利用三角函数测高度

合集下载

利用三角函数测高

利用三角函数测高

3. 如图所示,某数学活动小组要测量山坡上的电线杆PQ 的高度.他们采取的方法是:先在地面上的点A处测 得电线杆顶端点P的仰角是45°,再向前走到B点,测 得电线杆顶端点P和电线杆底端点Q的仰角分别是60° 和30°,这时只需要测出AB的长度就能通过计算求出 电线杆PQ的高度.若测出AB的长度为1 m, 3+ 3 则电线杆PQ的高度是___6____m_.
解:若选择条件①,由题意得CCDE=BACB,∴11..28=A9B, 解得 AB=13.5 m,∴旗杆 AB 的高度为 13.5 m. 若选择条件②,如图,过点 D 作 DF⊥AB,垂足为 F, 则易得四边形 BCDF 是矩形,∴BF=CD=1.8 m,DF=BC=9 m, 在 Rt△ADF 中,∠ADF=52.46°, ∴AF=DF·tan 52.46°≈9×1.30=11.7(m), ∴AB=AF+BF≈11.7+1.8=13.5(m), ∴旗杆 AB 的高度约为 13.5 m.
(参考数据:sin 67.38°≈1123,cos 67.38°≈153,tABC 中,
∵∠ABC=90°,∠ACB=67.38°,∴BC=tan∠ABACB≈1x2=152x(米), 5
∴BD=BC+CD≈152x+11米.由题意得 AD∥EF, 则∠FED=∠ADB,∴tan∠FED=tan∠ADB,即DDEF=BADB, ∴21..48≈152x+x 11,解得 x≈12,经检验,符合题意.
变式3 [2024西安高新一中模拟]如图,小明想测量 城墙AB的高度,他在围栏点C处测量城墙顶 点A的仰角为67.38°,在阳光的照射下,他 发现城墙上点A的影子落在了他身后11米的 点D处,于是他站在D点发现他的影子落在 地上的点E处,测量得ED长为2.4米,小明身 高为1.8米,E,D,C,B在一条直线上,且 FD⊥ED,AB⊥BE,请你根据以上数据帮助 小明算出城墙AB的高.

北师大版数学九年级下册《6 利用三角函数测高》教案

北师大版数学九年级下册《6 利用三角函数测高》教案

北师大版数学九年级下册《6 利用三角函数测高》教案一. 教材分析北师大版数学九年级下册《6 利用三角函数测高》这一节主要让学生了解利用三角函数测量物体高度的方法,理解三角函数在实际生活中的应用。

通过这一节的学习,学生能够掌握用三角板和皮尺测量物体高度的基本方法,培养学生的实际操作能力和解决实际问题的能力。

二. 学情分析九年级的学生已经学习了三角函数的基本知识,对三角板和皮尺等测量工具也有一定的了解。

但是,学生可能对如何将理论运用到实际问题中还有一定的困难,因此,在教学过程中,教师需要引导学生将所学的知识与实际问题相结合,提高学生的实践能力。

三. 教学目标1.知识与技能:让学生掌握利用三角函数测量物体高度的基本方法。

2.过程与方法:通过实际操作,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:让学生掌握利用三角函数测量物体高度的方法。

2.难点:如何将所学的三角函数知识运用到实际问题中。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过实际案例引导学生思考,激发学生的学习兴趣;以小组合作的形式,让学生在实际操作中解决问题,培养学生的实践能力。

