, 则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形.故D 选项正确;综上所述,正确的有:ABD .故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.9.AC【分析】利用余弦定理:即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:,即,解得.故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC【分析】利用余弦定理:2222cos b a c ac B =+-即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:2222cos b a c acB =+-,即216310a a -+=,解得8a =故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.10.AB【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解.【详解】中,因为,,面积,所以,所以,解得或,当时,由余弦定理得:,解得,当时,由余弦定理得:,解得所以或解析:AB【分析】在ABC 中,根据4a =,5b =,由1sin 2ABC S ab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABC S =所以1sin 2ABC S ab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题. 11.ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确;对于B 选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确; 对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.12.ABD【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确,,所以D 正确.故选:ABD解析:ABD【分析】首先理解a a表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】a a 表示与向量a 同方向的单位向量,所以1a a =正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,a a a =不正确, cos 0a a a a a a a a a a⋅==⨯=,所以D 正确. 故选:ABD【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a 表示与向量a 同方向的单位向量. 13.BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为,,且,所以,即C 结论正确;因为,解析:BCD【分析】 由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.14.AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为,正确;,由向量加法知正确;,不满足加法运算法则,错误;,所以错误.故选:A B.【点睛】本题主要考查了向量加法的解析:AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为0AB BA AB AB ,正确;AB BC AC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B .【点睛】本题主要考查了向量加法的运算,属于容易题.15.ABD【详解】解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确.对解析:ABD【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确.故选:ABD .【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.二、平面向量及其应用选择题16.D【详解】 由余弦定理得, 解得(舍去),故选D. 【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!17.A【分析】 根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B cC ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B C a b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C ==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin a R A ===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A.【点睛】 本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题.18.C【分析】化简条件可得sin 2a B c ==,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】lg lg lg sin a c B -==-,sin 2a B c ∴==.0,2B π⎛⎫∈ ⎪⎝⎭, 4B π∴=. 由正弦定理,得sin sina A c C ==,3sin cos sin 422C A C C C π⎫⎛⎫∴==-=+⎪ ⎪⎪⎝⎭⎭, 化简得cos 0C =.()0,C π∈,2C π∴=, 则4A B C ππ=--=, ∴ABC 是等腰直角三角形.故选:C.【点睛】本题主要考查了正弦定理,三角恒等变换,属于中档题.19.D【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形. 故选:D. 【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 20.B【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.【详解】 2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=. 设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力.21.B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+,56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】 本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.22.A 【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论. 详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.23.C【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影.【详解】 对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CA CA θ⋅⋅-⋅=⋅===-⋅, 故选C .【点睛】本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题.24.D【分析】由点G 是ABC 的重心可得0GA GB GC ++=,即GA GB GC =--,代入303aGA bGB cGC ++=中可得3()03b a GB c a GC ⎛⎫-+-= ⎪ ⎪⎝⎭,由,GB GC 不共线可得00b a a -=⎧-=⎩,即可求得,,a b c 的关系,进而利用余弦定理求解即可 【详解】因为点G 是ABC 的重心,所以0GA GB GC ++=, 所以GA GB GC =--,代入30aGA bGB cGC ++=可得3()03b a GB c a GC ⎛⎫-+-= ⎪ ⎪⎝⎭, 因为,GB GC 不共线,所以03b ac a -=⎧-=⎩,即b a c =⎧⎪⎨=⎪⎩,所以222cos 22b c a BAC bc +-∠==,故30BAC ︒∠=, 故选:D 【点睛】本题考查向量的线性运算,考查利用余弦定理求角 25.A 【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+, 因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点,所以1122AE AB BC AB AD =+=+. 因为AP AE λ=,所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩, 解得34λ=. 故选:A 【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 26.B 【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果. 【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,② 所以由①②可知,62ab ab -=-,即6ab =, 则ABC的面积为11sin 62222S ab C ==⨯⨯=. 故选:B 【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型. 27.D 【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n nn AB n n ==--+,再根据AM mAB =可得231n m n =-,整理可得213m n+=,最后选出正确答案即可. 【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n nn AB n n ==--+,因为AM mAB =,所以231nm n =-,整理可得213m n+=.故选:D . 【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题. 28.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 29.D 【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案. 【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC =-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF =-(DC +CA )+BE +CF =-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D. 【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量. 30.C 【分析】由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论. 【详解】 4c =,3C π∠=,可得4832sin sin 3c R C π===,可得ABC ∆外接圆半径43R =④正确;()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==,则cos 0A =,即2A π=或sin 2sin B A =,即2b a =;若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得a =,b =4+;面积为12bc =; 则②③成立;若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得a =,b =则三角形的周长为4a b c ++=+11sin sin 223S ab C π===则②③成立①不成立;综上可得②③④一定成立,故选C . 【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 31.A 【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论. 【详解】法一:由题意可得BA ·BC =2×2cos3π=2, BD ·CP =(BA +BC )·(BP -BC ) =(BA +BC )·[(AP -AB )-BC ] =(BA +BC )·[(λ-1)·AB -BC ] =(1-λ) BA 2-BA ·BC +(1-λ)·BA ·BC -BC 2 =(1-λ)·4-2+2(1-λ)-4 =-6λ=-3, ∴λ=12,故选A. 法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,),D (-13.令P (x,0),由BD ·CP =(-33)·(x -13=-3x +3-3=-3x =-3得x =1. ∵AP =λAB ,∴λ=12.故选A. 【点睛】1.已知向量a ,b 的坐标,利用数量积的坐标形式求解. 设a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. 2.通过建立平面直角坐标系,利用数量积的坐标形式计算. 32.A 【分析】根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】13sin 3424ABC S bc A c c ∆==== 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C== 故213239sin 2sin sin sin 33a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 33.C 【分析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值.【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=,同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 34.C 【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值,由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=, 即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=, 当2m =2(2)171788m --+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题. 35.A 【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中,利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =,又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =,由正弦定理得2sin 2sin sin sin 32a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.。
2019高三数学理北师大版一轮教师用书:第4章 第1节 平
第章平面向量、数系的扩充与复数的引入第一节平面向量的概念及线性运算[考纲传真](教师用书独具)1.了解向量的实际背景,理解平面向量的概念和两个向量相等的含义,理解向量的几何表示.2.掌握向量加法、减法的运算,理解其几何意义.3.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.4.了解向量线性运算的性质及其几何意义.(对应学生用书第69页)[基础知识填充]1.向量的有关概念(1)向量:既有大小又有方向的量叫作向量,向量的大小叫作向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算a 是一个非零向量,若存在一个实数λ,使得b =λa ,则向量b 与a 共线. [知识拓展]1.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).2.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)向量不能比较大小,但向量的模可以比较大小.( ) (2)BA →=OA →-OB →.( )(3)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (4)已知a ,b 是两个非零向量,当a ,b 共线时,一定有b =λa (λ为常数),反之也成立.( )[答案] (1)√ (2)√ (3)× (4)√2.在四边形ABCD 中,AB →=DC →,且|AB →|=|BC →|,那么四边形ABCD 为( )A .平行四边形B .菱形C .长方形D .正方形B [AB →=DC →,则四边形ABCD 为平行四边形.又|AB →|=|BC →|,则四边形ABCD 为菱形,故选B .]3.D 是△ABC 的边AB 的中点,则向量CD →等于( )A .-BC →+12BA →B .-BC →-12BA → C .BC →-12BA →D .BC →+12BA →A [如图,CD →=CB →+BD →=CB →+12BA → =-BC →+12BA →.]4.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). b -a -a -b [如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .]5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. -13 [由已知得a +λb =-k (b -3a ), 所以⎩⎨⎧λ=-k ,3k =1,得⎩⎪⎨⎪⎧λ=-13,k =13.](对应学生用书第70页)给出下列四个命题:【导学号:79140145】①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ A [①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB →∥DC →且|AB →|=|DC →|,∴AB →=DC →. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故选A .]①若a 为平面内的某个向量,则a =|a |a 0; ②若a 与a 0平行,则a =|a |a 0; ③若a 与a 0平行且|a |=1,则a =a 0. 假命题的个数是( )A .0B .1C .2D .3D [向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.](1)(2015·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC →D .AD →=43AB →-13AC →(2)已知D 为三角形ABC 的边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.(1)A (2)-2 [(1)AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →.故选A .(2)因为D 为边BC 的中点,所以PB →+PC →=2PD →,又P A →+BP →+CP →=0, 所以P A →=PB →+PC →=2PD →, 所以AP →=-2PD →,与AP →=λPD →比较,得λ=-2.]所在平面内的任意一点,则OA →+OB →+OC →+OD →等于( ) A .OM → B .2OM → C .3OM →D .4OM →(2)(2017·河南三市联考)在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →,则xy =________.【导学号:79140146】(1)D (2)3 [因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA →+OC →=2OM →,OB →+OD →=2OM →,所以OA →+OB →+OC →+OD →=4OM →. (2)由题设可得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →, 则x =34,y =14.故xy =3.]设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线,又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b ,∴(k -λ)a =(λk -1)b . ∵a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.[跟踪训练] (1)已知向量AB =a +3b ,BC =5a +3b ,CD =-3a +3b ,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线(2)(2017·广东七校联考)已知向量i ,j 不共线,且AB →=i +m j ,AD →=n i +j ,m ≠1,若A ,B ,D 三点共线,则实数m ,n 应满足的条件是( ) A .m +n =1B .m +n =-1C .mn =1D .mn =-1(1)B (2)C [(1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B .(2)因为A ,B ,D 三点共线,所以AB →∥AD →,存在非零实数λ,使得AB →=λAD →,即i +m j =λ(n i +j ),所以(1-λn )i +(m -λ)j =0,又因为i 与j 不共线,所以⎩⎨⎧1-λn =0,m -λ=0,则mn =1,故选C .]。
2019高三数学(北师大版理科)一轮课件5.1 平面向量的概念及线性运算精选ppt版本
∴|������������|=|������������|,且������������ ∥ ������������.
