流体流动与输送机械

合集下载

化工原理公式及各个章节总结汇总

化工原理公式及各个章节总结汇总

第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp d lu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导)6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111lnp m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=4. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热5. 传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。

化工原理(少学时)思考题答案

化工原理(少学时)思考题答案

因为容器内壁给了流体向下的力,使内部压强大于外部压强。 问题 5. 图示两密闭容器内盛有同种液体,各接一 U 形压差计,读数分别为 R1、R2,两压差计间 用一橡皮管相连接,现将容器 A 连同 U 形压差计一起向下移动一段距离,试问读数 R1 与 R2有何 变化?(说明理由)
答 5.容器 A 的液体势能下降,使它与容器 B 的液体势能差减小,从而 R2 减小。R1 不变,因 为该 U 形管两边同时降低,势能差不变。 问题 6. 伯努利方程的应用条件有哪些?
问题 13. 图示的管路系统中,原 1, 2 ,3 阀全部全开,现关小 1 阀开度,则总流量 V 和各支管
流量 V1, V2, V3 将如何变化? 答 13.qV、qV1 下降,qV2、qV3 上升。 问题 14. 什么是液体输送机械的压头或扬程?
答 14.流体输送机械向单位重量流体所提供的能量(J/N)。
答 24.通风机施给每立方米气体的能量称为全压,其中动能部分称为动风压。离心泵 的丫头单位是 J/N(米液柱),全风压的单位是为 N/m2,两者单位不同,若按ΔP=ρgh表 示,可知高度h与密度ρ无关时,压差ΔP 与密度ρ成正比。
第二章 传热
问题 1. 传热过程有哪三种基本方式? 答 1.直接接触式、间壁式、蓄热式。 问题 2. 传热按机理分为哪几种? 答 2.传导、对流、热辐射。 问题 3. 物体的导热系数与哪些主要因素有关? 答 3.与物质聚集状态、温度有关。
化工原理(少学时)思考题答案
第一章 流体流动与输送机械
问题 1. 什么是连续性假定? 质点的含义是什么? 有什么条件? 答 1.假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
质点是含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得 多。 问题 2 粘性的物理本质是什么? 为什么温度上升, 气体粘度上升, 而液体粘度下降? 答 2.分子间的引力和分子的热运动。

化工原理

化工原理

《化工原理》重点介绍各主要化工单元操作的基本原理、典型设备和相关汁算,内容包括绪论、流体流动、流体输送机械、非均相物系分离、传热、蒸发、吸收、蒸馏、干燥以及附录。

1.以流体流动(动量传递)为基础阐述流体输送、非均相物系分离相关单元操作;2.以热量传递为基础阐述换热器及蒸发单元操作;3.以质量传递为基础阐述吸收、精馏传质单元操作,4.具有热量、质量同时传递特点的干燥操作。

5.以物料衡算、能量衡算为主线,强调应用基本概念和原理分析、解决工程实际问题。

《化工原理》考试大纲考试内容:流体流动、流体输送机械、非均相物系的分离、传热、蒸馏、吸收、蒸馏和吸收塔设备、干燥、蒸发。

考试要求:一、流体流动(以柏努利方程为主线)通过本章的学习,掌握流体流动的基本规律、管内流动的规律,并应用这些原理和规律去分析和解决流动过程中的有关问题。

1、掌握流体静力学基本方程式及其应用;2、掌握连续性方程式及其应用;3、掌握柏努利方程的物理意义、应用范围及其解题计算;4、掌握流体阻力、流量、雷诺系数等之间的关系;5、掌握流动类型及其判断依据;6、掌握管路计算方法;7、掌握主要流量测量手段的基本原理、适用范围;8、了解管路串、并联的阻力、流量的关系。

二、流体输送机械通过本章的学习,了解掌握管路系统对输送机械的要求。

1、掌握常用泵的主要性能参数、特性曲线;2、掌握常用泵的使用操作要点,如串并联、开启、关闭等;3、了解常用泵和风机的基本性能和适用范围。

三、非均相物系的分离通过本章的学习,了解掌握沉降和过滤两种机械分离操作的基本原理、典型设备的结构与特性。

1、掌握沉降分离的原理、沉降过程及影响因素;2、掌握斯托克斯公式;3、掌握除尘设备的基本原理和选型;4、了解各种机械分离方法的优缺点及其适用范围;四、传热通过本章的学习,了解掌握传热的基本原理、传热规律,并运用其去分析和计算传热过程的有关问题。

1、掌握传热的基本方程式;2、掌握各种传热、导热系数的定义、单位及其差异;3、掌握单、多壁圆筒热传导速率方程及其应用;4、掌握列管换热器的计算;5、掌握强化换热的手段;6、了解傅立叶定律和辐射速率方程;7、了解边界层和保温层基本概念。

化工原理考研 流体流动、流体输送机械计算题及解题思路

化工原理考研 流体流动、流体输送机械计算题及解题思路

化工原理考研流体流动、流体输送机械计算题及解题思路第一章流体、泵1.已知输水管内径均为100mm,管内为常温水,流量为30m3/h,U形管中指示液密度为1260kg/m3,R1=872mm,R2=243mm。