六. 教学准备1.准备三角板、皮尺等测量工具。

2.准备相关案例材料。

七. 教学过程1.导入(5分钟)利用一个生活中的实例引入课题,如:如何测量旗杆的高度。

让学生思考如何解决这个问题,引发学生对利用三角函数测高的兴趣。

2.呈现(10分钟)呈现旗杆高度测量案例,引导学生分析问题,提出解决方案。

让学生尝试用所学的三角函数知识解决问题,教师给予指导。

3.操练(10分钟)学生分组进行实际操作,用三角板和皮尺测量旗杆的高度。

教师巡回指导,纠正学生在操作过程中可能出现的问题。

4.巩固(10分钟)让学生总结在测量过程中所用的方法和技巧,教师点评并总结。

让学生复述所学的知识点,加深对利用三角函数测高的理解。

1.6 利用三角函数测高(教案)-北师大版数九年级下册

1.6 利用三角函数测高(教案)-北师大版数九年级下册

第6节利用三角函数测高1.经历设计活动方案、自制仪器或运用仪器进行实地测量以及撰写活动报告的过程.2.能够对得到的数据进行分析,能够对仪器进行调整和对测量的结果进行矫正,进而得出所要求的结果.3.能够综合运用直角三角形边角关系的知识解决实际问题.让学生经历设计活动方案、自制仪器的过程,通过综合运用直角三角形边角关系的知识,利用数形结合思想解决实际问题,提高学生解决实际问题的能力.通过积极参与数学活动过程,培养学生不怕困难的品质,发展合作意识和科学精神.【重点】综合运用直角三角形边角关系的知识解决实际问题.【难点】设计活动方案、运用仪器的过程及学生学习品质的培养.【教师准备】测倾器、皮尺等测量工具;多媒体课件.【学生准备】复习三角函数的概念和解直角三角形的相关知识.导入一:一天课外活动课,数学兴趣小组的同学想去操场上测量学校旗杆的高度(如图所示).以下是两位同学设计的测量方案:方案1:用皮尺和标杆能测出旗杆的高度.方案2:用皮尺和小平面镜能测出旗杆的高度.【问题】你认为这两位同学提出的方案可行吗?如果是阴天没有太阳光怎么办?[设计意图]通过生活中的实际问题引入课题,使学生认识到数学源于生活,增加学生学习数学的兴趣,并让学生带着问题走进今天的学习.导入二:如图所示展示的是山东省青岛市电视塔夜晚的美丽景色,青岛电视塔坐落于市中心榉林公园内116m高的太平山上.由上海同济大学马人乐先生设计.由于其创意新、选点好、功能布局合理、色调协调及综合规模宏大等,1995年被国务院发展研究中心选入《中华之最大荣誉》,认为是“中国第一钢塔”.某数学兴趣小组的同学想测量该电视塔的高度.【问题】测量电视塔的高度和测量旗杆的高度的方法一样吗?两者有什么区别?[设计意图]通过青岛市电视塔的介绍,既让学生增长了课外知识,又引出了新的疑问——测量方法的区别,激发了学生的学习兴趣,为新知的探究奠定了良好的基础.课件出示:(一)测倾器的认识:如图所示的是一个测倾器的外观图,它是测量倾斜角的仪器.简单的测倾器由度盘、铅锤和支杆组成.【教师活动】制作测倾器时应注意什么?【学生活动】学生观察、交流后得出:支杆的中心线、铅垂线、0°刻度线要重合,否则测出的角度不准确.度盘的顶线PQ与支杆的中心线、铅垂线、0°刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ的交点.当度盘转动时,铅垂线始终垂直向下.(二)测倾器的使用方法和步骤:【教师活动】用测倾器如何测仰角?【师生活动】学生思考后,师生共同总结:使用测倾器测量倾斜角的步骤如下:1.把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.2.转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.(三)测倾器的运用:课件出示:【做一做】根据刚才测量的数据,你能求出目标M的仰角或俯角吗?说说你的理由.【师生活动】根据操作步骤:当度盘的直径对准目标M时,铅垂线指向一个度数,即∠BOA的度数.根据图形我们不难发现:∵∠BOA+∠NOA=90°,∠MON+∠NOA=90°,∴∠BOA=∠MON.因此读出∠BOA的度数也就读出了仰角∠MON的度数.∴测倾器上铅垂线所示的度数就是物体仰角的度数.【思考】根据上面的做法,如何用测倾器测量一个低处物体的俯角呢?【学生活动】生类比操作:和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.[设计意图]了解测倾器的构造,学习其使用方法.目的是在测量时能正确地使用,特别注意测量【教师提示】所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离.师引导学生观察并思考下面的问题:1.如图所示,要测量物体MN的高度,需测量哪些数据?2.请说出测量物体MN的高度的一般步骤,需要测得的数据用字母表示.【学生活动】学生思考后与同伴交流,统一答案:1.测量A点到物体底部N点的距离AN、测倾器的高度AC的长以及测量仰角∠MCE的度数.2.测量底部可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).【做一做】根据上面测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:在Rt△MCE中,ME=EC·tanα=AN·tanα=l·tanα,∴MN=ME+EN=ME+AC=l·tanα+a.[设计意图]通过小组合作设计方案,培养学生科学的思维方式及归纳总结的能力,并积累“做数学”经验.【活动三】测量底部不可以到达的物体的高度【教师提示】所谓“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.师引导学生观察,小组交流,思考下面的问题:1.要测量物体MN的高度,使用测倾器测一次仰角够吗?2.如图所示,你能类比活动二的方法得出测量底部不可以到达的物体的高度的一般步骤吗?需要测得的数据用字母表示.【师生活动】学生交流后代表发言,师生共同订正:1.要测量物体MN的高度,测一次仰角是不够的.2.测量底部不可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得此时M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测倾器(A,B与N都在同一条直线上),测得此时M的仰角∠MDE=β.(3)量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b.【做一做】根据刚才测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:∵在Rt△MDE中,ED=,在Rt△MCE中,EC=,∴EC-ED=b,∴=b,∴ME=,∴MN=+a.【议一议】同学们知道了底部不可以到达的物体高度的测量方案,利用这种方案你们可以测量哪些物体的高度?【学生活动】生发挥想象力,并分组讨论这些高度的测量方案和计算方法.【议一议】问题(1):到目前为止,有哪些测量物体高度的方法?【师生小结】测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.问题(2):如果一个物体的高度已知或容易测量,那么如何测量某测点到该物体的水平距离?【师生小结】以活动三中的图为例,可以测得M的仰角∠MCE=α,以及测倾器的高AC=a,然后根据AN=EC即可求出测点A到物体MN的水平距离AN.[设计意图]引导学生设计测量底部不可以到达的物体的高度,在交流、展示自己设计的方案的过程中完善方案,判断其可行性,为下面的实际操作做准备,同时培养学生科学、严谨的做事态度.【活动四】设计测量方案,撰写活动报告你能根据我们学过的测量物体高度的方法完成下面的问题吗?课件出示:某校学生去春游,在风景区看到一棵汉柏树,不知这棵汉柏树有多高,下面是两位同学的一段对话:小明:我站在此处看树顶仰角为45°.小华:我站在此处看树顶仰角为30°.小明:我们的身高都是1.6m.小华:我们相距20m.请你根据这两位同学的对话,计算这棵汉柏树的高度.(参考数据:≈1.414,≈1.732,结果保留三个有效数字)【教师活动】引导学生判断是测量底部可以到达的物体的高度还是测量底部不可以到达的物体的高度,然后从两名学生的对话中分析得到的信息:∠ABE=30°,∠ACE=45°,ED=1.6m,BC=20m.【师生活动】生独立解答后,同伴交流.代表展示,师生共同订正.解:如图所示,延长BC交DA于E.设AE的长为x m.在Rt△ACE中,∠ACE=45°,∠AEB=90°,则∠CAE=45°,∴CE=AE=x.在Rt△ABE中,∠B=30°,AE=x,tan B=,即tan30°=,∴BE=x.∵BE-CE=BC,BC=20m,∴x-x=20,解得x=10+10,∴AD=AE+DE=10+10+1.6≈28.9(m).答:这棵汉柏树的高度约为28.9m.【学生活动】撰写活动报告.[设计意图]在解决问题的过程中再一次验证测量方案的可行性,巩固新知的同时,利用生活情境设计问题,培养学生的应用意识,提高分析问题、解决问题的能力.1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.1.(2015·长沙中考)如图所示,为测量一棵与地面垂直的树OA的高度,在距离树的底端30m的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.mB.30sinαmC.30tanαmD.30cosαm解析:在Rt△ABO中,∵BO=30m,∠ABO为α,∴AO=BO tanα=30tanα(m).故选C.2.某市进行城区规划,工程师需测某楼AB的高度,工程师在D点用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,则楼AB的高为.解析:在Rt△AFG中,∠AFG=60°,∠AGC=90°,tan∠AFG=,∴FG==.在Rt△ACG中,∠ACG=30°,tan ∠ACG=,∴CG==AG.∵CG-FG=30m,∴AG-=30,解得AG=15,∴AB=(15+2)m.故填(15+2)m.3.在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图所示,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留整数)解:(1)在Rt△ABC中,∠ACB=30°,AB=4,tan∠ACB=,∴AC===4(m).答:AC的距离为4m.(2)在Rt△ADE中,∠ADE=50°,AD=5+4,tan∠ADE=,∴AE=AD·tan∠ADE=(5+4)×tan50°≈14(m).答:塔高AE约为14m.6利用三角函数测高1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.利用三角形相似的知识可以测量物体的高度.3.利用全等三角形的知识也可以测量物体的高度.一、教材作业【必做题】教材第23页习题1.7第1,2题.【选做题】教材第23页习题1.7第3题.二、课后作业【基础巩固】1.已知A,B两点,如果A对B的俯角为α,那么B对A的仰角为()A.αB.90°-αC.90°+αD.180°-α2.如图所示,为了测量电线杆AB的高度,小明将测倾器放在与电线杆的水平距离为9m的D处.若测倾器CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为m(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)3.如图所示,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m.(结果不作近似计算)4.