又A,B,C,D是不共线的四点, ∴四边形ABCD为平行四边形. 反之,若四边形ABCD为平行四边形, 则������������与������������的方向相同,且|������������|=|������������|,因此������������ = ������������; ③不正确.相等向量的起点和终点可以都不同; ④不正确.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b. 综上所述,真命题的序号是②.
D.点D在CB的延长线上
作������������' = ������������,连接 AD',则������������ + ������������ = ������������ + ������������' = ������������' = ������������, 所以 D'和 D 重合,所以点 D 在 CB 的延长线上.故选 D. D
章平面向量、数系的扩充 与复数的引入
5.1 平面向量的概念及线性运算
必备知识
知识梳 理
考点自 测
1.向量的有关概念
名称 定 义
既有 大小 ,又有 方向 的
向量 量叫作向量;向量的大小叫作向量的
长度 (或称 模
)
零向 长度为 0
的向量叫作零向
量 量;其方向是任意的
单位 向量 长度等于 1个单位 的向量
2.向量的线性运算类似于代数多项式的运算,实数运算中的去括 号、移项、合并同类项、提取公因式等变形手段在向量的线性运 算中同样适用.
2019届北师大版(文科数学) 平面向量的概念及线性运算 单元测试
1.(2016-2017年河北武邑中学高二理周考)已知,a b r r 是两个非零向量,下列各命题中真命题的个数为( )(1)2a r 的方向与的方向相同,且2a r 的模是的模的2倍;(2)2a -r 的方向与5a r 的方向相反,且2a -r 的模是5a r (3)2a -r 与2a r 是一对相反向量;(4)a b -r r 与()b a --r r 是一对相反向量. A.1 B.2 C.3 D.4【答案】C【解析】试题分析:由于,a b r r 是两个非零向量,所以命题(1)2a r 的方向与的方向相同,且2a r 的模是的模的2倍是正确的;(2)2a -r 的方向与5a r 的方向相反,且2a -r 的模是5a r 确的;(3)2a -r 与2a r 是一对相反向量也是正确的;由于()b a --r r =a b -r r ,因此(4)a b -r 与()b a --r r 是一对相反向量是错误的;故答案选C. 2.(江西省南昌市重点学校2016-2017学年高一4月检测)已知ABC ∆的边BC 上有一点D 满足3BD DC =uu u r uuu r ,则AD uuu r 可表示为( )A. 23AD AB AC =-+uuu r uu u r uuu rB. 3144AD AB AC =+uuu r uu u r uuu rC. 1344AD AB AC =+uuu r uu u r uuu rD. 2133AD AB AC =+uuu r uu u r uuu r 【答案】C3.(2015届北京市156中学高三上学期期中考试理如图,向量b a -等于( )(A )2124e e -- (B )2142e e --(C )213e e - (D )213e e -【答案】C【解析】考点:本题考查平面向量基本定理 点评:12,e e u r u r 是两个单位向量,从图上将,a b r r 用单位向量表示出来4.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则 ( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上【答案】B5.(湖南省长沙市长郡中学2017届高三5月模拟考试数理))已知O 是ABC ∆所在平面内一点,D 为BC 边中点,且2=0OA OB OC ++uu r uu u r uuu r r ,那么( )【答案】A【解析】如图, 2OB OC OD +=uu u r uuu r uuu r ,又22OB OC OA AO +=-=uu u r uuu r uu r uuu r ,故AO OD =uuu r uuu r ,应选答案A 。
2019届高考一轮复习北师大版理 5.1平面向量的概念及线性运算 学案
了解向量的实际背景.理解平面向量的概念,理解两个向量相等的含义. 理解向量的几何表示.掌握向量加法、减法的运算,并理解其几何意义.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 了解向量线性运算的性质及其几何意义. 了解平面向量的基本定理及其意义.掌握平面向量的正交分解及其坐标表示. 会用坐标表示平面向量的加法、减法与数乘运算. 理解用坐标表示的平面向量共线的条件. 理解平面向量数量积的含义及其物理意义. 了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 能运用数量积表示两个向量的夹角,会用数量积判断两个平面 会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa . [说明] 三点共线的等价关系A ,P ,B 三点共线⇔AP →=λAB →(λ≠0)⇔OP →=(1-t )·OA →+tOB →(O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP →=xOA →+yOB →(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).判断正误(正确的打“√”,错误的打“×”)(1)向量与有向线段是一样的,因此可以用有向线段表示向量.( ) (2)AB →+BC →+CD →=AD →.( )(3)若两个向量共线,则其方向必定相同或相反.( )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (5)若a ∥b ,b ∥c ,则a ∥c .( )(6)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ 给出下列命题:①零向量的长度为零,方向是任意的; ②若a ,b 都是单位向量,则a =b ; ③向量AB →与BA →相等.则所有正确命题的序号是( ) A .① B .③ C .①③D .①②解析:选A.根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误.(教材习题改编)如图,▱ABCD 的对角线交于M ,若AB →=a ,AD →=b ,用a ,b 表示MD →为( )A. 12a +12b B. 12a -12b C .-12a -12bD .-12a +12b解析:选D.MD →=12BD →=12(b -a )=-12a +12b ,故选D.已知平面内四点A ,B ,C ,D ,若AD →=2DB →,CD →=13CA →+λCB →,则λ的值为________.解析:依题意知点A ,B ,D 三点共线,于是有13+λ=1,λ=23.答案:23平面向量的有关概念[典例引领]给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若|a |=|b |,则a =b 或a =-b ;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ; 其中真命题的序号是________.【解析】 ①是错误的,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点.②是错误的,|a |=|b |,但a ,b 方向不确定,所以a ,b 不一定相等或相反.③是正确的,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形.④是错误的,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. 【答案】 ③平面向量有关概念的四个关注点(1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混淆.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.给出下列命题:①两个具有公共终点的向量一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0(λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中正确命题的个数为( ) A .1 B .2 C .3D .4解析:选A.①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,无论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量.平面向量的线性运算(高频考点)平面向量的线性运算包括向量的加、减及数乘运算,是高考考查向量的热点.常以选择题、填空题的形式出现.高考对平面向量的线性运算的考查主要有以下两个命题角度: (1)用已知向量表示未知向量; (2)求参数的值.[典例引领]角度一 用已知向量表示未知向量如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个靠近B 点的三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD → 【解析】 在△CEF 中,有EF →=EC →+CF →. 因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 的一个靠近B 点的三等分点, 所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D. 【答案】 D角度二 求参数的值如图,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH 的中点.若AM →=λAB →+μBC →,则λ+μ=________.【解析】 因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1. 因为点M 为AH 的中点, 所以AM →=12AH →=12(AB →+BH →)=12⎝⎛⎭⎫AB →+13BC → =12AB →+16BC →, 又AM →=λAB →+μBC →, 所以λ=12,μ=16,所以λ+μ=23.【答案】 23向量线性运算的解题策略(1)向量的加减常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.[通关练习]1.化简AC →-BD →+CD →-AB →得( ) A. AB → B. DA → C. BC →D .0解析:选D.因为AC →-BD →+CD →-AB →=AC →+CD →+DB →+BA →=0.2.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB → D .-13OA →+23OB →解析:选A.因为2AC →+CB →=0,所以A 为BC 的中点,所以2OA →=OC →+OB →,所以OC →=2OA →-OB →.3.已知D 为三角形ABC 的边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.解析:因为D 为边BC 的中点,所以PB →+PC →=2PD →, 又P A →+BP →+CP →=0, 所以P A →=PB →+PC →=2PD →, 所以AP →=-2PD →,与AP →=λPD →比较,得λ=-2. 答案:-2平面向量共线定理的应用[典例引领]设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.【解】 (1)证明:因为AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 所以BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →, 所以AB →,BD →共线,又它们有公共点B , 所以A ,B ,D 三点共线.(2)因为k a +b 与a +k b 共线, 所以存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, 所以k -λ=λk -1=0.所以k 2-1=0. 所以k =±1.若将本例(2)中的“共线”改为“反向共线”,则k 为何值? 解:因为k a +b 与a +k b 反向共线, 所以存在实数λ,使k a +b =λ(a +k b )(λ<0),所以⎩⎪⎨⎪⎧k =λ,k λ=1,所以k =±1.又λ<0,k =λ,所以k =-1. 故当k =-1时,两向量反向共线.[通关练习]1.设e 1,e 2是两个不共线的向量,则向量a =2e 1-e 2与向量b =e 1+λe 2(λ∈R )共线的充要条件是( ) A .λ=0 B .λ=-1 C .λ=-2D .λ=-12解析:选D.因为a =2e 1-e 2,b =e 1+λe 2,e 1,e 2不共线, 因为a ,b 共线⇔b =12a ⇔b =e 1-12e 2⇔λ=-12.2.经过△OAB 重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.解析:设OA →=a ,OB →=b ,则OG →=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=13(a+b )-m a =⎝⎛⎭⎫13-m a +13b . 由P ,G ,Q 共线得,存在实数λ使得PQ →=λPG →, 即n b -m a =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m =3.答案:3求解向量共线问题的五个策略(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线. (3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)直线的向量式参数方程:A ,P ,B 三点共线⇔OP →=(1-t )·OA →+tOB →(O 为平面内任一点,t ∈R ).(5)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.易错防范(1)作两个向量的差时,首先将两向量的起点平移到同一点,要注意差向量的方向是由减向量的终点指向被减向量的终点.(2)在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个.1.