求90°弯头的阻力系数ζ和当量长度。

2.槽内水位恒定。

槽的底部与内径为100mm的水平管连接,当A阀关闭时,测得R=600mm,h=1500mm,U形压差计为等直径玻璃管,试求:(1) 当A阀部分开启时,测得R=400mm,此时水管中的流量为多少(m3/h)?已知λ=0.02,管子入口处ζ=0.5。

(2) 当A阀全开时,A阀的当量长度l e=15d,λ=0.02,则水管中流量为多少(m3/h)?B点压强应为多少Pa(表)?读数R为多少?3.用离心泵将密闭贮槽A中的常温水送往密闭高位槽B中,两槽液面维持恒定。

输送管路为Φ108mm×4mm的钢管,全部能量损失为40×u2/2(J/kg)。

A槽上方的压力表读数为0.013MPa,B槽处U形压差计读数为30mm。

垂直管段上C、D两点间连接一空气倒U形压差计,其示数为170mm。

取摩擦系数为0.025,空气的密度为1.2 kg/m3,试求:(1) 泵的输送量;(2) 单位重量的水经泵后获得的能量;(3) 若不用泵而是利用A,B槽的压力差输送水,为完成相同的输水量,A槽中压力表读数应为多少?4.输水管路系统,AO管长l AO=100m、管内径为75mm,两支管管长分别为l OB=l OC=75m,管内径均为50mm,支管OC上阀门全开时的局部阻力系数ζ=15。

所有管路均取摩擦系数λ=0.03。

支管OB中流量为18m3/h,方向如图所示。

除阀门外其他局部阻力的当量长度均已包括在上述管长中。

试求:(1) 支管OC的流量(m3/h);(2) A槽上方压强表的读数p A(kPa)。

5.用Φ89mm×4.5mm,长80m的水平钢管输送柴油,测得该管段的压降为5000Pa,已知柴油密度为800kg/m3,黏度为25mPa·s,试求:(1) 柴油在管内的流速(m/s);(2) 该管段所消耗的功率(W)。

流体在管道中的流动规律——输送机械功率确定.

流体在管道中的流动规律——输送机械功率确定.

反映管内流体流动规律的基本方程式有:
连续性方程 柏努利方程
本节主要围绕这两个方程式进行讨论。
一、稳定流动与不稳定流动
稳定流动(steady flow) :流体在管道中流动时,在任
一点上的流速、压力等有关物理参数都不随时间而改 变。
不稳定流动(unsteady flow) :若流动的流体中,任一
有效功率:Ne=We· Ws=93.6×2.83=264.8 (W)
用柏努利方程式解题时的注意事项:
(1)选取截面
连续流体; 两截面均应与流动方向相垂直。 强调:只要在连续稳定的范围内,任意两个截面均可选用。
不过,为了计算方便,截面常取在输送系统的起点和终点的 相应截面,因为起点和终点的已知条件多。
m
位能的单位为m2/s2 =J/kg
2.动能
• 动能是单位质量的流体因具有一定的流速 而具有的能量. • mkg流体以速度u流动时,其动能为:(J)
1 2 mu 2 • 1kg流体以速度u流动时的动能为:
1 2 u 2
其单位为J/kg。
3.静压能
• (1)流体的静压强 是指垂直作用于流体单位面积上的力,习惯 上称为压力,以符号p表示,单位是Pa。
d1 50 u2 u1 d 2.8 81 1.07 2
2
2
三、流体在稳定流动系统中的能量变化 规律——柏努利方程式
柏努利方程式是管内流体流动机械能衡算式。
一、流动的流体具有的机械能
1.位能 是单位质量的流体在重力作用下,因 高出某基准面而具有的能量,相当于将质量为1kg的 流体自基准水平面0-0′升举到Z高度为克服重力所作的 功,即: mgz 位能= gz
流体在管路中的流动规律

2020年流体输送机械的心得体会

2020年流体输送机械的心得体会

流体输送机械的心得体会在经过一段时间学习了化工原理后,我了解到了化工原理涉及的单元操作有流体流动和流体输送机械,然后我想结合自己所学习的知识做一个总结。

在刚开始学习这一章的时候觉得概念抽象,涉及面广,物理量多、综合性强,计算量大,公式烦琐,尤其是课程中半理论半经验公式和准数、准数关联式令人感到头痛,学习起来难度大。