(2014·云南中考)如图所示,小明在M处用高1m(DM=1m)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10m到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度.(取≈1.73,结果保留整数)【能力提升】5.(2015·衡阳中考)如图所示,为了测得电视塔的高度AB,在D处用高为1m的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100m达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:m)为()A.50B.51C.50+1D.1016.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图(1)所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山(如图(2)所示)高度的方案:(1)在图(2)中,画出你测量小山高度MN的示意图(标上适当的字母);(2)写出你的设计方案.【拓展探究】7.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3m,台阶AC的坡度为1∶(即AB∶BC=1∶),且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【答案与解析】1.A2.8.1(解析:在Rt△ACE中,AE=CE·tan36°=BD·tan36°=9×tan36°≈6.57,∴AB=AE+EB=AE+CD ≈6.57+1.5≈8.1(m).故填8.1.)3.12(解析:首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt△ADE 中,利用正切函数的知识,求得AB与AE的长,进而可求得答案.)4.解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°-∠BDE=30°=∠BDE,∴BC=CD=10m,在Rt△BCE中,sin 60°=,即=,∴BE=5,AB=BE+AE=5+1≈10(m).答:旗杆AB的高度大约是10m.5.C(解析:设AG=x,在Rt△AEG中,∵tan∠AEG=,∴EG==x.在Rt△ACG中,∵tan∠ACG=,∴CG==x,∵CG-EG=100,∴x-x=100,解得x=50,则AB=50+1(m).故选C.)6.解:(1)画出示意图如图所示.(2)①在测点A处安置测倾器,测得此时M的仰角∠MCE=α.②在测点B处安置测倾器(A,B与N在同一条直线上),测得此时山顶M的仰角∠MDE=β.③量出测倾器的高度AC=BD=h,以及测点A,B之间的距离AB=m.根据上述测量数据,即可求出小山的高度MN.7.解:如图所示,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3.设DE=x,在Rt△CDE 中,∠DCE=60°,∴CE==x.在Rt△ABC中,∵=,AB=3,∴BC=3.在Rt△AFD中,DF=DE-EF=x-3,∠DAF=30°,∴AF==(x-3).∵AF=BE=BC+CE,∴(x-3)=3+x,解得x=9.∴DE=9m.答:树的高度为9m.这节课采用了学生分组活动与全班交流研讨相结合的方法探究测量物体高度的方案,并利用探索出的方案解决生活问题.本节课给了学生足够多的活动空间,通过师生互动、生生互动等活动,让学生积极参与到活动中来,激发学生学习的兴趣,让学生自主探究利用三角函数测高的步骤和方法,并会对测量物体的高度的方案进行设计.让学生用已有的知识解决生活实际问题,体验数学来源于生活,应用于生活,进一步掌握从实际问题到解直角三角形的建模过程.另外,通过小组合作交流形式,让学生积极参与数学活动,对数学产生好奇心,培养学生独立思考问题的习惯,并在数学活动中获得成功的体验,建立自信心.在探究时给学生充分的自主讨论交流时间,导致后面的当堂检测题处理得比较仓促,部分学生接受起来可能有些困难.针对每种测量方案都给出具体的事例让学生去实践,以检验自己所设计方案的可行性.复习题(教材第24页)1.解:(1).(2)0.(3).2.解:(1)0.7841.(2)0.0374.(3)0.7566.3.解:(1)∠A=45°.(2)a=4,∠A=60°.(3)a=b=4.4.sin A=,tan A=.5.(1)∠A≈42°27'15″.(2)∠B≈85°28'29″.(3)∠C≈88°23'28″.6.解:(1)==1.(2)原式=+2×+1-+=++1-+=2.(3)原式=-tan60°=tan60°-1-tan60°=-1.7.解:AC=2,BC=2,sin A=,cos A=.9.解:(1)tan∠ABC=tan∠ADC.(2)tan∠ABC=tan∠ADC.(3)tan∠ABC=·tan∠ADC.10.CD≈5.82m[提示:CD=BD-BC=20tan56°-20tan50°≈5.82(m).]11.船与观测者之间的水平距离约为173.2m.[提示:水平距离=≈173.2(m).]12.解:(1)如图所示,由两直线平行,内错角相等得∠ABD=60°.∵∠CBE=30°,∴∠ABC=90°.∵AB=BC=10km,∴AC==10≈14.1(km).(2)∵AB=BC,∴∠CAB=∠C=45°,∴C港在A港北偏东60°-45°=15°的方向上.13.解:依题意知PQ=180m,∠PTQ=50°,∴∠PQT=40°.∵tan∠PQT=,∴PT=PQ·tan40°≈180×0.839≈151(m).14.解:在Rt△ABC中,AC=6.3,BC=9.8,∴tan B==.∴∠B≈32°44'7″.因此射线与皮肤的夹角为32°44'7″.15.解:(1)在Rt△ACB中,∵AB=4m,∠ABC=60°,cos∠ABC=,∴BC=AB·cos60°=4×=2(m).(2)在Rt △DCE中,∵CD=2.3m,ED=4m,∴sin∠DEC===0.575,∴∠DEC≈35°5'58.68″.16.解:如图所示,在Rt△ACB中,∵AC=30m,∠BAC=30°,tan∠BAC=,∴BC=AC·tan30°=30×=10≈17.3(m).∵CE=AD=40m,∴BE=BC+CE=17.3+40≈57(m),∴乙楼高约57m.17.解:在Rt△BED 中,tan∠BDE =.在Rt△ACB 中,tan∠BAC =.∵∠BDE =30°,∠BAC =60°,DE =AC ,EC =AD =30m ,∴tan 30°=,即BC -30=AC ·tan 30°.又tan 60°=,即BC =AC ·tan 60°,∴AC -30=AC ,∴AC =30,∴AC ==15≈25.98(m ),∴BC ≈25.98×≈45.00(m ).18.解:设渔船到海岛A 的最近距离为x n mile ,由题意得(x -12)=x ,解得x =6>8,所以渔船没有触礁的危险.19.解:过点C 作CF ⊥AB 于F ,则△ADE ∽△ACF ,∴=,即=,∴CF =2.7m .∵BC =2.8m ,∴sin α==≈0.9643,∴α≈74°38'39.14″.20.解:如图所示,连接BD ,过点B 作BE ⊥CD 于E ,过点D 作DF ⊥AB 于F ,在Rt△BEC 中,sin C =,∴BE =BC ·sin 60°=20×=10(m ).在Rt△AFD 中,sin A =,∴DF =AD ·sin 60°=30×=15(m ),∴S 四边形ABCD =S △ABD +S △CBD =AB ·DF +CD ·BE =×50×15+×50×10=625≈1082.53(m 2).21.解:(1)如图所示,过A 作AG ⊥CD 于G ,过E 作EF ⊥CD 于F ,依题意知AB =5m ,BC =30m ,∠DEF =30°,EB =1.4m .在Rt△DFE 中,∵tan∠DEF =,∴DF =BC ·tan30°=30×=10(m ),∴DC =DF +FC =DF +EB =10+1.4≈18.72(m ).(2)∵GC =AB =5m ,∴DG =DC -GC ≈18.72-5=13.72(m ).∵AG =BC =30m ,∴AD =≈≈32.99(m ).22.提示:各边长约为0.34m ,0.34m ,0.66m .23.解:(1)由勾股定理可知OA 1=,OA 2=,OA 3=,…,OA n =.∵tan∠A 0OA 1==,∴∠A 0OA 1=45°.∵tan∠A 1OA 2==,∴∠A 1OA 2≈35°15'51.8″.∵tan ∠A 2OA 3==,∴∠A 2OA 3=30°.(2)∵tan 20°≈0.3640,tan∠A n -1OA n ==<tan 20°,∴>≈2.7473,∴n >7.5477,∴n 的值为8.本节课探究学习的主要任务是掌握利用测倾器测倾斜角和测量物体高度的方法,所以前提条件是要对测倾器有足够的了解,学生在课前可以自己制作一个简单的测倾器,这样就会非常熟悉其操作原理,对于活动一,测量倾斜角就会感觉非常容易;对于活动二、三的探究,分组讨论和全班的交流讨论就显得尤为重要,要积极投身其中,区分测量底部可以到达的物体的高度和底部不可以到达的物体的高度的方法,熟练掌握各种方案的步骤,并利用所学知识解决实际问题,达到学以致用.测量物体的高度时容易漏掉测倾器的高度.李明带领小组成员做了测量电线杆高度的活动,在离电线杆21m 的D 点,用高1.2m 的测角仪CD 测得电线杆顶端A 的仰角α=30°,则电线杆AB 的高为m .【错解】7【错解分析】在利用三角函数计算出AE 的长度后,忽略测倾器的高度,漏加CD ,造成错误.【正解】7+1.2【正解分析】CE =DB =21m ,BE =CD =1.2m .在Rt△ACE 中,∠α=30°,CE =21m ,∴AE =CE ·tan 30°=7(m ),∴AB =AE +BE =(7+1.2)m .(2014·绍兴中考)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图(1)所示,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图(2)所示,第二小组用皮尺量得EF为16m(E为护墙上的端点),EF的中点离地面FB的高度为1.9m,请你求出E点离地面FB的高度.(3)如图(3)所示,第三小组利用第一、第二小组的结果来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4m到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1 m).备用数据:tan60°≈1.732,tan30°≈0.577,≈1.732,≈1.414.〔解析〕(1)根据∠α=2∠CDB即可得出答案.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图所示,根据EH=2MN即可求出E点离地面FB的高度.(3)延长AE,交PB的延长线于点C,设AE=x,则AC=x+3.8,CQ=x-0.2,根据=得出=,求出x即可.解:(1)∵BD=BC,∴∠CDB=∠DCB,∴∠α=2∠CDB=2×38°=76°.(2)设EF的中点为M,如图所示,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,∵MN∥EH,MN=1.9,∴EH=2MN=3.8(m),∴E点离地面FB的高度是3.8m.(3)延长AE,交PB于点C,如图所示,设AE=x,则AC=x+3.8,∵∠APB=45°,∴PC=AC=x+3.8.∵PQ=4,∴CQ=x+3.8-4=x-0.2,∴tan∠AQC==tan60°=,∴=,解得x=≈5.7,∴AE≈5.7m.答:旗杆的高度约是5.7m.[解题策略]此题考查了解直角三角形的应用,用到的知识点是仰角的定义,能作出辅助线并借助仰角构造直角三角形是解本题的关键.。