下列各式中不能化简为PQ →的是( ) A. AB →+(P A →+BQ →)B .(AB →+PC →)+(BA →-QC →) C. QC →-QP →+CQ → D. P A →+AB →-BQ →解析:选D.AB →+(P A →+BQ →)=AB →+BQ →+P A →=P A →+AQ →=PQ →; (AB →+PC →)+(BA →-QC →)=(AB →+BA →)+(PC →-QC →)=PC →+CQ →=PQ →; QC →-QP →+CQ →=PC →+CQ →=PQ →; P A →+AB →-BQ →=PB →-BQ →, 显然由PB →-BQ →得不出PQ →, 所以不能化简为PQ →的式子是D.2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|a解析:选B.对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.3.(2018·广东省五校协作体第一次诊断考试)设D 是△ABC 所在平面内一点,AB →=2DC →,则( )A.BD →=AC →-32AB →B.BD →=32AC →-AB →C.BD →=12AC →-AB →D.BD →=AC →-12AB →解析:选A.BD →=BC →+CD →=BC →-DC →=AC →-AB →-12AB →=AC →-32AB →,选A.4.(2018·山东临沂模拟)已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( ) A .λ+μ=2 B .λ-μ=1 C .λμ=-1D .λμ=1解析:选D.因为A ,B ,C 三点共线,所以AB →∥AC →.设AB →=mAC →(m ≠0),所以⎩⎪⎨⎪⎧λ=m ,1=mμ,所以λμ=1,故选D.5.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =( ) A .a B .b C .cD .0解析:选D .依题意,设a +b =m c ,b +c =n a ,则有(a +b )-(b +c )=m c -n a ,即a -c =m c -n a .又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0. 6.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是________.解析:BC →=AC →-AB →,当AB →,AC →同向时,|BC →|=8-5=3;当AB →,AC →反向时,|BC →|=8+5=13;当AB →,AC →不共线时,3<|BC →|<13.综上可知3≤|BC →|≤13. 答案:[3,13]7.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示).解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →= -a -b .答案:b -a -a -b8.(2018·豫西五校联考)若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.解析:由题设知CM MB =3,过M 作MN ∥AC 交AB 于N ,则MN AC =BN BA =BM BC =14,从而AN AB =34,又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →,所以λ=34.答案:349.在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →. 解:AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b .10.设a ,b 是不共线的两个非零向量.(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A ,B ,C 三点共线; (2)若AB →=a +b ,BC →=2a -3b ,CD →=2a -k b ,且A ,C ,D 三点共线,求k 的值. 解:(1)证明:由已知得,AB →=OB →-OA →=3a +b -2a +b =a +2b ,BC →=OC →-OB →=a -3b -3a -b =-2a -4b , 故BC →=-2AB →,又BC →与AB →有公共点B ,所以A ,B ,C 三点共线. (2)AC →=AB →+BC →=3a -2b ,CD →=2a -k b .因为A 、C 、D 三点共线,所以AC →=λCD →,即3a -2b =2λa -kλb ,所以⎩⎪⎨⎪⎧3=2λ,2=kλ,所以⎩⎨⎧λ=32,k =43.综上,k 的值为43.1.(2018·广州市综合测试(一))设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( ) A.13 B.12 C.23D.34解析:选B.因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P ABS △PBC =|P A →||CP →|=12.2.(2018·福建省普通高中质量检查)已知D ,E 是△ABC 边BC 的三等分点,点P 在线段DE上,若AP →=xAB →+yAC →,则xy 的取值范围是( ) A.⎣⎡⎦⎤19,49 B.⎣⎡⎦⎤19,14 C.⎣⎡⎦⎤29,12D.⎣⎡⎦⎤29,14解析:选D.由题意,知P ,B ,C 三点共线,则存在实数λ使PB →=λBC →⎝⎛⎭⎫-23≤λ≤-13,所以AB →-AP →=λ(AC →-AB →),所以AP →=-λAC →+(λ+1)AB →,则⎩⎪⎨⎪⎧y =-λx =λ+1,所以x +y =1且13≤x ≤23,于是xy =x (1-x )=-⎝⎛⎭⎫x -122+14,所以当x =12时,xy 取得最大值14;当x =13或x =23时,xy 取得最小值29,所以xy 的取值范围为⎣⎡⎦⎤29,14,故选D. 3.给出下列四个命题:①若a +b 与a -b 是共线向量,则a 与b 也是共线向量; ②若|a |-|b |=|a -b |,则a 与b 是共线向量; ③若|a -b |=|a |+|b |,则a 与b 是共线向量; ④若||a |-|b ||=|a |+|b |,则b 与任何向量都共线. 其中为真命题的有________(填上序号).解析:由向量的平行四边形法则知道,若a +b 与a -b 是共线向量,则必有a 与b 也是共线向量.所以①是真命题;若|a |-|b |=|a -b |,则a 与b 同向,或b 是零向量或a ,b 均为零向量,所以a 与b 是共线向量,所以②是真命题;若|a -b |=|a |+|b |,则a 与b 方向相反,或a ,b 中至少有一个零向量,所以a 与b 是共线向量,所以③是真命题;当a 是零向量,b 是非零向量时,||a |-|b ||=|a |+|b |成立,而b 不能与任何向量都共线,所以④是假命题. 答案:①②③4.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________. 解析:由题意可求得AD =1,CD =3, 所以AB →=2DC →.因为点E 在线段CD 上, 所以DE →=λDC →(0≤λ≤1).因为AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,所以2μλ=1,即μ=λ2.因为0≤λ≤1,所以0≤μ≤12.答案:⎣⎡⎦⎤0,12 5.如图,EF 是等腰梯形ABCD 的中位线,M ,N 是EF 上的两个三等分点,若AB →=a ,BC →=b ,AB →=2DC →.(1)用a ,b 表示AM →; (2)证明A ,M ,C 三点共线.解:(1)AD →=AB →+BC →+CD →=a +b +⎝⎛⎭⎫-12a =12a +b , 又E 为AD 中点, 所以AE →=12AD →=14a +12b ,因为EF 是梯形的中位线,且AB →=2DC →, 所以EF →=12(AB →+DC →)=12⎝⎛⎭⎫a +12a =34a , 又M ,N 是EF 的三等分点,所以EM →=13EF →=14a ,所以AM →=AE →+EM →=14a +12b +14a=12a +12b . (2)证明:由(1)知MF →=23EF →=12a ,所以MC →=MF →+FC →=12a +12b =AM →,又MC →与AM →有公共点M ,所以A ,M ,C 三点共线.6.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ).求证:A ,P ,B 三点共线的充要条件是m +n =1.证明:充分性:若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →), 所以OP →-OB →=m (OA →-OB →), 即BP →=mBA →, 所以BP →与BA →共线.又因为BP →与BA →有公共点B ,则A ,P ,B 三点共线.必要性:若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →, 所以OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →, 即(m -λ)OA →+(n +λ-1)OB →=0.因为O ,A ,B 不共线,所以OA →,OB →不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0.所以m +n =1.所以A ,P ,B 三点共线的充要条件是m +n =1.。
2019届北师大版高三数学(理)复习学案:学案25 平面向量及其线性运算(含答案)
学案25 平面向量及其线性运算导学目标: 1.了解向量的实际背景.2.理解平面向量的概念、理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.自主梳理1.向量的有关概念(1)向量的定义:既有______又有______的量叫做向量.(2)表示方法:用 来表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB →,BC →,…表示.(3)模:向量的______叫向量的模,记作________或_______.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向是________.(5)单位向量:长度为____单位长度的向量叫做单位向量.与a 平行的单位向量e =____________.(6)平行向量:方向______或______的______向量;平行向量又叫____________,任一组平行向量都可以移到同一直线上.规定:0与任一向量______.(7)相等向量:长度______且方向______的向量. 2.向量的加法运算及其几何意义(1)已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的 ,记作 ,即 =AB →+BC →= ,这种求向量和的方法叫做向量加法的 .(2)以同一点O 为起点的两个已知向量a ,b 为邻边作OACB ,则以O 为起点的对角线OA →就是a 与b 的和,这种作两个向量和的方法叫做向量加法的 .(3)加法运算律a +b =________ (交换律);(a +b)+c =____________(结合律). 3.向量的减法及其几何意义 (1)相反向量与a____________、____________的向量,叫做a 的相反向量,记作______. (2)向量的减法①定义a -b =a +________,即减去一个向量相当于加上这个向量的____________.②如图,AB →=a ,,AD →=b ,则AC →= ,DB →=____________.4.向量数乘运算及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作______,它的长度与方向规定如下: ①|λa|=______;②当λ>0时,λa 与a 的方向______;当λ<0时,λa 与a 的方向______;当λ=0时,λa =______. (2)运算律设λ,μ是两个实数,则①λ(μa)=________.(结合律)②(λ+μ)a =________.(第一分配律) ③λ(a +b)=__________.(第二分配律)(3)两个向量共线定理:向量b 与a (a≠0)共线的充要条件是存在唯一一个实数λ,使b =λa. 5.重要结论PG →=13(PA →+PB →+PC →)⇔G 为△ABC 的________;PA →+PB →+PC →=0⇔P 为△ABC 的________.自我检测1.(2018·四川)设点M 是线段BC 的中点,点A 在直线BC 外,BC →=16,|AB AC AB AC +-=,|则|AM→|等于 ( )A .8B .4C .2D .1 2.下列四个①对于实数m 和向量a ,b ,恒有m(a -b)=ma -mb ;②对于实数m 和向量a ,b (m ∈R),若ma =mb ,则a =b ; ③若ma =na (m ,n ∈R ,a≠0),则m =n ; ④若a =b ,b =c ,则a =c , 其中正确A .1B .2C .3D .43.在ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →等于 ( )A .-14a +14bB .-12a +12bC .a +12bD .-34a +34b4.(2018·湖北)已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=m ,成立,则m 等于 ( )A .2B .3C .4D .55.(2009·安徽)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=______.探究点一 平面向量的有关概念辨析例1 ①有向线段就是向量,向量就是有向线段; ②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c. 以上A .1B .2C .3D .0变式迁移1 下列 ①|a|=|b|⇒a =b ;②若a =b ,b =c ,则a =c ; ③|a|=0⇒a =0;④若A 、B 、C 、D 是不共线的四点,则AB →=DC →⇔四边形ABCD 是平行四边形. 探究点二 向量的线性运算例2(2018·开封模拟)已知任意平面四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).