后面慢慢领悟到不能纯正只背公式而不去理解,在自我反思和进步中,我了解到工业生产中,输送流体是很多见的、不可或缺的最基本的单元操作。

所谓流体输送机械就是通过向流体作功用来提高流体机械能的机械装置,当流体通过流体输送机械后机械能增加,增加的机械能可以抵消流体输送过程中的摩擦损耗。

现阶段最常用的就是泵,同时我也查阅资料了解到机械密封泵的泄漏问题无法优良解决,但是随着科技发展,无泄漏的磁力驱动泵应运而生,绿色环保的磁力驱动泵必将广泛应用。

我也认识到化工原理内容较多,每一个单元操作都要分几次课来学习,有很多时候往往学了后面,忘了前面。

所以在学习新的一章之前,我觉得要对旧知识的回忆,并且对上堂课讲过的内容进行总结,严重的公式在笔记本中列出。

每学完一章,做一次本章小结。

这样不仅简易掌握该章的内容,而且还能够学到解决工程实际问题的思维方法。

例如我们学习了流动性方程和伯努利方程,还有阻力计算方程。

这些方程主要运用在我们学习的泵的计算。

多见的离心泵、往复泵主要用于液体输送,压缩机和风机用于气体输送。

而液体输送是重点,所以我们不仅要学习泵的工作原理,还要将泵与实际操作和成本经济相结合进行详尽计算,运用的概念和公式比较多。

在求离心泵的特性曲线或工作曲线时,我们要用到前一章的流体流动单元操作中的柏努利方程。

所以在各单元操作之间存在着许多相互连贯和衔接的知识点。

因此,学习了流体流动才能对流体输送机械有更深的了解。

在学习中,我们要善于抓住和利用这些相关衔接点,就可以更好地理解和掌握知识,也就能学习好化工原理这门课程。

流体流动、流体输送机械计算题

流体流动、流体输送机械计算题

流体流动、流体输送机械习题课例题1、用离心泵将池中水送到高位槽,已知管路总长 100m(包括当量长),其中压力表后为80m,管路摩 擦系数,管内径0.05m,当流量为10m'/h 时泵效率 为80%,求:(1)泵的轴功率;(2)压力表读数。

(取 =1000kg/m 3)解:(1)如图取1-1、2-2截面,以1-1截面为基准列柏努利方程:•••勺=0; % = 2 +18 = 20/?/; ]\ =卩2;珥=“2=0(2)以3-3截面为基准,在3-3、2-2截面间列柏努利方程: gz 3 +—+^- = gz 2 +—+^+ZW f3_2 P 2 p 2••• Zj = 0; z 2 = 18m; p 2 = 0; u 2 = 0; u 3 =u = 1.415m/ s p /有效功率 £• 一爲旳•一纽0攸一 10 X 1000X 246.26-684[J/5] 3600IV =gz.2 + X W f =9.81x20 + 50.06 = 246.26( J/kg]轴功率 = 855"] 10/3600 =1・415[加/$] 100 ------ x 0.051.415? 2 =50・06[丿/如 “ 77 80% 一 0.785 x 0.052=0.025 x 9 OQQ=0.025 x ——x 0.05 p ir 1 415 —=^3+ 1^3 ,-^- = 9.81x18 + 40.04-—^ = 215.6[J/^] P 2 22、欲用离心泵将209水以30m 3/h 的流量由水池打 到敞口髙位槽,两液面均保持不变,液面髙差为18m, 泵的吸入口在水池上方2m 处,泵的吸入管路全部阻 力为lm 水柱,压出管路全部阻力为3m 水柱,泵效 率 60%。

求:(1)泵的轴功率;(2)若允许吸上真空高度为5m,用上述安装高 度是否合适(=1000kg/m 3;动压头可略) 解:(1)如图,取1TL 2-2截面,以1-1截面为基准列柏努利方程:已知:Z { =0,Z 2 =18”Pi = p 2.u } =u 2 =0H e = z 2 + 工如-2 =18 + 1 + 3 = 22(/n)泵的轴功率:30 x 22x1000 x 9.813600 x 60%- (2)比=/-仕-为比=5-0-1=4(加)2g比>2林•・安装高度合适。

《流体输送输送机械》课件

《流体输送输送机械》课件

安全操作:操作人员应熟悉通风 机的操作规程,确保安全操作
管道系统的运行与维护
定期检查:检 查管道是否有 泄漏、腐蚀等
现象
定期清洗:清 洗管道,防止
堵塞和污染
定期润滑:润 滑管道,防止
磨损和生锈
定期维护:维 护管道,确保
其正常运行
流体输送输送机械的故障 诊断与处理
章节副标题
泵的故障诊断与处理
故障诊断方法:如观察、听 诊、测量等
THEME TEMPLATE
感谢观看
泵的常见施:如更换零件、 调整参数、维修等
预防措施:如定期检查、维 护、更换易损件等
压缩机的故障诊断与处理
故障类型:机 械故障、电气 故障、液压故
障等
故障原因:磨 损、腐蚀、堵
塞、泄漏等
故障诊断方法: 观察、听声音、 测量、分析等
故障处理措施: 更换零件、调 整参数、清洗、
流体输送输送机械的应用
石油、天然气等能源输送 化工、制药、食品等行业的物料输送 城市供水、排水、污水处理等市政工程 农业灌溉、排涝等农业工程 船舶、飞机等交通工具的燃料输送 热力、电力等能源输送
流体输送输送机械的组成 与结构
章节副标题
泵的组成与结构
泵体:容纳 流体,承受 压力
叶轮:将流 体加速,产 生压力
章节副标题
流体输送输送机械概述
章节副标题
定义与分类
定义:流体输送输送机械是一 种用于输送流体的机械设备, 包括泵、压缩机、风机等。
分类:根据流体输送输送机械 的工作原理和用途,可以分为 泵、压缩机、风机等类型。
泵:用于输送液体,包括离心 泵、轴流泵、混流泵等。
压缩机:用于压缩气体,包括 离心压缩机、轴流压缩机、混 流压缩机等。