北师大版九年级下册1.6利用三角函数测高教学设计

北师大版九年级下册1.6利用三角函数测高教学设计
五、作业布置
为了巩固学生对三角函数测高知识点的掌握,提高其运用数学知识解决实际问题的能力,特布置以下作业:
1.请同学们结合课堂所学,思考并完成以下问题:
(1)如何利用三角函数测量学校附近某建筑物的高度?
(2)在实际测量过程中,可能会遇到哪些困难?如何克服?
(3)计算器在三角函数计算中起到了什么作用?如何正确使用计算器进行三角函数的计算?
4.通过讲解、示范、指导等方法,帮助学生掌握计算器在三角函数计算中的应用,提高计算速度和准确性。
5.引导学生运用已学的几何知识,结合三角函数解决测高问题,培养其综合运用知识的能力。
(三)情感态度与价值观
1.增强对数学学科的兴趣,认识到数学知识在解决实际问题中的价值。
2.形成主动探究、合作学习的良好习惯,培养勇于挑战、积极进取的精神风貌。
2.鼓励学生积极参与小组合作,培养团队合作精神和沟通能力。
3.关注学生的个体差异,作业布置要有梯度,使每个学生都能在完成作业的过程中得到提高。
4.引导学生关注作业的完成质量,培养良好的学习习惯和责任感。
(二)讲授新知
在导入新课之后,我会系统地讲授三角函数的相关知识。首先,回顾正弦、余弦和正切函数的定义,并通过图示和实例让学生理解这些函数的几何意义。接着,我会详细解释三角函数在测高问题中的应用原理,即如何通过测量角度和已知距离来计算未知高度。我会用生动的语言和直观的教具,比如三角板、直角三角形模型等,来帮助学生形象地理解这些概念。此外,我还会指导学生如何使用计算器来快速准确地计算出三角函数的值,并应用于解决实际问题。
2.完成课后习题:请同学们完成教材第1.6节后的练习题,巩固三角函数测高的相关知识点。
3.小组合作实践作业:
(1)分组进行实际测量,测量学校旗杆的高度,并记录测量过程和结果。

北师大版数学九年级下册1.6利用三角函数测高课件

北师大版数学九年级下册1.6利用三角函数测高课件
你能测量出
楼顶的旗杆
的高度吗?
教学过程




议一议
利用三角函数可以测量物体的高度,我们需要
用到一种仪器——侧倾器,侧倾器的构造如下
图:
刻度盘
铅垂线
枝干
教学过程




做一做
活动一、用侧倾器测倾斜角
使用测倾器测量倾斜角的步骤如下:
1.把支杆竖直插入地面,使支杆的中心线、铅垂
线和度盘的0°刻度线重合,这时度盘的顶线PQ在
水平位置.
2.转动度盘,使度盘的直径对准目标M,记下此
时铅垂线所指的度数
教学过程




做一做
M
根据测量数据,你能求出目标
M的仰角或俯角吗?说说你的
理由.
Q
O
N
P
B
A
教学过程




做一做
活动二、测量底部可以到达的物体的高度
测量工具:测倾器(或经纬仪、测角仪
等)、皮尺等
测量步骤:1.在测点A处安置测倾器,
素的过程,叫做解直角三角形.
2.解直角三角形时至少要知道几个元素?
直角三角形中,除了直角外的5个元素中只要知
道其中两个元素(其中至少要有一边),就可以
求出其余的三个元素.
教学过程




议一议
我们学过了用全等三角形、类似三角形测量物
体高度的方法,我们学了三角函数后,可不可
以利用三角函数测量物体的高度呢?
α.
2.在测点A与物体之间的B处安置测倾器(A、B与
N在一条直线上,且A,B之间的距离可以直接测

2.6 利用三角函数测高(数学鲁教版九年级上册)

2.6 利用三角函数测高(数学鲁教版九年级上册)

新课进行时
例3 某同学测量国贸大厦AB的高,现已用测量工具测完各 数 据,并填入下表,请你完成该活动报告并计算国贸大厦的高(已 知测倾器的高CE=DF=1 m).
项目
在平面上测量国贸大厦的高AB
测 量 目 标
测 测量项目
α
β