变式迁移2(2018·深圳模拟)如图所示,若四边形ABCD 是一个等腰梯形,AB ∥DC ,M 、N 分别是DC 、AB的中点,已知AB →=a ,AD →=b ,DC →=c ,试用a 、b 、c 表示BC →,MN →,DN →+CN →.探究点三 共线向量问题例3 如图所示,平行四边形ABCD 中,AD →=b ,AB →=a ,M 为AB 中点,N 为BD 靠近B 的三等分点,求证:M 、N 、C 三点共线.变式迁移3 设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-ke 2,且A 、C 、D 三点共线,求k 的值.1.若点P 为线段AB 的中点,O 为平面内的任意一点,则OP →=12(OA →+OB →).如图所示.2.证明三点共线问题,可用向量共线来解决,但应注意向量与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.三点共线的性质定理:(1)若平面上三点A 、B 、C 共线,则AB →=λBC →.(2)若平面上三点A 、B 、C 共线,O 为不同于A 、B 、C 的任意一点,则OC →=λOA →+μOB →,且λ+μ=1.(满分:75分)一、选择题(每小题5分,共25分)1.若O 、E 、F 是不共线的任意三点,则以下各式中成立的是 ( ) A.EF →=OF →+OE → B.EF →=OF →-OE →C.EF →=-OF →+OE → D. EF →=-OF →-OE →2.设a ,b 为不共线向量, AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则下列关系式中正确的是 ( )A.AD →=BC →B.AD →=2BC →C.AD →=-BC →D.AD →=-2BC →3.(2018·杭州模拟)设a ,b 是任意的两个向量,λ∈R ,给出下面四个结论: ①若a 与b 共线,则b =λa ; ②若b =-λa ,则a 与b 共线; ③若a =λb ,则a 与b 共线;④当b≠0时,a 与b 共线的充要条件是有且只有一个实数λ=λ1,使得a =λ1b.其中正确的结论有 ( ) A .①② B .①③ C .①③④ D .②③④4.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于 ( )A.23b +13cB.53c -23b C.23b -13cD.13b +23c 5.(2018·广东中山高三六校联考)在△ABC 中,已知D 是AB 边上一点,AD →=2DB →,CD →=13CA →+λCB →,则λ等于 ( )A.23B.13 C .-13 D .-23题号 1 2 3 4 5 答案6.(2009·湖南)如下图,两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =______,y =__________.7.已知1OP =a ,OP 2→=b ,P 1P 2→=λPP 2→,则OP →=_________.8. (2018·青岛模拟)O 是平面上一点,A ,B ,C 是平面上不共线三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ=12时,则PA →·(PB →+PC →)的值为________.三、解答题(共38分)9.(12分)若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,tb ,13(a +b)三向量的终点在同一条直线上?10.(12分)在△ABC 中,ADAE 11AB 3AC 4==,,BE 与CD 交于点P ,且AB →=a ,AC →=b ,用a ,b 表示AP →.11.(14分)(2018·黄山模拟)已知点G 是△ABO 的重心,M 是AB 边的中点.(1)求GA →+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且,OA →=a ,OB →=b ,OP →=ma ,OQ →=nb ,求证:1m +1n=3.答案 自主梳理 1.(1)大小 方向 (2)有向线段 (3)长度 |a|AB →|(4)任意的 (5)1个 ±a|a|(6)相同 相反 非零 共线向量 平行 (7)相等 相同 2.(1)和 a +b a +b AC →三角形法则 (2)平行四边形法则 (3)b +a a +(b +c) 3.(1)长度相等 方向相反 -a (2)①(-b) 相反向量 ②a +b a -b 4.(1)λa ①|λ||a| ②相同 相反 0 (2)①(λμ)a ②λa +μa ③λa +λb 5.(1)重心 (2)重心自我检测1.2.C [①根据实数与向量积的运算可判断其正确;②当m =0时,ma =mb =0,但a 与b 不一定相等,故②错误;③正确;④由于向量相等具有传递性,故④正确.]3.A [由AN →=3NC →得4AN →=3AC →=3(a +b),又AM →=a +12b ,所以MN →=34(a +b)-⎝ ⎛⎭⎪⎫a +12b =-14a +14b.]4.B [由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D , 则AM →=23AD →,①因为AD 为中线,AB →+AC →=2AD →=mAM →,即2AD →=mAM →,② 联立①②可得m =3.] 5.43解析 设AB →=a ,AD →=b ,那么AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.课堂活动区例1 D [①不正确,向量可以用有向线段表示,但向量不是有向线段;②不正确,若a 与b 中有一个为零向量时也互相平行,但零向量的方向是不确定的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行; ④不正确,如果b =0时,则a 与c 不一定平行. 所以应选D.]变式迁移1 ②③④解析 ①模相同,方向不一定相同, 故①不正确;②两向量相等,要满足模相等且方向相同,故向量相等具备传递性,②正确; ③只有零向量的模才为0,故③正确; ④AB →=DC →,即模相等且方向相同,即平行四边形对边平行且相等.故④正确. 故应选②③④.例2 证明 方法一 如图所示,在四边形CDEF 中,EF →+FC →+CD →+DE →=0.①在四边形ABFE 中,EF →+FB →+BA →+AE →=0.② ①+②得 (EF →+EF →)+(FC →+FB →)+(CD →+BA →)+(DE →+AE →)=0. ∵E 、F 分别是AD 、BC 的中点,∴FC →+FB →=0,DE →+AE →=0.∴2EF →=-CD →-BA →=AB →+DC →, 即EF →=12(AB →+DC →).方法二 取以A 为起点的向量,应用三角形法则求证.∵E 为AD 的中点,∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →).又AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →=12(AB →+DC →)+AE → ∴EF →=AF →-AE →=12(AB →+DC →).即EF →=12(AB →+DC →).变式迁移2 解 BC →=BA →+AD →+DC →例3 解题导引 (1)在平面几何中,向量之间的关系一般通过两个指定的向量来表示,向量共线应存在实数λ使两向量能互相表示.(2)向量共线的判断(或证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.证明 在△ABD 中BD →=AD →-AB →.因为AB →=a, AD →=b ,所以BD →=b -a.由共线向量定理知:CM →∥CN →,又∵CM →与CN →有公共点C ,∴M 、N 、C 三点共线.变式迁移3 (1)证明∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2, ∴AC →=AB →+BC →=e 1-e 2+3e 1+2e 2=4e 1+e 2=12-(-8e 1-2e 2) =12-CD →. ∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2) =3e 1-2e 2,∵A 、C 、D 三点共线,∴AC →与CD →共线.从而存在实数λ使得AC →=λCD →即3e 1-2e 2=λ(2e 1-ke 2).由平面向量的基本定理得⎩⎪⎨⎪⎧3=2λ,-2=-λk.解之,得⎩⎪⎨⎪⎧λ=32,k =43.∴k 的值为43.课后练习区1.B [由减法的三角形法则知EF →=OF →-OE →.]3.D [题目考查两向量共线的充要条件,此定理应把握好两点:(1)与λ相乘的向量为非零向量,(2)λ存在且唯一.故②③④正确.]5.6.1+32 32解析作DF ⊥AB 交AB 的延长线于F ,设AB =AC =1⇒BC =DE =2,∵∠DEB =60°,∴BD =62. 由∠DBF =45°,得DF =BF =62×22=32, 所以BF →=32AB →⋅FD →=32AC →,所以AD →=AB →+BF →+FD →=(1+AB →+32AC →.7.1λa +λ-1λb=a +λ-1λ(b -a)=1λa +λ-1λb.8.0解析 由OP →=OA →+λ(AB →+AC →),λ=12,得AP →-12(AB →+AC →),即点P 为△ABC 中BC 边的中点,∴PB →+PC →=0.∴PA →·(PB →+PC →)=PA →·0=0.9.解 设OA →=a ,OB →=tb ,OC →=13(a +b),∴AC →=OC →-OA →=-23a +13b ,……………………………………………………………(4分)AB →=OB →-OA →=tb -a.……………………………………………………………………(6分)要使A 、B 、C 三点共线,只需AC →=λAB →,即-23a +13b =λtb -λa ,……………………………………………………………………(8分)∴⎩⎪⎨⎪⎧-23=-λ,13=λt.∴⎩⎪⎨⎪⎧λ=23,t =12.……………………………………………………(11分)∴当t =12时,三向量终点在同一直线上.……………………………………………(12分)10.解取AE 的三等分点M ,使|AM|=13|AE|,连结DM.设|AM|=t ,则|ME|=2t.又|AE|=14|AC|,∴|AC|=12t ,|EC|=9t , |AD||AB|=|AM||AE|=13,…………………………………………………………………………(4分) ∴DM ∥BE ,∴|PC||DC|=|PE||DM|=|EC||MC|=911.∴|DP|=211|DC|.…………………………………………………………………………(8分)∴AP →=AD →+DP →=AD →+211DC →=13AB →+211(DA →+AC →)=13AB →+211⎝ ⎛⎭⎪⎫-13AB →+AC → =311AB →+211AC →=311a +211b.……………………………………………………………(12分) 11.(1)解 ∵点G 是△ABO 的重心, ∴GA →+GB →+GO →=0.……………………………………………………………………(2分)(2)证明 ∵M 是AB 边的中点,∴OM →=12(a +b).∵G 是△ABO 的重心,∴OG →=23OM →=13(a +b).∵P 、G 、Q 三点共线,∴PG →∥GQ →,且有且只有一个实数λ,使PG →=λGQ → (5)),∴(13-m)a +13b =λ[-13a +(n -13)b].…………………………………………………(8分)又因为a 、b 不共线,所以 ⎩⎪⎨⎪⎧13-m =-13λ13=λ-13,……………………………………………………………………(10分)消去λ,整理得3mn =m +n ,故1m +1n =3.……………………………………………(14分)。
2019届高考数学北师大版理大一轮复习讲义:第五章 平面向量 第1讲 平面向量的概念及线性运算-1 含答案 精品
§5.1平面向量的概念及线性运算1.向量的有关概念2.向量的线性运算3.向量共线的判定定理a 是一个非零向量,若存在一个实数λ,使得b =λa ,则向量b 与非零向量a 共线. 知识拓展1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n →=A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ )(3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 A解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件. 5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ 答案 A解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同; ②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形, 反之,若四边形ABCD 为平行四边形, 则AB →∥DC →且|AB →|=|DC →|,∴AB →=DC →;③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c ;④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是②③.故选A.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3答案 D解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.题型二 平面向量的线性运算命题点1 向量的线性运算典例(1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 答案 A解析 ∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+AB →, ∴AD →=23AC →+13AB →=23b +13c .(2)(2017·青海西宁一模)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A.29AB →+89AC → B.29AB →-89AC →C.29AB →+79AC →D.29AB →-79AC →答案 B解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC → =29AB →-89AC →. 