《化工原理》公式总结

《化工原理》公式总结

第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121pu g z p u g z ++=++4. 实际流体机械能衡算方程:f W pu g z p u g z ∑+++=++ρρ222212112121+5. 雷诺数:λμρ64Re ==du 6. 范宁公式:ρρμλfp dlu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆8.局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ9.混合液体密度的计算:n wnB wB A wA m x x x ρρρρ+++=....1ρ液体混合物中个组分得密度,10. Kg/m 3,x--液体混合物中各组分的质量分数。

10 。

表压强=绝对压强-大气压强 真空度=大气压强-绝对压强 11. 体积流量和质量流量的关系:w s =v s ρ m 3/s kg/s 整个管横截面上的平均流速:A Vs=μ A--与流动方向垂直管道的横截面积,m 2流量与流速的关系:质量流量:μρ===A v A w G ss G 的单位为:kg/(m 2.s)12. 一般圆形管道内径:πμsv d 4=13. 管内定态流动的连续性方程:常数=====ρμρμρμA A A s w (222111)表示在定态流动系统中,流体流经各截面的质量流量不变,而流速u 随管道截面积A 及流体的密度ρ而变化。

对于不可压缩流体的连续性方程:常数=====A A A s v μμμ (2211)体积流量一定时流速与管径的平方成反比:()22121d d =μμ 14.牛顿黏性定律表达式:dy duμτ= μ为液体的黏度1Pa.s=1000cP15平板上边界层的厚度可用下式进行评估:对于滞留边界层5.0Re 64.4xx=δ 湍流边界层2.0Re 376.0xx=δ式中Re x 为以距平板前缘距离x 作为几何尺寸的雷诺数,即μxp u s x =Re ,u s 为主流区的流 速16 对于滞留流动,稳定段长度x 。

化工流体流动与流体输送机械概述

化工流体流动与流体输送机械概述

比较项目
物质结构和形态
过程工业
变化
加工工业
不变化
实现方法 各种反应及分离过程 不同的加工工序
所依靠设备 釜、罐、塔器、泵
适当的设备
产品计量
质量或体积(千克、 件数(片、支、粒等) 吨、升等
化学工程与技术的五个二级学科
❖ 化学工程:研究各类化学过程和物理过程的一般原理、
共性规律、工程基础和应用技术;
❖ 物料衡算(Mass Balance): 输入物料量 = 输出物料量 + 累积物料量
稳态过程:输入物料量 = 输出物料量 ❖ 能量衡算(Energy Balance):
输入能量 = 输出能量 + 系统累积能量 稳态过程:输入能量 = 输出能量 ❖ 过程速率 = 过程推动力/过程阻力
本课程的教学内容
❖ 化学工艺:研究化学品的精化原理、生产原理、产品
开发、工艺实施、过程设计和优化;
❖ 生物化工:研究有生物体或生物活性物质参与的过程
的基本原理和工程技术问题;
❖ 应用化学:研究精细化学品、专用化学品、功能材料
及器件等的制备原理和工艺技术;
❖ 工业催化:研究催化剂和催化反应过程的理论基础及
其设计、开发和工业应用。
<3>阻力计算式:
直管:wf=λ(l/d)(u2/2) i.e. hf=λ(l/d)(u2/2g)
局部:wf=ζ(u2/2)
i.e. hf=ζ(u2/2g)
总: Σwf= (λ(l/d)+Σζ)(u2/2) = λ(l+Σle)/d(u2/2)
i.e. Σhf=λ(l/d)(u2/2g) = λ(l+Σle)/d(u2/2g)
(we = 0 ; wf=0) 理想流体

化工原理流体流动与输送机械PPT课件

化工原理流体流动与输送机械PPT课件
1.1.1.连续介质的假定
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:

第2章流体的流动过程与输送机械习题解答

第2章流体的流动过程与输送机械习题解答
6. 如图所示的输水系统, 用泵将水池中的水输送到敞口高位槽, 管道直径均为 φ83×3.5mm, 泵的进、出管道上分别安装有真空表和压力表,真空表安装位置离贮水池的水面高度为 4.8m, 压力表安装位置离贮水池的水面高度为 5m。当输水量为 36m3/h 时,进水管道的全部阻力损 失为 1.96J/kg,出水管道的全部阻力损失为 4.9J/kg,压力表的读数为 2.5kgf/cm2,泵的效率 为 70%,试求: ⑴真空表的读数为多少 kgf/cm2? ⑵泵所需的实际功率为多少 kW? ⑶两液面的高度差 H 为多少 m?
解:在截面 1-1 与 2-2 间列伯努利方程: Z1+u12/2g+p1/ρg=Z2+u22/2g+p2/ρg Z1=0,Z2=0;P1/ρg=1mH2O, u1=1m/s ∴p1/ρg -p2/ρg=u22/2g-u12/2g u2=u1(d1/d2)2=1×(250/150)2=2.78m/s ∴h=p1/ρg-p2/ρg=2.782/(2×9.81)-12/(2×9.81) =0.343mH2O 5. 喷水泉的喷嘴为截头圆锥形,其长度 L=0.5m,其两端的直径 d1=40mm,d2=20mm,竖直装置。 若把表压为 9.807×104N/m2 的水引入喷嘴,而喷嘴的阻力损失为 1.5mH2O,如不计空气阻力,试 求喷出的流速和射流的上升高度。水的密度为 1000kg/m3。
第 2 章 流体的流动过程与输送机械 习题解答
1.乙炔发生器装有水封管(如附图),当器内压力过大时通过水封排气至安全处。要控制发 生器内压力不超过 12kPa(表压),求水封管应插入水的深度 H。
解:
由流体静力学基本方程式知: p0 水 gH p发生器
已知 p 发生器=12kPa(表),

化工原理公式及各章节总结汇总

化工原理公式及各章节总结汇总

第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp d lu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导)6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111lnp m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=4. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热 5. 传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。

流体流动、流体输送机械练习题

流体流动、流体输送机械练习题
∆p 0.5 × 9.807 × 104 H 0 = ∆Z + = 10 + = 15m 1000 × 9.807 ρg
u= Q 30 ÷ 3600 = = 1.62m / s 2 2 0.785d 0.785 × 0.081
20℃水的粘度为1.005cP。 ℃水的粘度为 。
0.081 × 1.62 × 1000 Re = = = 1.306 × 105 1.005 × 10−3 µ λ = 0.01227 + 0.7543 /(1.305 × 105 )0.38 = 0.0209 dup
3.常温下水密度为1000kg/m3,粘度为 .常温下水密度为 粘度为1cP,在d内=100mm管 / , 管 内以3m/s的速度速度流动,其流动类型为 的速度速度流动, 内以 的速度速度流动 。 4.12kgf·m= . = J。 。 5.空气在标准状态下密度为1.29kg/m3,在0.25MPa下(绝 .空气在标准状态下密度为 / 下绝 压)80 ℃时的密度为 。
流量改变后, 流量改变后,总压降与原来总压降相同
lu lu λ3 + λ1 =λ 2d 2d 2d 高度湍 ,λ3 = λ1 = λ, l原 = ( l3 + l1 ) = 2l1 流 u3 u1 = 2
2 3 3
2 1 1
l原u2
2 u3 u3 1 + = u2 2 2 2
2
5 2 8 2 u3 = u u3 = u 8 5 8 8 qv3 = qv = ×5000 = 6330m3 / h 5 5
式中H的单位为 ,Q的单位为 3/min。求最高效率点的效 式中 的单位为m, 的单位为m 。 的单位为 的单位为 率并评价此泵的适应性;( )若此泵适用, 率并评价此泵的适应性;(3)若此泵适用,用关小阀门调节流 ;( 量,求调节阀门消耗的功率;( )若(2)的泵不用改变阀门 求调节阀门消耗的功率;(4) ;( ) 的开度而改变转速调节流量,试求转速应调节到多少? 的开度而改变转速调节流量,试求转速应调节到多少?

1-流体流动及流体输送机械总结

1-流体流动及流体输送机械总结

③使用微差压差计(双液杯式微压计)。
流体静力学基本方程式的应用
4. 微差压差计 普通U形管压差计读数R过小
p1 p2 ( A C ) gR
流体静力学基本方程式的应用
5. 倒装U形管压差计
ρ0
A
B
p p1 p2 Rg 0
R
z1 1 流体ρ 2 z2

为单位称工程大气压,at。
1atm=1.013×105 Pa=1.033 at=10.33 mH2O=760 mmHg
基本参数

静力学方程的应用: 测量两点压差或各点静压 测量液位高度 确定液封高度
流体流动基本原理

流体静力学
流体静力学基本方程式
描述静止流体内部压力分布的数学表达式,称为流体静力学基本方程式
N e weW weV
[J/s 或 W]
⑥ 以单位重量为基准,Bernoulli方程式的形式为:
2 u12 p1 u2 p2 z1 H e z2 H f ,12 2g g 2g g
He
——有效压头或外加压头,m ——压头损失,m
H
f , 12
流体流动的守恒原理 机械能守恒——柏努利(Bernoulli)方程式
1.单位质量流体所具有的能量
u p u p gz1 1 1 we gz2 2 2 h f 2 2
2 2
J/kg
2.单位体积流体所具有的能量
gz1 u1 2
2 p1 we gz2
u 2 2
2
p2 p f
J/m3 或N/m2 , Pa
对不稳定流动:任一瞬间Bernoulli方程式都成立。