第一次
30°16′ 44°35′

第二次
29°44′ 45°25′

平均值
b,β的平均值
分别为 1.32,30°.
新课进行时
第一次 第二次 第三次 平均值
a 15.71 m 15.83 m 15.89 m 15.81 m
b 1.31 m 1.33 m 1.32 m 1.32 m
β 29.5° 30.8° 29.7°
30°
新课进行时
(2)由题意得四边形 BDCE 为矩形, ∴EC=BD=15.81 m,BE=CD=1.32 m,∠AEC=90°. 在 Rt△AEC 中,∠AEC=90°,β=30°. 小亮和小红在公园放风筝,不小心让风筝挂在树梢上,
风筝固定在A处(如图所示),为测量此时风筝的高度,他俩按
如下步骤操作:
第一步:小亮在点D处用测角仪测得仰角∠ACE=β; 第二步:小红量得点D到树底部B的水平距离BD=a; 第三步:量出测角仪的高度CD=b.
新课进行时
之后,他俩又将每个步骤都测量了三次,把三次测得的数据 绘制成如下图所示的条形统计图和折线统计图.
3 ∴AE=EC·tanβ=EC·tan30°=15.81× 3 ≈9.128(m), ∴AB=AE+EB≈9.128+1.32≈10.4(m). 所以风筝的高度 AB 约为 10.4 m. [归纳总结] 测量底部可以到达的物体的高度的方法: 利用直角三角形的边角关系,另外还可以利用在同一时刻,物 高与影长成正比或相似三角形的知识来求物高.

北师大版九年级下册1.6利用三角函数测高说课稿

北师大版九年级下册1.6利用三角函数测高说课稿
2.探究式教学:鼓励学生通过小组合作、实际操作等方式,探索三角函数在实际问题中的应用。理论依据是发现学习理论,强调学生在探究过程中培养解决问题的能力和创新思维。
3.实践性教学:组织学生进行实地测量,将理论知识应用于实际。理论依据是体验式学习理论,认为通过亲身体验,学生能更好地理解和掌握知识。
(二)媒体资源
3.开展小组合作,鼓励学生互相交流、分享经验,提高团队协作能力;
4.对学生的点滴进步给予及时表扬和鼓励,增强学生的自信心;
5.引导学生总结学习心得,使其在学习过程中获得成就感。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、探究式教学和实践性教学。
1.启发式教学:通过提问、讨论等方式引导学生主动思考,激发学生的学习兴趣。理论依据是建构主义学习理论,认为学生是主动建构知识的主体,教师应起到引导和促进作用。
3.课堂时间安排可能紧张,影响教学效果。
应对措施:
1.对于操作误差,我会提前讲解注意事项,并在课堂上及时指导;
2.对于理解不足的问题,我将通过实例分析和重复讲解来加深学生理解;
3.对于时间安排,我会合理安排教学环节,确保重点内容得到充分讲解。
课后,我将通过以下方式评估教学效果:
1.学生作业完成情况;
北师大版九年级下册1.6利用三角函数测高说课稿
一、教材分析
(一)内容概述
本节课的教学内容选自北师大版九年级下册1.6节,主题为“利用三角函数测高”。这一节内容在整个课程体系中具有承上启下的作用,既是前面学习的三角形、三角函数等知识的运用,也为后续学习解直角三角形、相似三角形等知识打下基础。
本节课的主要知识点包括:1.掌握用正切函数测量高度的方法;2.学会使用三角板和测角器测量角度;3.能够运用三角函数解决实际问题,如测量建筑物、树木的高度等。

北师大版数学九年级下册1.6《利用三角函数测高》教案

北师大版数学九年级下册1.6《利用三角函数测高》教案

北师大版数学九年级下册1.6《利用三角函数测高》教案一. 教材分析《利用三角函数测高》这一节主要让学生了解和掌握利用三角函数测量物体高度的方法。

通过前面的学习,学生已经掌握了锐角三角函数的概念和性质,本节内容是在此基础上进一步应用三角函数解决实际问题。

利用三角函数测高是初中数学中重要的应用题类型,也是中考的热点题型,对于培养学生的数学应用能力和解决实际问题的能力具有重要意义。

二. 学情分析九年级的学生已经掌握了锐角三角函数的基本概念和性质,对于运用三角函数解决实际问题有一定的基础。

但学生在解决实际问题时,往往因为对实际情况理解不深,而导致解题思路不清晰。

因此,在教学本节内容时,要注重让学生理解实际问题的背景,引导学生运用三角函数解决实际问题。

三. 教学目标1.让学生了解和掌握利用三角函数测高的方法。

2.培养学生运用三角函数解决实际问题的能力。

3.培养学生的合作交流能力和创新思维能力。

四. 教学重难点1.重点:让学生掌握利用三角函数测高的方法。

2.难点:如何引导学生运用三角函数解决实际问题,特别是对于复杂问题的解决。

五. 教学方法采用问题驱动法,情境教学法,合作交流法,引导发现法等。

通过设置具体的问题情境,引导学生运用已学的三角函数知识解决实际问题,培养学生的应用能力和解决实际问题的能力。

六. 教学准备1.准备相关的问题情境和案例,用于引导学生进行实际问题的解决。

2.准备多媒体教学设备,用于展示问题和案例。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的三角函数知识,如:什么是锐角三角函数?它们之间有什么关系?然后提出本节课的主题:如何利用三角函数测高?2.呈现(15分钟)教师通过多媒体展示一些实际问题,如:如何测量电视塔的高度?如何测量树的高度?让学生思考如何利用三角函数解决这些问题。

3.操练(20分钟)教师学生进行小组合作,让学生通过实际操作,运用三角函数解决呈现的问题。

教师巡回指导,解答学生的疑问。

1.6 利用三角函数测高

1.6 利用三角函数测高

1.6 利用锐角三角函数测高一、新知储备在进行测量时,从下向上看,视线与水平线的夹角叫做________;从上往下看,视线与水平线的夹角叫做________.二、合作探究,发现新知例1:(2017•山西)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)例2:(2017•丽水)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,(参考数据:sin70°≈0.94,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).cos70°≈0.34,tan70°≈2.75)例3:(2017•内江)如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)三、当堂检测,巩固新知 1.如图,一个水库大坝的横截面是梯形,其横截面的迎水坡AD 的坡比为2 :3,背水坡BC 的坡比为4 :3,大坝高DE 为20m .坝顶宽CD 为45m .求大坝的横截面积.2.(2017•宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A ,又在河的另一岸边去两点B 、C 测得∠α=30°,∠β=45°,量得BC 长为100米.求河的宽度(结果保留根号).四、课后作业1.(2017•乐山)如图,在水平地面上有一幢房屋BC 与一棵树DE ,在地面观测点A 处测得屋顶C 与树梢D 的仰角分别是︒45与︒60,︒=∠60CAD ,在屋顶C 处测得︒=∠90DCA .若房屋的高6=BC 米.求树高DE 的长度.2.(2017•衡阳)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内,如图,为了测量来雁塔的高度,在E 处用高为1.5米的测角仪AE ,测得塔顶C 的仰角为30°,再向塔身前进10.4米,又测得塔顶C 的仰角为60°,求来雁塔的高度.(结果精确到0.1米)3.(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)4.(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)5.(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.。

利用三角函数测高优秀教案

利用三角函数测高优秀教案

利用三角函数测高优秀教案课题名称:利用三角函数测高教学目标:1.理解正弦、余弦和正切的概念及其在三角函数测高中的应用;2.掌握使用正弦定理和余弦定理测量不可直接测量的高度;3.能够灵活运用三角函数测高的方法解决实际问题。