命题点2 根据向量线性运算求参数典例(1)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →=xAB →+yAC →, ∴x =12,y =-16.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 答案 D解析 设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练 (1)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上的一个靠近点B 的三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD → 答案 D解析 在△CEF 中,有EF →=EC →+CF →. 因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 上的一个靠近点B 的三等分点, 所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D. (2)如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.答案 29解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, ∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29.题型三 向量共线定理的应用典例设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →, ∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)解 假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1. 引申探究若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线? 解 BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b , 即BD →=4a +(m -3)b .若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →. 即4a +(m -3)b =λ(a +b ).∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7. 故当m =7时,A ,B ,D 三点共线.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练 (1)(2017·资阳模拟)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线答案 B解析 ∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( ) A .{0} B .∅ C .{-1} D .{0,-1}答案 C解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0, 即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B 1,C 两点重合,不合题意,舍去.故x =-1.故选C.容易忽视的零向量典例下列叙述错误的是________.(填序号)①若非零向量a 与b 方向相同或相反,则a +b 与a ,b 之一的方向相同; ②|a |+|b |=|a +b |⇔a 与b 方向相同;③向量b 与向量a 共线的充要条件是有且只有一个实数λ,使得b =λa ; ④AB →+BA →=0; ⑤若λa =λb ,则a =b .现场纠错解析 对于①,当a +b =0时,其方向任意,它与a ,b 的方向都不相同. 对于②,当a ,b 之一为零向量时结论不成立.对于③,当a =0且b =0时,λ有无数个值;当a =0但b ≠0或a ≠0但b =0时,λ不存在. 对于④,由于两个向量之和仍是一个向量, 所以AB →+BA →=0.对于⑤,当λ=0时,不管a 与b 的大小与方向如何,都有λa =λb ,此时不一定有a =b . 故①②③④⑤均错. 答案 ①②③④⑤纠错心得 在考虑向量共线问题时,要注意考虑零向量.1.(2018·济南调研)以下命题:①|a |与|b |是否相等与a ,b 的方向无关;②两个具有公共终点的向量,一定是共线向量;③两个向量不能比较大小,但它们的模能比较大小;④单位向量都是共线向量.其中,正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 ②④错误.2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|·a答案 B解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.3.(2017·海南校级模拟)在四边形ABCD 中,设AD →=a ,BC →=b ,那么AC →+BD →等于( ) A .a -b B .a +b C .b -a D .不能确定 答案 B解析 AC →=AB →+BC →=AB →+b ,BD →=BA →+AD →=-AB →+a , ∴AC →+BD →=AB →+b +(-AB →+a )=a +b .故选B.4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D 答案 B解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.5.(2018·济宁模拟)如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .4答案 B解析 ∵O 为BC 的中点, ∴AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →,∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2.6.(2018·聊城质检)设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 ∵BC →=a +b ,CD →=a -2b , ∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线. 设AB →=λBD →, ∴2a +p b =λ(2a -b ), ∵a ,b 不共线,∴2=2λ,p =-λ,∴λ=1,p =-1.7.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下列结论正确的是________.(填序号) ①a ∥b ;②a ⊥b ;③|a |=|b |;④a +b =a -b . 答案 ②解析 根据向量加法、减法的几何意义可知,|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b . 8.(2018·青岛质检)已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________. 答案 ②③④解析 BC →=a ,CA →=b , AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.答案 -2解析 由于BD =2DC ,则BC →=-3CD →, 其中BC →=AC →-AB →,CD →=AD →-AC →, 那么BC →=-3CD →可转化为 AC →-AB →=-3(AD →-AC →), 可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2.10.在直角梯形ABCD 中,A =90°,B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________. 答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,∴AB →=2DC →, ∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2,∵0≤λ≤1, ∴0≤μ≤12.即μ的取值范围是⎣⎡⎦⎤0,12. 11.(2017·安徽马鞍山质检)已知P ,Q 为△ABC 中不同的两点,且3P A →+2PB →+PC →=0,QA→+QB →+QC →=0,则S △P AB ∶S △QAB 为( ) A .1∶2 B .2∶1 C .2∶3 D .3∶2答案 A解析 因为3P A →+2PB →+PC →=2(P A →+PB →)+P A →+PC →=0,所以P 在与BC 平行的中位线上,且是该中位线上的一个三等分点,可得S △P AB =16S △ABC ,QA →+QB →+QC →=0,可得Q 是△ABC的重心,因此S △QAB =13S △ABC ,S △P AB ∶S △QAB =1∶2,故选A.12.(2018·重庆调研)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →) =k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ).13.(2017·福建福州一中模拟)已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________. 答案 3解析 由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点, 则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3.14.(2018·泉州模拟)已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD的面积为1,则△ABD 的面积为________. 答案 4解析 由AD →=15AB →-45CA →,得5AD →=AB →+4AC →,所以AD →-AB →=4(AC →-AD →),即BD →=4DC →. 所以点D 在边BC 上,且|BD →|=4|DC →|, 所以S △ABD =4S △ACD =4.15.(2018·太原质检)设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则角B 的大小为______. 答案 60°解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线, ∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知,b =a =c , ∴△ABC 是等边三角形,则B =60°.16.(2017·河北百校联盟联考)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________. 答案3+223解析 因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →. 因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →, 所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立, 所以λ+μ的最小值为3+223.。
2019届高考数学北师大版理一轮复习文档:第五章 平面
第3节 平面向量的数量积及其应用最新考纲 1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题.知 识 梳 理1.平面向量的数量积 (1)向量的夹角①定义:已知两个非零向量a 和b ,如右图,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作a 与b 的夹角. ②当θ=0°时,a 与b 共线同向. 当θ=180°时,a 与b 共线反向. 当θ=90°时,a 与b 互相垂直. (2)向量的数量积定义:已知两个向量a 与b ,它们的夹角为θ,则数量|a ||b |cos_θ 叫作a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos_θ,由定义可知零向量与任一向量的数量积为0,即0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的射影|b |cos_θ的乘积,或b 的长度|b |与a 在b 方向上的射影|a |cos_θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律). [常用结论与微点提醒]1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.3.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去同一个向量.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(4)若a ·b =a ·c (a ≠0),则b =c .( ) 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等.答案 (1)× (2)√ (3)√ (4)×2.(2018·云南11校跨区调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A.13+6 2B.2 5C.30D.34解析 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34,选D. 答案 D3.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.解析 由题意得a +b =(m -1,3),因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 答案 74.(教材例题改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.解析 由数量积的定义知,b 在a 方向上的投影为 |b |cos θ=4×cos 120°=-2. 答案 -25.(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2=12,解之得λ=33.