化工原理公式总结

化工原理公式总结

第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp dlu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ 第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热1. 傅立叶定律:n t dA dQ ϑϑλ-=,dxdtA Q λ-=2. 热导率与温度的线性关系:)1(0t αλλ+=3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ由公式4推导6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =-- 第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=04. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热 5. 传热面积:mt K Q A ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点;6. 蒸发器的生产能力:)(1t T KA Q -=7. 蒸发器的生产强度蒸发强度:QW E =第六章 蒸馏1. 乌拉尔定律:A AA x p p 0=,)1(0AB A x p p -= 2. 道尔顿分定律:B A p p p +=3. 双组分理想体系气液平衡时,系统总压、组分分压与组成关系:A A A A x p py p 0==,B B B B x p py p 0==4. 泡点方程:o Bo A o B A p p p p x --=,露点方程:oB oA oBo A A p p p p p p y --⋅=5. 挥发度:A AAx p =ν,BB B x p =ν 6. 相对挥发度: B B A A B A x p x p ==ννα,或BA B A x xy y ⋅=α7. 相平衡方程:xxy )1(1-+=αα8. 全塔物料衡算:W D F +=,xW xD xF W D F +=9. 馏出液采出率:xW D WF x x x F D --=10. 釜液采出率:xWD FD x x x F W --=11. 精馏段操作线方程:D L V +=,D n n Dx Lx Vy +=+1,D n n x VDx V L y +=+1 令D L R =回流比,则D n n x R x R R y 1111+++=+ 12. 提馏段操作线方程: 总物料衡算:W V L +='',易挥发组分的物料衡算:xW m m W y V x L +=+1'' 即W m m x WL Wx W L L y ---=+'''1 13. q 线方程进料方程:11---=q x x q qy F 14. 芬斯克方程:mW W D D xx x x N αlg 11lg 1min ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-=+第七章 干燥1. 湿度:vva v a a v v p p p n n M n M n H -===622.02918 2. 相对温度:%100⨯=sv p pϕ3. 湿比热容:H c c c v a H +=,在0~120℃时, H c H 88.101.1+=4. 湿空气焓:v a H HI I I +=,具体表达式为:H t H I I H 2492)88.101.1(++=5. 湿比体积:()p t H p t H v H 5510013.12732734.22244.1772.010013.12732734.2218291⨯⨯+⨯⨯+=⨯⨯+⨯⨯⎪⎭⎫⎝⎛+=露点温度:dd p p p H -⋅=622.0,即H Hpp d +=622.0。