教学重点:1.正弦、余弦和正切的概念及其在三角函数测高中的应用;2.正弦定理和余弦定理的应用。

教学难点:教学准备:教具:直尺、测量工具、投影仪;课件:包含三角函数和其应用的相关知识点。

教学过程:一、导入(5分钟)1.引入三角函数的概念,复习正弦、余弦和正切的定义和计算方法。

2.提问学生:在实际生活中,我们如何使用三角函数来测量高度?二、讲解(15分钟)1.三角函数测高的原理:利用正弦、余弦和正切的性质通过测量已知边长和角度的方式求解未知高度。

2.正弦定理的应用:利用三角形中任意两边的长度和它们夹角的正弦比,求解不可直接测量的高度。

3.余弦定理的应用:利用三角形中三边的长度和它们之间的夹角余弦,求解不可直接测量的高度。

三、示范(15分钟)1.示范测量不可直接测量的高度的步骤,例如使用正弦定理:a.给出一个实际问题,如:如何测量一栋建筑物的高度?b.画出相应的示意图,标注已知边长和角度。

c.利用正弦定理的公式,求解未知的高度。

d.明确解题思路和计算步骤,进行计算。

2.呈现示范的解题过程,详细讲解每一步骤的计算方法和答案。

四、练习(20分钟)1.分发练习题,让学生独立完成。

2.讲解练习题答案,帮助学生纠正错误,巩固和理解三角函数测高的方法。

五、应用(15分钟)1.提供一些实际问题,要求学生运用三角函数测高的方法解决。

2.分组讨论并呈现解决方案,交流思路和讨论结果。

六、总结(10分钟)1.对本节课的要点进行总结,强调正弦、余弦和正切的应用。

2.核对课程目标,评估学生的学习情况。

七、作业(5分钟)布置作业:完成课后练习题,巩固三角函数测高的知识。

教学延伸:可以引导学生使用三角函数测高解决其他实际问题,并探究其他测高方法的应用。

九年级数学下册《利用三角函数测高》优秀教学案例

九年级数学下册《利用三角函数测高》优秀教学案例
2. 培养学生勇于探索、积极思考的良好习惯,提高他们解决问题的自信心;
3. 增强学生的团队合作意识,使他们学会倾听、尊重他人意见;
4. 培养学生的创新意识,鼓励他们勇于尝试新方法,突破传统思维;
5. 培养学生关爱环境、关注社会发展的责任感,使他们认识到数学知识在可持续发展中的价值。
三、教学策略
(一)情景创设
5. 学会分析问题、解决问题的方法,培养逻辑思维和几何直观能力。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法,引导学生达成教学目标:
1. 创设情境:以实际生活中的测高问题为切入点,激发学生的学习兴趣,引导他们积极思考;
2. 小组合作:分组讨论、探究测高的方法,培养学生的团队协作能力和交流表达能力;
3. 问题链设计:将问题分解为一系列小问题,形成问题链,引导学生逐步深入探究。
(三)小组合作
小组合作是培养学生团队协作能力和交流表达能力的重要途径。以下是小组合作的具体策略:
1. 分组讨论:将学生分成若干小组,针对测高问题进行讨论,共同寻找解决方案。
2. 分工合作:在小组内部分工明确,让每个学生都能发挥自己的优势,共同完成任务。
3. 交流分享:组织小组间的交流分享活动,让学生借鉴他人的经验,提高自己的能力。
(四)反思与评价
反思与评价是教学过程中的重要环节,有助于学生总结经验、提高自我。以下是一些建议:
1. 自我反思:鼓励学生在课后对自己的学习过程进行反思,找出问题所在,制定改进措施。
2. 同伴评价:组织同伴评价活动,让学生相互评价,从他人的意见中汲取经验,提高自己。
(五)关注学生个体差异,实施差异化教学
在教学过程中,教师关注学生的个体差异,根据不同学生的需求进行差异化教学。通过设置不同难度的任务、适时给予指导等方式,使每个学生都能报测量方案,让学生相互借鉴,提高解决问题的能力。

九年级数学下册《利用三角函数测高》教案、教学设计

九年级数学下册《利用三角函数测高》教案、教学设计
九年级数学下册《利用三角函数测高》教案、教学设计
一、教学目标
(一)知识与技能
1.掌握正弦、余弦、正切三角函数的定义及其在解决实际问题中的应用。
2.理解并运用直角三角形的边角关系,解决高度、距离等实际问题。
3.学会使用计算器或计算工具,进行三角函数的计算,提高计算准确性和效率。
4.培养学生的观察能力、逻辑思维能力和空间想象能力,提高他们运用数学知识解决实际问题的能力。
2.教学内容:梳理三角函数在测高问题中的应用,形成知识体系。
3.教学评价:通过学生自我评价、小组评价和教师评价,了解学生对本节课知识的掌握程度,为下一步教学提供参考。
在教学内容与过程中,注重理论与实践相结合,关注学生的参与度和思维发展。通过导入新课、讲授新知、学生小组讨论、课堂练习和总结归纳等环节,使学生掌握三角函数在测高问题中的应用,提高他们解决实际问题的能力。同时,关注学生的情感态度与价值观的培养,激发他们对数学学科的兴趣和热情。
(3)合作探究:设计测高问题,让学生分组讨论,共同探讨解决问题的方法。
(4)实践操作:组织学生进行实地测量活动,使他们在实践中掌握三角函数的应用。
(5)总结反馈:引导学生总结测高问题中的关键步骤和方法,形成知识体系。
2.教学策略:
(1)情境教学法:以实际生活中的问题为载体,创设情境,让学生在情境中感知、体验和解决问题。
(2)分层教学:针对不同学生的学习需求,设计不同难度的教学活动和练习,使每个学生都能得到有效的提高。
(3)启发式教学:引导学生通过观察、思考、交流,主动发现问题和解决问题。
(4)评价激励:运用多元化的评价方式,关注学生的过程表现,激发他们的学习积极性。
3.教学步骤:
(1)新课导入:展示生活实例,提出测高问题,引导学生思考。

1.6 利用三角函数测高 -九年级下册数学教案教学设计(北师大版)

1.6 利用三角函数测高 -九年级下册数学教案教学设计(北师大版)