答案 33考点一 平面向量的数量积及在平面几何中的应用【例1】 (1)(2018·河南天一联考测试)如图,在△ABC 中,AB=3,AC =5,∠BAC =60°,D ,E 分别是AB ,AC 的中点,连接CD ,BE 交于点F ,连接AF ,取CF 的中点G ,连接BG ,则AF→·BG →=________. (2)(2018·上饶三月检测)在直角梯形ABCD 中,∠A =90°,AD ∥BC ,BC =2AD ,△ABD 的面积为1,若DE →=12EC →,BE ⊥CD ,则DA →·DC →=________. 解析 (1)依题意,F 是△ABC 的重心, AF→=23×12(AB →+AC →)=13(AB →+AC →), BG →=12(BF →+BC →)=12⎝ ⎛⎭⎪⎫13BA →+43BC → =12⎝ ⎛⎭⎪⎫43AC →-53AB →=23AC →-56AB →, 故AF→·BG →=13(AB →+AC →)·⎝ ⎛⎭⎪⎫23AC →-56AB →=9536.(2)如图,以B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴建立平面直角坐标系,设|AD |=a (a >0),则|BC |=2a ,又S △ABD =1, ∴|AB |=2a ,∴A ⎝ ⎛⎭⎪⎫0,2a ,B (0,0),C (2a ,0),D ⎝ ⎛⎭⎪⎫a ,2a .设E (x ,y ),则DE →=⎝ ⎛⎭⎪⎫x -a ,y -2a ,EC→=(2a -x ,-y ),∵DE→=12EC →,∴⎝ ⎛⎭⎪⎫x -a ,y -2a =12(2a -x ,-y )=⎝ ⎛⎭⎪⎫a -x 2,-y 2, 则⎩⎪⎨⎪⎧x -a =a -x 2,y -2a =-y 2,即⎩⎪⎨⎪⎧x =43a ,y =43a ,∴E ⎝ ⎛⎭⎪⎫43a ,43a ,∴BE →=⎝ ⎛⎭⎪⎫43a ,43a ,CD →=⎝ ⎛⎭⎪⎫-a ,2a ,∵BE ⊥CD ,∴BE→·CD →=0,∴43a ·(-a )+43a ·2a=0,解得a 2=2,∴DA →·DC →=(-a ,0)·⎝ ⎛⎭⎪⎫a ,-2a =-a 2=- 2. 答案 (1)9536 (2)- 2规律方法 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【训练1】 (1)(2018·武汉三调)在平行四边形ABCD 中,点M ,N 分别在边BC ,CD 上,且满足BC =3MC ,DC =4NC ,若AB =4,AD =3,则AN →·MN →=( ) A.-7B.0C.7D.7(2)(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC→-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________. 解析 (1)以AB →,AD →为基底,AN →=AD →+34AB →,MN →=CN →-CM →=14CD →-13CB →=-14AB →+13AD →,AN →·MN →=⎝ ⎛⎭⎪⎫AD →+34AB →·⎝ ⎛⎭⎪⎫-14AB →+13AD →=13⎝ ⎛⎭⎪⎫AD →2-916AB →2=13(9-9)=0.(2)AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC→-AB→)=λ3×3+2λ3×4-13×9-23×3=-4⇒λ=311. 答案 (1)B (2)311考点二 平面向量的夹角与垂直【例2】 (1)(2017·全国Ⅲ卷)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.(2)(2018·洛阳一模)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( ) A.-7B.-3C.2D.3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c , 即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.答案 (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3规律方法 1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. 【训练2】 (1)(2018·广东省际名校联考)已知向量a ,b 满足|a |=2|b |=2,且(a +3b )⊥(a -b ),则a ,b 夹角的余弦值为________.(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.解析 (1)∵|a |=2|b |=2,且(a +3b )⊥(a -b ), ∴(a +3b )·(a -b )=0,即a 2+2a ·b -3b 2=0, 故有a ·b =-12,则cos 〈a ,b 〉=-14.(2)由|a +b |2=|a |2+|b |2,得a ⊥b ,所以m ×1+1×2=0,得m =-2. 答案 (1)-14(2)-2考点三 平面向量的模及其应用【例3】 (1)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(2)(2016·四川卷改编)已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP→|=1,PM →=MC →,则|BM →|2的最大值是________. 解析 (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3).则点P 的轨迹方程为x 2+(y -3)2=1.设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0,代入圆的方程得⎝⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max=494. 答案 (1)23 (2)494规律方法 1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【训练3】 (1)(2018·湖北七市联合调考)平面向量a ,b ,c 不共线,且两两所成的角相等,若|a |=|b |=2,|c |=1,则|a +b +c |=________.(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB→|的最小值为________. 解析 (1)由|a +b +c |2=a 2+b 2+c 2+2a ·b +2a ·c +2b ·c =9+2×2×2cos 120°+2×2×1×cos 120°+2×2×1×cos 120°=9-4-2-2=1,则|a +b +c |=1. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB→|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5. 答案 (1)1 (2)5基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·全国Ⅱ卷)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥bD.|a |>|b |解析 由|a +b |=|a -b |平方得a 2+2a·b +b 2=a 2-2a·b +b 2,即a·b =0,则a ⊥b . 答案 A2.(2018·合肥质检)设向量a ,b 满足|a +b |=4,a ·b =1,则|a -b |=( ) A.2B.2 3C.3D.2 5解析 由|a +b |=4,a ·b =1,得a 2+b 2=16-2=14,∴|a -b |2=a 2-2a ·b +b 2=14-2×1=12,∴|a -b |=2 3. 答案 B3.(2018·华中师大高考联盟质检)已知向量a =(2,1),b =(1,m ),c =(2,4),且(2a -5b )⊥c ,则实数m =( ) A.-310B.-110C.110D.310解析 因为2a -5b =2(2,1)-5(1,m )=(-1,2-5m ),又(2a -5b )⊥c ,所以(2a -5b )·c =0,则(-1,2-5m )·(2,4)=-2+4(2-5m )=0,解得m =310. 答案 D4.(2018·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD →在AB →方向上的投影是( ) A.322B.-322C.3 5D.-3 5解析 依题意得,AB →=(2,1),CD →=(5,5),AB →·CD →=(2,1)·(5,5)=15,|AB →|=5,因此向量CD →在AB →方向上的投影是AB →·CD →|AB →|=155=3 5.答案 C5.(2018·宜春测试)若向量a ,b 的夹角为π3,且|a |=2,|b |=1,则a 与a +2b 的夹角为( ) A.π6B.π3C.2π3D.5π6解析 ∵向量a ,b 的夹角为π3,且|a |=2,|b |=1,∴a ·b =2×1×cos π3=1,|a +2b |=|a |2+4a ·b +4|b |2 =22+4×1+4×12=23,∴cos 〈a ,a +2b 〉=a ·(a +2b )|a ||a +2b |=a 2+2a ·b |a ||a +2b |=22+2×12×23=32,∵〈a ,a +2b 〉∈[0,π],∴〈a ,a +2b 〉=π6. 答案 A 二、填空题6.(2018·河南百校联盟联考)已知向量a =(2,1),b =(3,-1),则|a +b |(2a +b )·(a -b )=________.解析 ∵a =(2,1),b =(3,-1),∴a +b =(5,0),2a +b =(7,1),a -b =(-1,2),∴|a +b |=5,(2a +b )·(a -b )=-5,∴|a +b |(2a +b )·(a -b )=-1.答案 -17.已知向量OA→=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________. 解析 由已知得AB→=OB →-OA →=(3,1),AC→=OC →-OA →=(2-m ,1-m ). 若AB→∥AC →,则有3(1-m )=2-m ,解得m =12. 由题设知,BA→=(-3,-1),BC →=(-1-m ,-m ).∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0,可得m >-34.由题意知,当m =12时,AB →∥AC →,且AB →与AC →同向. 故当∠ABC 为锐角时,实数m 的取值范围是 ⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞. 答案 ⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞8.(2017·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO→·AP →的最大值为________.解析 设P (cos α,sin α),∴AP→=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号. 答案 6 三、解答题9.(2018·德州一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m = (cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B , 则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA→·BC →=cCB→·CA →. (1)求角B 的大小;(2)若|BA→-BC →|=6,求△ABC 面积的最大值. 解 (1)由题意得(2a -c )cos B =b cos C . 根据正弦定理得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0,所以cos B =22,又B ∈(0,π),所以B =π4.(2)因为|BA→-BC →|=6,所以|CA →|=6, 即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2).故△ABC 的面积S =12ac sin B ≤3(2+1)2, 因此△ABC 的面积的最大值为32+32.能力提升题组(建议用时:20分钟)11.(2018·江西新高考联盟质检)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,向量m =⎝ ⎛⎭⎪⎫a 2,c 2,n =(cos C ,cos A ),且m ·n =b cos B ,则B 的值是( ) A.π6 B.π3 C.π2 D.2π3解析 ∵m ·n =a 2cos C +c 2cos A ,且m ·n =b cos B .∴a 2cos C +c 2cos A =b cos B ,即a cos C +c cos A =2b cos B .由正弦定理,得sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B .∵0<B <π,sin B ≠0,∴cos B =12,∴B =π3.答案 B12.(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 由题意,不妨设b =(2,0),a =(cos θ,sin θ),则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ).令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25,(|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5.答案 4 2 513.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2).(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC→与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →. 解 (1)由题设知AB→=(n -8,t ), ∵AB→⊥a ,∴8-n +2t =0. 又∵5|OA→|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8.当t =8时,n =24;当t =-8时,n =-8,∴OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ), ∵AC→与a 共线,∴t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k (sin θ-4k )2+32k .∵k >4,∴0<4k <1,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8,此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32.。