化工基础-流体输送及机械

化工基础-流体输送及机械

化工基础-流体输送及机械导言化工工程是利用物理、化学和生物学原理来设计、操作和控制化学过程的科学和工程学科。

在化工过程中,流体输送和机械装置是不可或缺的组成部分。

本文将介绍化工过程中流体输送和机械装置的基础知识,包括流体输送的原理、流体的性质和流体行为、常见的机械装置以及它们在化工工程中的应用。

一、流体输送的原理1. 流体输送的定义流体输送是指将液体或气体从一个地方输送到另一个地方的过程。

在化工工程中,流体输送通常是通过管道进行的。

2. 管道输送的原理管道输送是流体输送的常见方式之一。

它的原理是利用管道内的压力差来推动流体的流动。

通过控制管道内的压力和流速,可以实现流体在管道中的输送。

二、流体的性质和流体行为1. 流体的性质流体的性质包括密度、粘度、表面张力等。

这些性质对流体的输送和机械装置的设计都有影响。

2. 流体行为在流体输送和机械装置中,流体的行为对于流体的流动和机械装置的性能起到重要的作用。

流体的行为包括流态、流动模式、流动速度等。

三、常见的机械装置1. 泵泵是常见的机械装置之一,用于将液体从一个地方抽出或推入另一个地方。

根据其工作原理和结构,泵可以分为离心泵、容积泵等。

2. 压缩机压缩机是将气体压缩并推送到管道或储罐中的机械装置。

根据其工作原理和结构,压缩机可以分为容积式压缩机、离心式压缩机等。

3. 阀门阀门用于控制管道中流体的流动。

根据其结构和控制方式,阀门可以分为截止阀、调节阀等。

四、流体输送和机械装置在化工工程中的应用流体输送和机械装置在化工工程中有着广泛的应用。

它们可以用于输送各种流体,例如原料、中间产品和最终产品。

同时,它们也可以用于控制和调节流体的流动,以满足化工工程的生产要求。

常见的应用包括液体输送、气体输送、混合和分离等。

例如,在化工生产中,通过泵将液体从储罐输送到反应器中,然后通过压缩机将生成的气体送入分离设备进行分离。

结论流体输送和机械装置是化工工程中不可或缺的组成部分。

化工基础课第三章 流体流动及流体输送设备

化工基础课第三章 流体流动及流体输送设备
为 1.5m,管路阻力损失可按 hf = 5.5u2
计算(不包括导管出口的局部阻力),溶 液密度为 1100kg/m3。
试计算:送液量每小时为 3m3 时,容器 B 内应保持的真空度。
pa
1
22
p真
抽真空
1.5m
B
1
A
解:取容器A的液面1-1截面为基准面,导液管出口为2-2截面, 在该两截面间列柏努利方程,有
z2 g
u22 2
5.5u22
1.5 9.81 6.01.182 1100 2.54104 Pa
ZYNC 化学系
3.3流体压力和流量的测量
1.流体压力的测量---U形管压力计 2.流体流量的测量---孔板流量计、文丘里流量计、
转子流量计
ZYNC 化学系
1.流体压力的测量---U形管压力计
ZYNC 化学系
⑴ 粘度μ的物理意义:
y
设有上、下两块平行放置、 面积很大、相距很近的夹板,板 间充满流体,下板固定,以一推 动力F推动上平板以u恒速运动。
y y
经实验证明,此时: 引入比例系数μ,有:
F u A y
F u A
y
ZYNC 化学系
⑵ 粘度 : 单位:Pa·s,泊P:g·cm-1·s-1
量,其原理与孔板流量计相同。
结构:采取渐缩后渐扩的流道,避免使流体出现边界层分离而
产生旋涡,因此阻力损失较小。
qv u0S0 cvS0
2gR(i )
ZYNC 化学系
文丘里流量计
ZYNC 化学系
⑶ 转子流量计 原理:
流体出口
转子上下截面由于压差(p1-p2)所形成的
向上推力与转子的重力相平衡。稳定位置与流

流体流动与流体输送机械

流体流动与流体输送机械

3
五、管内流动的阻力损失
沿程阻 流体流经直管时的机械能损耗(直 力损失 管阻力损失)
管道
的总
阻力
流体流经各种管件和阀件时,由于流
速大小和方向突然改变,从而产生大 局部阻 量漩涡,导致很大的机械能损失,这 力损失
种损失属于形体阻力损失,它由管件
等局部部位的原因引起,而称为局部
阻力损失
〔1〕沿程阻力损失的计算
a. 流体密度的影响
由离心泵的基本方程(书57、58页的2-8、2-11)可看出, 离心泵的压头、流量均与液体的密度无关,但离心泵所需 的轴功率则随液体密度的增加而增加
b. 黏度的影响
液体粘度的改变将直接改变其在离心泵内的能量损失,因
此,H—Q、N—Q、—Q曲线都将随之而变。
• 转速的影响—比例定律
三管内流体的质量衡算连续性方程从截面11流入的流体质量流量s1应等于从截面22流出的流体质量流量对于不可压缩流体于是得到液体的平均流速与管道流通截面积成反比对于圆管于是得到圆管的平均流速与管道管径的平方成反比如果管路有分支总管中的质量流量为各支管质量流量之和四管内流体的机械能衡算实际流体的机械能衡算由于实际流体有粘性流体在流动过程中流体内部及流体与管内壁产生摩擦流体流动时要消耗机械能以克服阻力造成流体的能量损1kg流体计的不可压缩实际流体的机械能衡算式gzwe外加功能量损失p1静压能单位jkg除以重力加速度则得到单位重量流体为基准的机械能衡算式2g动压头速度头压头损失单位均为则可以得到以单位体积流体为基准的机械能衡算方程压头损失的关系gh伯努利方程理想流体是指没有黏性的流体即黏度的流体则机械能衡算式为
Q1 n1 Q2 n2
H1 ( n1 )2 H 2 n2
N1 ( n1 )3 N2 n2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沉降
重要概念:自由沉降、沉降速度、影响沉降速度的因素、离心分离因素
公式: 斯托克斯公式
本质上是颗粒与流体的相对运动速度
ut
d
2 p
p 18
g
(Re<2)
降尘室: 能 100%去除的最小颗粒满足
停留时间 L 沉降时间 H
u
ut
气体处理能力Vs ut min A底 ,与底面积呈正比,与高度无关。
常用流速范围、管内速度分布 2、流量:体积流量、质量流量 3、稳定流动与不稳定流动 4、粘度:是阻力产生根本原因,影响因素 牛顿粘性定律 5、层流与湍流的本质区别:质点运动方式不同,不是雷诺数 6、边界层厚度、边界层的形成和发展、边界层分离
7、 湍流的脉动速度
8、阻力系数:突然扩大、突然缩小,以小管流计算阻力损失
三、离心泵工作点 管路特性曲线与泵特性曲线的交点 工作点的调节:阀门调节、转速调节、泵的串并联等
第二章 流体输送机械
四、两个现象 气缚:无自吸能力 汽蚀:确定安装高度
五、选泵 六、离心泵的安装与操作 七、其它类型泵
适用场合、流量调节 八、气体输送机械
风机:全风压
第三章 机械分离与固体流态化
1.过滤重要概念
le d
u2 2
或w f
u2 2
入 0.5 出 1
第二章 流体输送机械
一、离心泵操作原理及基本部件 叶轮:将原动机能量传递给液体 泵壳:汇集液体、能量转换 平衡孔:减小轴向推动力
二、离心泵特性曲线 设计点、三条特性曲线、扬程与升举高度的区别、 泵特性曲线的测定、影响泵特性曲线的因素、轴功 率、有效功率、效率、能量损失分类
dA n
2、一维稳态导热
平壁 圆筒壁
Q qA
t1 t2 b A
推动力 热阻
总推动力 Q 总热阻
t1 t4
3
bi i A
Q t1 t2 b