1.6 利用三角函数测高 -九年级下册数学教案教学设计(北师大版)一、教学目标1.了解三角函数的定义和性质。

2.学会使用正弦、余弦、正切函数测量高度。

3.掌握解决与高度和角度相关的实际问题的方法和步骤。

二、教学内容1.三角函数的定义和性质。

2.正弦、余弦、正切函数的用法。

3.利用三角函数测量高度的实际问题。

三、教学重点1.理解三角函数的定义和性质。

2.掌握正弦、余弦、正切函数的用法。

3.运用三角函数解决实际问题。

四、教学难点1.学习如何应用三角函数测量高度。

2.解决与高度和角度相关的实际问题。

五、教学方法1.讲解与演示相结合的教学方法。

2.视频和实物模型展示三角函数测高的应用。

3.组织学生进行实际操作和练习。

六、教学过程1. 导入新知识通过提问和引导,导入三角函数的概念和性质,引起学生的兴趣,并激发学生对测量高度的需求。

2. 讲解三角函数的定义和性质利用教材和课件,详细讲解正弦、余弦、正切函数的定义和性质,并与实际问题联系起来,解释三角函数与高度的关系。

3. 演示三角函数测高的方法通过播放视频或展示实物模型,演示如何使用三角函数测量高度的方法和步骤,并让学生观察和思考。

4. 实际操作和练习将学生分成小组,配备测量工具,进行实际操作和练习,例如利用三角函数测量树木高度、建筑物高度等。

教师和助教进行指导和解答疑惑。

5. 总结与归纳让学生整理笔记,总结三角函数测高的方法和步骤,并与实际问题进行对比,并解答学生的问题。

七、教学评价1.在实际操作中,观察学生是否能正确使用三角函数测量高度。

2.组织小组讨论,评价学生对三角函数测高方法的理解和应用能力。

3.布置练习题,检查学生对三角函数测高的掌握情况。

八、教学延伸利用三角函数测高的方法,引出其他与高度和角度相关的实际问题,如建筑物的倾斜角度、塔吊的工作范围等。

并鼓励学生进行独立思考和解答。

九、板书设计1.6 利用三角函数测高- 三角函数的定义和性质- 正弦、余弦、正切函数的用法- 测量高度的实际问题十、教学反思本节课将数学知识与实际问题相结合,培养了学生的测量和解决问题的能力。

§162利用三角函数测高.docx

§162利用三角函数测高.docx

授课教师林永寿课型新课授课时间课题§ 1.62利用三角函数测鬲教学目标知识与技能:能够对所得到的数据进行分析,能够对仪器进行调整和对测量结果进行矫止,从而得岀符合实际的结果,能综合应用直角三角形的边角关系的知识解决实际问题.过程与方法:经历运用仪器进行实地测量以及撰写活动报告的过程.积极参与数学活动,积累数学活动的经验,捉高对实验数据的处理能力;学会将实际问题转化为数学模型的方法,在提高分析问题、解决问题的能力的同时,增强数学的应用意识.情感态度与价值观:能够主动积极地想办法,积极地投入到数学活动中去,提高学习数学的兴趣;培养不怕困难的品质,发展合作意识和科学精神.教7重点难点重卢4\\\1、能够对所得到的数据进行分析2、能够综合运用直角三角形边角关系的知识解决实际问题难点1、能够对所得到的数据进行分析2、能够综合运用直角三角形边角关系的知识解决实际问题教学方法猜想证明法讲授法引导交流法合作探究学习法学法指导渗透指导、讲授指导、点拨指导、交流指导课前准备一体机、PPT课件师生活动过程一、活动报告展示展示内容:活动方案1r、厂 A r、测量对象测量工具测量数据\ r、计算过程/ C >规则与要求:1、提供4个展示机会;2、每个小组选派一名代表上台展示;3、展示时间不得超过5分钟;4、其他同学进行点评;5、评选出本次活动的最佳小组.《利用三角函数测高》活动报告(示例测量对象大树C 测量图示1 L测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例2)测量对象测量图示测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例测量对象旗杆M测量图示E1[N B A 测量工具测量数据计算过程测量结果《利用三角函数测高》活动报告(示例测量对象教学楼测量图示Z_______ .X1Q0□□□□□□t£□□□□<—30 m->ZZZZ/Z//ZZZ/Z//ZZ (甲)(乙)测量工具测量数据计算过程测量结果二、活动心得交流在这次活动中你有什么收获?1•必做题:2•选做题:1、学生非常喜欢活动课,学习积极性非常高,要结合教材,多开发数学活动课;2、在活动中,学生利用数学知识解决了实际问题,感受了生活中的数学,体验教学反思到了数学的价值;3、在分组活动、小组合作、全班交流研讨的过程中,学生的合作意识得到了发展.。

06-第一章6利用三角函数测高

06-第一章6利用三角函数测高

6 利用三角函数测高
栏目索引
发挥直观想象,构造直角三角形 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与变 化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助 空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述、分 析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决问题 的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形成 论证思路、进行数学推理、构建抽象结构的思维基础. 直观想象主要表现为:建立形与数的联系,利用几何图形描述问题,借助几 何直观理解问题,运用空间想象认识事物.
知识点二 测量底部不可以到达的物体的高度
工具
步骤
图例
测量底部不可以到达 的物体的高度
测倾器、皮尺(卷尺)
如图,测量物体MN的高 度:(1)在测点A处安置 测倾器,测得此时M的 仰角∠MCE=α.(2)在测 点A与物体之间的B处 安置测倾器(A、B与N 在同一条直线上),测得 此时M的仰角∠MDE= β.(3)量出测倾器的高度 AC=BD=a,以及测 点A、B之间的距离AB =b.(4)根据三角函数求 出物体MN的高度,MN=
在Rt△CDE中, CD =tan∠CED,即
x
= 3,
DE
30 3- 3x-10 3
图1-6-5
解得x=15-
5
3 3
.答:立柱CD的高为15-
5
3 3
米.
6 利用三角函数测高
栏目索引
素养呈现 (1)了解角之间的关系,找到与已知和未知相关联的直角三角 形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,作CH ⊥AB于H,得到Rt△AHC和矩形BDCH. (2)由矩形BDCH得到BD=CH,设CD=x米,根据正切的定义用x表示出HC,根 据题意用x表示出ED. (3)在△CDE中,根据正切的定义列出方程,解方程即可.

6利用三角函数测高

6利用三角函数测高
MN b tan a
2、测量底部不可以直接到达的物体的高度:
MN b tan tan a tan tan
北师大版初中数学九年级下册Leabharlann 测量底部可以直接到M
达的物体的高度:
MN b tan a

a
E
a
A
b
N
1、在测点A安置测倾器,测得M的仰角∠MCE=α;
2、量出测点A到物体底部N的水平距离AN=b;
3、量出测倾器的高度AC=a,可求出MN的高度。
测量底部不可以直接到
M
达的物体的高度:
C αD β
E
A
B
N
1、在测点A处安置测倾器,测得此时M的仰角∠MCE=α;
tan tan ME tan ME tan b tan tan ME(tan tan ) b tan tan ME b tan tan
tan tan MN ME a b tan tan a
tan tan
小结课堂
1、测量底部可以直接到达的物体的高度:
2、在测点A与物体之间的B处安置测倾器,测得此时M的仰角∠MDE=β;
3、量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b. 根据测量数据,可求出物体MN的高度.
测量底部不可以直接到达的物体的高度:
M
MN b tan tan a tan tan
C αD β
A
B
E
N
ME ME b,

2024北师大版数学九年级下册1.6《利用三角函数测高》教案

2024北师大版数学九年级下册1.6《利用三角函数测高》教案

2024北师大版数学九年级下册1.6《利用三角函数测高》教案一. 教材分析《利用三角函数测高》这一节主要让学生了解三角函数在实际生活中的应用,学会利用三角函数测量物体的高度。