专题6 平面向量的概念及其线性运算高一数学下学期期中专项复习(北师大版2019必修第二册)(解析版)
专题06 平面向量的概念及其线性运算【专项训练】-2020-2021学年高一数学下学期期中专项复习(北师大2019版)一、单选题1.(2021·江苏高一课时练习)下列说法错误的是( ) A .若0a =,则||0a = B .零向量是没有方向的 C .零向量与任一向量平行 D .零向量的方向是任意的 【答案】B 【分析】由零向量的性质:长度为0,方向是任意的,与任何向量都平行,即可判断各项正误. 【详解】A :由零向量的模为0,故正确;而由零向量的长度为0,方向是任意的,与任何向量都平行,故B 错误,C 、D 正确; 故选:B2.(2021·浙江高一单元测试)下列说法正确的是( ) A .向量AB 与向量BA 是相等向量B .与实数类似,对于两个向量,a b 有a b =,a b >,a b <三种关系C .两个向量平行时,表示向量的有向线段所在的直线一定平行D .若两个向量是共线向量,则向量所在的直线可以平行,也可以重合 【答案】D 【分析】由相等向量和平行向量的定义进行判断 【详解】解:对于A ,向量AB 与向量BA 是相反向量,所以A 错误;对于B ,因为向量是有方向和大小的量,所以两个向量不能比较大小,所以B 错误; 对于C ,当两个向量平行时,表示向量的有向线段所在的直线平行或共线,所以C 错误;对于D ,由共线向量的定义可知,当两个向量是共线向量时,有向量所在的直线可以平行,也可以重合,所以D 正确, 故选:D3.(2021·浙江高一单元测试)化简AC BD CD AB -+-得( ) A .AB B .DA C .BC D .0【答案】D 【分析】根据向量加法减法运算法则即可化简. 【详解】原式()()0AC AB CD DB BC CB =-++=+=. 故选:D.4.(2021·浙江高一期末)已知AM 是ABC 的BC 边上的中线,若,AB a AC b ==,则AM 等于( ) A .()12b a - B .()12a b + C .()12a b - D .()12a b -+ 【答案】B 【分析】利用平面向量的线性运算可求得结果. 【详解】因为AM 是ABC 的BC 边上的中线,所以M 为BC 的中点, 所以AM AB BM =+12AB BC =+()12AB AC AB =+-11112222AB AC a b =+=+. 故选:B5.(2021·全国高一课时练习)已知R λμ∈、,下面式子正确的是( ) A .a λ→与a →同向 B .0·a →=0C .()a a a λμλμ→→→+=+D .若b a λ→→=,则b a λ→→=【答案】C 【分析】根据向量数乘运算的定义依次判断各选项即可得答案. 【详解】对于A 选项,对a →,当0λ>时正确,当0λ<时错误,故A 选项错误;对于B 选项,根据数乘运算的结果为向量,故0·a →是向量而非数0,故B 选项错误; 对于C 选项,根据数乘运算的分配率即可得()a a a λμλμ→→→+=+,故C 选项正确; 对于D 选项,若b a λ→→=,则b a λ→→=,故D 选项错误. 故选:C.6.(2021·全国高一课时练习)设a ,b 不共线,AB =a +k b ,AC =m a +b (k ,m ∈R ),则A ,B ,C 三点共线时有( ) A .k =m B .km -1=0 C .km +1=0 D .k +m =0【答案】B 【分析】由A ,B ,C 三点共线得AB 与AC 共线,然后由向量共线的定理求解可得. 【详解】若A ,B ,C 三点共线,则AB 与AC 共线,所以存在唯一实数λ,使AB AC λ=,即()a kb ma b λ+=+,即a kb ma b λλ+=+,所以1,m k λλ=⎧⎨=⎩,所以km =1,即km -1=0.故选:B .7.(2021·全国高一课时练习)设a ,b 都是非零向量.下列四个条件中,使||||a ba b =成立的条件是( )A .a b =-B .//a bC .2a b =D .//a b 且=a b【答案】C 【分析】 根据a a、b b的含义,逐一分析选项,即可得答案.【详解】a a、b b分别表示与a 、b 同方向的单位向量,对于A :当a b =-时,a b ab=-,故A 错误;对于B :当//a b 时,若,a b 反向平行,则单位向量方向也相反,故B 错误; 对于C :当2a b =时,22a b b abb==,故C 正确;对于D :当//a b 且=a b 时,若a b =-满足题意,此时a b ab=-,故D 错误.故选:C8.(2021·全国高一课时练习)4(a -b )-3(a +b )-b 等于( ) A .2a b - B .a C .6a b - D .8a b -【答案】D 【分析】根据向量的运算法则,计算化简,即可求得答案. 【详解】原式4(a -b )-3(a +b )-b =44338a b a b b a b ----=-. 故选:D9.(2021·全国高一课时练习)如图所示,点O 是正六边形ABCDEF 的中心,则以图中点A ,B ,C ,D ,E ,F ,O 中的任意一点为起点,与起点不同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线且模相等的向量共有( )A .2个B .3个C .6个D .7个【答案】D 【分析】根据题中条件,由共线向量的概念,结合图形,即可得出结果. 【详解】因为点O 是正六边形ABCDEF 的中心,所以OA OB OC OD OE OF =====, 且////OA EF BC ,,,O A D 三点共线;所以除向量OA 外,与向量OA 共线且模相等的向量有:AO ,BC ,CB ,DO ,OD ,EF ,FE ,共7个. 故选:D.10.(2021·浙江高一单元测试)在直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足1()2OP OA AB AC =+⋅+,则||AP 等于( ) A .2 B .1 C . 12D .4【答案】B 【分析】利用向量的减法可得AP =12(AB +AC ),从而可得AP 为Rt ABC 斜边BC 的中线,即求. 【详解】∵OP =OA +12(AB +AC ), ∴OP -OA =12(AB +AC ),AP =12(AB +AC ), ∴AP 为Rt ABC 斜边BC 的中线,∴1AP =.故选:B二、多选题11.(2021·江苏高一课时练习)如图,在平行四边形ABCD 中,下列结论中正确的是( )A .AB DC = B .AD AB AC += C .AB AD BD -= D .0AD CB +=【答案】ABD 【分析】应用几何图形进行向量加减运算,结合向量的概念、三角形及平行四边形法则,即可判断各项正误. 【详解】在平行四边形ABCD 中,根据向量的加减法法则:AB AD DB -=、AD AB AC +=,结合相等、相反向量的定义:AB DC =、0AD CB +=. 故选:ABD.12.(2021·全国高一课时练习)已知m ,n 是实数, ,a b 是向量,则下列命题中正确的为( ) A .()m a b ma mb -=- B . ()m n a ma na -=- C .若ma mb =,则a b = D .若ma na =,则m =n【答案】AB 【分析】根据数乘向量的运算法则,化简整理,即可得答案. 【详解】对于A :根据数乘向量的原则可得:()m a b ma mb -=-,故A 正确; 对于B :根据数乘向量的原则可得:()m n a ma na -=-,故B 正确;对于C :由ma mb =可得()m a b b -=,当m =0时也成立,所以不能推出a b =,故C 错误; 对于D :由ma na =可得()0m n a -=,当0a =,命题也成立,所以不能推出m =n . 故D 错误;故选:AB 三、填空题13.(2021·全国高一课时练习)已知向量a ,b 满足=3a ,=5b ,且=a b λ,则实数λ的值是________.【答案】35± 【分析】根据=a b λ,可得=a b b λλ=,代入数据,即可得答案. 【详解】由=a b λ得:=a b b λλ=, 所以35ab λ==,即35λ=±,故答案为:35±14.(2021·全国高一课时练习)设a ,b 是两个不共线的向量.若向量k a +2b 与8a +k b 的方向相反,则k =________. 【答案】-4 【分析】由向量平行求得k 值,排除方向相同的参数值即可得. 【详解】因为向量k a +2b 与8a +k b 的方向相反,所以k a +2b =λ(8a +k b )⇒82k k λλ=⎧⎨=⎩⇒k =-4(因为方向相反,所以λ<0⇒k <0). 故答案为:4-.15.(2020·山东高三月考)如图,在矩形ABCD 中,2BE EC =,F 为DE 的中点,若AF m AB n AD =⋅+⋅,则m n +=____.【答案】43【分析】根据平面向量线性运算可得到1526=+AF AB AD ,由此确定,m n 的值,从而求得结果. 【详解】由F 为DE 的中点,利用向量平行四边形法则可得:1122=+AF AE AD 利用向量三角形法则知:2233AE AB BE AB BC AB AD =+=+=+1211523226⎛⎫∴=++=+ ⎪⎝⎭AF AB AD AD AB ADAF mAB nAD =+,12m ∴=,56n =,154263∴+=+=m n . 故答案为:43. 16.(2020·四川绵阳市·三台中学实验学校高一月考)点C 在线段AB 上,且23AC AB =,则AC =______BC .【答案】2- 【分析】根据题意得出,,A B C 三点的位置,根据数乘向量的概念即可得结果. 【详解】 由23AC AB =可得,,A B C 三点的位置如图所示:其中C 为AB 的三等分点(靠近C ) 所以2AC BC =-, 故答案为:2-. 【点睛】本题主要考查了数乘向量的概念,得到C 的位置是解题的关键,属于基础题. 四、解答题17.(2021·江苏高一课时练习)如图,已知向量a ,b ,请化简并求作出向量:(3-a 2b )﹣2(12ab ).【答案】1(32)232a b a b a b ⎛⎫--+=- ⎪⎝⎭,作图答案见解析. 【分析】根据向量的数乘运算去括号,再由加减运算化简即可. 【详解】(32a b -)﹣2(12ab )=3223a b a b a b ---=-. 作出向量(32a b -)﹣2(12a b )如下图:18.(2021·全国高一课时练习)设两个非零向量12,e e 不共线,已知AB =21e +k 2e ,CB =1e +32e ,CD =21e -2e .问:是否存在实数k ,使得A ,B ,D 三点共线,若存在,求出k 的值;若不存在,说明理由. 【答案】存在,k =-8. 【分析】先利用12,e e 表示向量,DB AB ,再由AB DB λ=求解. 【详解】设存在k ∈R ,使得A ,B ,D 三点共线,∵()()12121212324,2DB CB CD e e e e e e AB e ke =-=+--=-+=+又∵A ,B ,D 三点共线,AB DB λ∴=,∴()121224e ke e e λ+=-+,24k λλ=-⎧∴⎨=⎩,解得8k =-,∴存在k =-8,使得A ,B ,D 三点共线. 19.(2021·全国高一课时练习)计算: (1)111(2)(32)()342a b a b a b ++---; (2)127137(32)236276a b a b a b a ⎡⎤⎡⎤⎛⎫+---++ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦. 【答案】(1)72123a b +;(2)0. 【分析】(1)根据向量的运算法则,展开整理,即可得答案. (2)根据向量的运算法则,展开整理,即可得答案. 【详解】 (1)11113111(2)(32)()3423324222a b a b a b a b a b a b ++---=++--+ =13121172342322123a b a b ⎛⎫⎛⎫+-+-+=+⎪ ⎪⎝⎭⎝⎭.(2)127137(32)236276a b a b a b a ⎡⎤⎡⎤⎛⎫+---++ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦ =17737171023676262a b a b a b a b ⎛⎫⎛⎫+-+=+--= ⎪ ⎪⎝⎭⎝⎭20.(2020·全国高一课时练习)如图,已知四边形ABCD 为平行四边形,AC 与BD 相交于E ,12DMDE ,14EN EC =,设AB a =,AD b =,试用基底{},a b 表示向量AM ,AN ,MN .11 【答案】1344A a b M =+,5588A b N a =+,3188M a b N =- 【分析】利用平面的向量的线性运算法则:共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则,依次可求得到答案.【详解】 ABCD 是平行四边形,12DM DE ,14EN EC =,AB a =,AD b = ∴()()11111132242444AM AD AE AD AC AD AB AD a b =+=+=++=+, 11115552428888AN AE EN AC EC AC AC AC a b =+=+=+==+, 551331884488MN AN AM AB AD AB a b AD =-=+--=-. 【点睛】方法点睛:本题考查平面向量的线性运算,常见类型及解题策略:(1)向量加法或减法的几何意义,向量加法和减法均适合三角形法则.(2)求已知向量的和,一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十六
平面向量的概念及其线性运算
一、选择题(每小题5分,共35分)
1.①有向线段就是向量,向量就是有向线段;
②向量a与向量b平行,则a与b的方向相同或相反;
③向量与向量共线,则A,B,C,D四点共线;
④如果a∥b,b∥c,那么a∥c.