Q t1 t4 3
总推动力 总热阻
bi i Ami
i 1
Am
i 1
Am 2rm L
rm
r2 r1 ln r2 r1
• 对流
概念:热边界层、
第一章 流体流动
动力学应用: 流速测量:
恒截面、变压差 1、皮托管:测点速、安装要求 2、孔板流量计 3、文丘里管 变截面、恒流速 4、转子流量计
各自优缺点 三、管路计算 1、简单管路* 2、复杂管路:特点
管路计算
公式
静力学方程式: p2 p1 gz1 z2
连续性方程: 1u1 A1 2u2 A2 (稳定流动)
各种对流传热情况下的影响因素、数量级 几个准数:Nu、Pr、Gr
公式
1、牛顿冷却定律 2、管内湍流时:
Q At w t
适用N条u 件 0、.0定23性R温e0度.8 P、r定n 性nn 尺 00寸..34
被加热 被冷却
u 0.8
d 0.2
α液体沸腾 >α蒸汽冷凝 >α液体强制对流 >α气体强制对流
u1 A1 u2 A2 (不可压缩流体)
u1
d
2 1
u2
d
2 2
(圆管内)
机械能衡算方程: gz1
u12 2
p1
we
gz2
u22 2
p2
wf
要求能够进行 管路计算及分 析:
简单管路 复杂管路 设计型、操作 型问题
阻力计算式:
直管
wf
l d
u2 层流:
2
湍流:
64
Re
f Re,
d
局部
wf
分离条件
设备:降尘室结构
第三章 机械分离与固体流态化
旋风分离器:临界直径、分离效率
固体流态化 重要概念:流态化的几个阶段性状及其主要特征 流化床的主要性质
• 热传导
第四章、第五章小结
概念:导热系数(单位、固液气的相对大小、t对的影响)
临界厚度、等温面、温度梯度
公式:
1、傅立叶定律
q dQ t
q 2 2qqe K
第三章 机械分离与固体流态化
恒速过滤方程
洗涤:
u dV 常数
Ad
V
2
VVe
K 2
A2
q2
qqe
K 2
dV
d w Aw L dV A w Lw d e
w
Vw dV
d w
1 (板框)
4 w
(叶滤机、转筒真空机) w
第三章 机械分离与固体流态化
LMTD法: Q=KAΔtm
设计型、操作型问题计算、分析
设备:列管式换热器的结构、热补偿方法、
流程选择原则、壁温 强化传热措施
强化传热措施
1、单位体积内的传热面积A: 改进传热面结构,在管子的外表面增设各种形状的翅片
;以螺纹管代替光管,从而增加A。 2、平均温度差Δtm :尽量采用逆流 3、传热系数K: 无相变 a) 降低污垢热阻 b) 增大α 有相变传热:
蒸汽冷凝: ①滴状冷凝;②不凝性气体的排放; ③在表面开沟、槽。
液体沸腾:核状沸腾。
每一个成功者都有一个开始。勇于开始,才能找到成

1、
功的路 。20.10.1520.10.15Thursday, October 15, 2020
滤浆、滤饼、过滤介质、滤液、过滤推动力与阻力 过滤速率、滤饼可压缩与不可压缩、压缩指数、助滤剂、 过滤常数及特性、空隙率、生产能力
间歇式:Q
V w
D

当Ve 0, D w时,Q Qmax
连续式:Q
V T
nV
A
Kn,n , Q
2、设备:板框机、叶滤机、转筒真空过滤机的结构、特点
第三章 机械分离与固体流态化
• 辐射
概念:黑体、灰体、吸收率、黑度、角系数
公式:
Eb
0T 4
E
5.669
T
4
100 -------斯蒂芬—玻尔兹曼定律
Eb
a------可希霍夫定律
Q12
1
Eb1 Eb2
11 12
----两灰体组成的封闭体系
A1 F12 1 A1 2 A2
• 换热器* 概念:传热的三个环节(间壁式)、传热单元 公式:
3.过滤公式:
与滤饼性质有关(比阻 r0、比表面积 a、 空隙率、压缩指数 s)、
与滤浆的性质(浓度、密度、粘度)有关。
与推动力有关 K p1s
u
dV
Ad
过滤推动力 KA
过滤阻力 2V Ve
p
rL
r 与滤饼的结构、性
质(比表面积 a、空
Ve 与过滤介质的性质有关
隙率)有关
恒压过滤方程 V 2 2VVe KA2
第一章 流体流动
连续介质模型
一、静力学
1、密度:流体的可压缩性
2、压力:绝压、表压、真空度
3、静力学方程式:
p2 p1 g z1 z2
等压面概念
应用条件:同一、静止、连续不可压缩流体
静力学方程式应用:
U管压差计:广义压差
双液U管压差计:特点、要求、作指示液条件
第一章 流体流动
二、动力学 基本概念: 1、流速:点速、平均速度、质量流速G=ρu
相关文档
最新文档