通过这一节的学习,学生能够理解直角三角形的性质,掌握正弦、余弦函数的定义,并能运用它们解决实际问题。

二. 学情分析九年级的学生已经学习了三角函数的基本知识,对直角三角形有一定的了解。

但是,他们可能还没有真正意识到三角函数在实际生活中的应用,对于如何利用三角函数测量物体的高度可能比较陌生。

因此,在教学过程中,我需要注重引导学生将理论知识与实际问题相结合,提高他们的实践能力。

三. 教学目标1.知识与技能:让学生掌握利用三角函数测量物体高度的方法,理解正弦、余弦函数在实际问题中的应用。

2.过程与方法:通过实际操作,培养学生解决问题的能力,提高他们的实际动手能力。

3.情感态度与价值观:激发学生学习数学的兴趣,让他们感受到数学在生活中的重要性。

四. 教学重难点1.重点:让学生掌握利用三角函数测量物体高度的方法。

2.难点:如何引导学生将理论知识与实际问题相结合,提高他们的实践能力。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置实际问题,引导学生运用三角函数进行解答,培养他们的实践能力。

同时,学生进行小组合作,让学生在讨论中巩固知识,提高他们的团队协作能力。

六. 教学准备1.准备相关案例,用于讲解和引导学生实践。

2.准备测量工具,如尺子、测量仪等,供学生实际操作使用。

3.准备多媒体教学资源,如PPT、视频等,用于辅助教学。

七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:如何测量旗杆的高度?引导学生思考如何解决这个问题,激发他们的学习兴趣。

2.呈现(10分钟)讲解利用三角函数测量物体高度的方法,引导学生理解正弦、余弦函数在实际问题中的应用。

以旗杆测量为例,讲解步骤:(1)建立直角坐标系,确定观测点和旗杆的位置。

(2)测量观测点到旗杆的距离(底边长度)。

北师大版数学九年级下册1.6利用三角函数测高教学设计

北师大版数学九年级下册1.6利用三角函数测高教学设计
-提供充足的实践操作机会,让学生在动手实践中掌握三角函数的测量方法。
-教师在学生探究过程中进行巡回指导,及时解答学生疑问,帮助学生突破难点。
3.例题解析:选择具有代表性的例题,展示解题思路和步骤,强化学生对三学生关注解题过程中的关键步骤和易错点。
-鼓励学生多角度思考问题,培养思维的灵活性和创新性。
-提醒学生关注作业的完成质量,鼓励学生在实际操作中运用所学知识。
五、作业布置
为了巩固本章节所学知识,特布置以下作业:
1.完成课本第1.6节后的练习题,包括基础题和拓展题,基础题要求全体学生完成,拓展题鼓励学有余力的学生尝试。
-基础题主要涉及三角函数的定义、计算和应用,帮助学生巩固课堂所学知识。
-拓展题则侧重于提高学生运用三角函数解决实际问题的能力,激发学生的思维潜能。
2.教学内容:小组展示讨论成果,分享解决问题的方法和经验。
教学过程:
-各小组派代表展示讨论成果,讲解解题过程和关键步骤。
-教师点评,强调正确性和创新性,引导学生相互学习、交流。
(四)课堂练习
1.教学内容:设计具有代表性的课堂练习题,让学生独立完成。
教学过程:
-提供不同难度的练习题,涵盖本节课的知识点,让学生巩固所学知识。
4.学会使用计算器计算三角函数值,并运用到实际测量中。
5.能够运用三角函数知识,分析和解决生活中的高度测量问题,如测量建筑物、树木等的高度。
(二)过程与方法
在本章节的教学过程中,采用以下过程与方法:
1.通过情境导入,激发学生的学习兴趣,引导学生从实际问题中发现三角函数的应用价值。
2.采用探究式教学方法,让学生在小组合作中,通过实际操作、讨论、分析,掌握三角函数测高的方法。
北师大版数学九年级下册1.6利用三角函数测高教学设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用三角函数测高
一、教学目标 能根据实际问题设计活动方案,能综合运用直角三角形的边角关系解决实际问题 二、教学重点和难点重点:能够综合运用直角三角形边角关系的知识解决实际问题
难点:能够综合运用直角三角形边角关系的知识解决实际问题 三、教学过程 (一)情境引入:
数学课上,我们用直尺测量长度,用量角器测量角度. 生活中,我们是如何测量长度和角度的呢?
测量长度可以用皮尺或卷尺,测量倾斜角可以用测倾器. 简单的测倾器由度盘、铅锤和支杆组成.(如图)
测倾器
使用测倾器测量倾斜角的步骤如下:
1、把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.
2、转动度盘,使度盘的直径对准目标M ,记下此时铅垂线所指的度数. 根据测量数据,你能求出目标M 的仰角或俯角吗?说说你的理由. (二)探究活动:
【探究一】测量底部可以到达的物体的高度
例1,如图,某中学在主楼的顶部和大门的上方之间挂一些彩旗,经测量,得到大门的高度是5m ,大门距主楼的距离是30m ,在大门处测得主楼顶部的仰角是30º,而当时测倾器离地面1.4m ,求学校主楼的高度.
【探究二】测量底部不可以到达的物体的高度
例2,河对岸的高层建筑AB ,为测量其高,在C 处由D 点用测量仪测得顶端A 的仰角为30º,向高层建筑物前进50m 到达C ´处,由D ´测得顶端A 的仰角为45º,已知测量仪CD=C ´D ´=1.2m ,求建筑物AB 的高度
(三)学以致用
1.如图,某中学在主楼的顶部和大门的上方之间挂一些彩旗.经测量,得到大门的高度是5m ,大门距主楼的距离是30m ,在大门处测得主楼顶部的仰角是30°,而当时侧倾器离地面1.4m,求学校主楼的高度.
2.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为多少米.
M
A
M
30º A
D B
C
E C ´
D ´
3.如图,如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°.
(1)求坡高CD ;
(2)求斜坡新起点A 与原起点B 的距离(精确到0.1米).
(参考数据:sin5°≈0.1 ,cos5°≈0.9 , tan5°≈ 0.1 , Sin12°≈0.2 ,cos12°≈0.8 ,tan12°≈0.2 )
(四)拓展提升
1.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡
40AB =米,坡角60BAD ∠=,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)?
2.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地
面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;
(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否
需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米) (参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)
3.如图,某货船以20海里/时的速度将一批货物由A 处运往正西方向的B 处,经16小时 到达,到达后必须立即卸货。

此时接气象部门通知,一台风正以40海里/时的速度由A 向北偏西60°的方向移动,距台风中心200海里的圆形范围内(包括边界)均会被影响。

(1)B 处是否会受到影响?说明理由。

(2)为避免台风影响,该船应在多少小时内卸完货? 北 (3)求这次台风影响B 市的时间
(供选用数据2≈1.4,3≈1.7)
西B A
4.某校的教室A 位于工地O 的正西方向、,且 OA=200米,一部拖拉机从O 点出发,以每秒6米的速度沿北偏西53°方向行驶,设拖拉机的噪声污染半径为130米,试问教室A 是否在拖拉机噪声污染范围内?若不在,请说明理由;若在,求出教室A 受污染的时间有几秒?(已知:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)
B
E
C
D
A B
E
C
D
A
D B A
C 5
12F G。

相关文档
最新文档