以上命题中正确的个数为( )
A.1
B.2
C.3
D.0
【解析】选D.①不正确,向量可以用有向线段表示,但向量不是有向线段;
②不正确,若a与b中有一个为零向量时也互相平行,但零向量的方向是不确定的,故两向量方向不一定相同或相反;
③不正确,共线向量所在的直线可以重合,也可以平行;
④不正确,当b=0时,a与c不一定平行,
故正确命题的个数为0.
2.设a是非零向量,λ是非零实数,下列结论中正确的是( )
A.a与λa的方向相反
B.a与λ2a的方向相同
C.|-λa|≥|a|
D.|-λa|≥|λ|·a
【解析】选B.对于A,当λ>0时,a与λa的方向相同,当λ<0时,a与λa的方向相反.B正确;对于C,|-λa|=|-λ||a|,由于|-λ|的大小不确定,故|-λa|与
|a|的大小关系不确定;对于D,|λ|a是向量,而|-λa|表示长度,两者不能比较大小.
3.(2018·威海模拟)设a,b不共线,=2a+p b,=a+b,=a-2b,若A,B,D三点共线,则实数p的值为( )
A.-2
B.-1
C.1
D.2
【解析】选B.因为=a+b,=a-2b,所以=+=2a-b.又因为A,B,D三点
共线,所以,共线.设=λ,所以2a+p b=λ(2a-b),所以2=2λ,p=-λ,即λ=1,p=-1.
【变式备选】已知向量a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( )
A.B,C,D
B.A,B,C
C.A,B,D
D.A,C,D
【解析】选C.因为=+=-5a+6b+7a-2b=2a+4b=2(a+2b)=2,所以A,B,D 三点共线.
4.设平行四边形ABCD的对角线交于点P,则下列命题中正确的个数是( )
①=+;②=(+);③=-;④=.
A.1
B.2
C.3
D.4
【解析】选C.因为由向量加法的平行四边形法则,知①=+,②=
(+)都是正确的,由向量减法的三角形法则,知③=-是正确的,因
为,的大小相同,方向相反,所以④=是错误的.
【变式备选】如图所示,已知=2,=a,=b,=c,则下列等式中成立的是
( )
A.c=b- a
B.c=2b-a
C.c=2a-b
D.c=a-b
【解析】选A.由=2得
+=2(+),即2=-+3,即c=b-a.
5.在△ABC中,D,E,F分别是AB,BC,AC的中点,则= ( )
A.+
B.+
C.+
D.+
【解析】选D.如图,因为=,又因为=+,所以
=+.
6.如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若
=λ+μ(λ,μ为实数),则λ2+μ2= ( )
A. B. C.1 D.
【解析】选A.=+=+=+(+)=-,所以
λ=,μ=-,故λ2+μ2=.
7.如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,=3,F为AE的中点,则= ( )
A.-
B.-
C.-+
D.-+
【解析】选C.方法一:如图,取AB的中点G,连接DG,CG,则易知四边形DCBG为平
行四边形,所以==-=-,所以=+=+=+
(-)=+,于是=-=-=-=
-+.
方法二:=+=+
=-+(++)
=-+(++)
=-+++(++)
=-+.
二、填空题(每小题5分,共15分)
8.给出下列四个命题:
①若a+b与a-b是共线向量,则a与b也是共线向量;
②若|a|-|b|=|a-b|,则a与b是共线向量;
③若|a-b|=|a|+|b|,则a与b是共线向量;
④若||a|-|b||=|a|+|b|,则b与任何向量都共线.
其中为真命题的有________(填上序号).
【解析】由向量的平行四边形法则知道,若a+b与a-b是共线向量,则必有a与b 也是共线向量.所以①是真命题;若|a|-|b|=|a-b|,则a与b同向,或b是零向量或a,b均为零向量,所以a与b是共线向量,所以②是真命题;若|a-b|=|a|+|b|,则a与b方向相反,或a,b中至少有一个零向量,所以a与b是共线向量,所以③是真命题;当a是零向量,b是非零向量时,||a|-|b||=|a|+|b|成立,而b不能与任何向量都共线,所以④是假命题.
答案:①②③
9.直线l上有不同三点A,B,C,O是直线l外一点,对于向量=(1-c os α)+ sin α(α是锐角)总成立,则α=________.
【解析】因为直线l上有不同三点A,B,C,所以存在实数λ,使得=λ,所以
-=λ(-),
即=+λ,
所以所以sin α=cos α,因为α是锐角,所以α=45°. 答案:45°
10.设e1,e2是两个不共线的向量,已知=2e1+ e2,=e1+3e2,=2e1-e2,若A,B,D 三点共线,则实数的值为________.
【解析】因为=2e1+ e2,
=-=(2e1-e2)-(e1+3e2)
=e1-4e2,
由A,B,D三点共线,得∥,
所以2e1+ e2=λ(e1-4e2),
所以则 =-8.
答案:-8
【变式备选】若点O是△ABC所在平面内的一点,且满足|-|=|+-2|,则△ABC的形状为________.
【解析】+-2=(-)+(-)=+,-==-,
所以|+|=|-|,故A,B,C为矩形的三个顶点,△ABC为直角三角形.
答案:直角三角形
1.(5分)已知a,b是非零向量,则“a与b不共线”是“|a+b|<|a|+|b|”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】选A.若“a与b不共线”,由向量加法的几何意义知|a|,|b|构成的两边之和大于|a+b|构成的第三边,即“|a+b|<|a|+|b|”;若非零向量a,b反向共线,显然|a+b|<|a|+|b|成立,但“a与b不共线”不成立.
2.(5分)若点M是△ABC所在平面内的一点,且满足5=+3,则△ABM与
△ABC的面积比为( )
A. B. C. D.
【解析】选C.如图,设AB的中点为D.由5=+3,得3
-3=2-2,所以=,所以C,M,D三点共线,且=
,所以△ABM与△ABC公共边AB上的两高之比为3∶5,则△ABM与△ABC的面积比为.
【变式备选】P是△ABC内的一点,=(+),则△ABC的面积与△ABP的面积之比为 ( )
A.2
B.3
C.
D.6
【解析】选B.由=(+),得3=+,
所以++=0,P是△ABC的重心.
所以△ABC的面积与△ABP的面积之比为3.
3.(5分)O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足:
=+λ(+),λ∈[0,+∞),则P的轨迹一定通过△ABC的
( ) A.外心 B.内心
C.重心
D.垂心
【解析】选B.作∠BAC的平分线AD.
因为=+λ,
所以=λ=λ′·(λ′∈[0,+∞)),
所以=·,
所以∥.
所以P的轨迹一定通过△ABC的内心.
4.(12分)(2018·龙岩模拟)已知△ABC的外接圆O的半径为5,AB=6,若
=+,求||的最小值.
【解析】设AB中点为D,连接OD,则OD⊥AB,AD=AB=3,OA=5,所以
OD==4,=(+),
所以CH=||=|+|=2OD=8,又OC=5,
当O,C,H三点共线时,OH取得最小值3.
5.(13分)经过△OAB的重心G的直线与OA,OB分别交于点P,Q,设=
m,=n,m,n∈R+,求m+n的最小值.
【解析】设=a,=b,由题意知=×(+)=(a+b),
=-=n b-m a,
=-=a+b,
由P,G,Q三点共线得,存在实数λ,使得=λ,即n b-m a=λa+λb,
从而消去λ得+=3.
于是m+n=(m+n)
=≥(2+2)=.
当且仅当m=n=时,m+n取得最小值.。