液平衡相图

合集下载

二组分气液平衡相图的测定

二组分气液平衡相图的测定

实验过程中的讲解(四)
实验数据记录要求和作图方法
1、把测得的数据填写在事先列好的数据表里; 2、填写数据要用钢笔或油笔,不得使用铅笔; 3、数据填写要真实、准确; 4、错误的数据不能用涂改液等随便涂改,可以 用笔划一下再在旁边写上正确的。 5、作图方法见教材第9页。
分析实验数据,讨论实验结果
二组分气- 液平衡相图愿始数据记录表
1、讲解阿贝折射仪的使用方法和注意事项 每次加入沸点仪的样品的浓度是否要一定,为什么?
2、调压器的电压要合适(多大?); 实验过程中要把握的重点
1、一定要在完全达到气-液平衡时才可取样测其折光率。
答:不需要,因为虽然加入沸点仪的样品的浓度不同会使样品的沸点发生变化,但是相对应的气液两相的组成也发生变化,不影响相
分析实验数据,讨论实验结果
沸点-组成图
85 80 75 70 65
1、该图为乙醇-环己烷的沸点组成图
2、最低共沸点为65.2℃,共沸 组成x=0.54
3、蓝线为气相线,以上为气 相;红线为液相线,以下为 液相;两线之间为气-液共 存区;两线有一切点。
沸点/C
60
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.3908
0.429
1.3968
0.502
1.3982
0.533
1.4021
0.542
1.4102
0.561
1.4167
0.617
1.4249
1.000
残掖试样 折光率(n) x环己烷 1.3602 0.000 1.3642 0.062 1.3689 0.109 1.3755 0.185 1.3888 0.354 1.3982 0.534 1.4107 0.745 1.4182 0.907 1.4205 0.935 1.4249 1.000

3.4 二组分系统固液平衡相图

3.4 二组分系统固液平衡相图

t/℃
80
l(A+B)
•t
* B
液相线(凝固
60
点降低曲线)
• 40 t
* A
s(A)+l(A+B)
l (A+B)+sB
固相线
20 C
•E s(A)+s(B)
共晶线
D
(温度、三个相的
0.0 0.2 0.4 0.6 0.8 1.0 组成都不变)
邻硝基氯苯(A) xB
对硝基氯苯(B)
E点:液相能存在的
l+s s(A+B)
p/102kPa
t=60℃ l(A+B)
lg g(A+B)
d-香芹(A) wB
l-香芹(B)
图a 最高熔点液固相图
H2O(A)
yB
C2H5OH(B)
图b 最高恒沸点气液相图
2 液态完全互溶而固态完全不互溶
t/℃ 80
60
• 40 t
* A
20
C
•E
•t
* B
t/℃
•t
* A
p=101 325Pa
出的t-xB图,列表回答系统在5C,30C,50C时的
相数、相的聚集态及成分、各相的物质的量、系统所 在相区的条件自由度数。
解:
系统 相数
温度
t / C
5
2
相的聚集态 及成分
s (A), s (B)
30 2 s (B), l (A+B)
50 1
l (A+B)
各相的物量
ns(A) = 2 mol ns(B) = 8 mol
t
* B
l (A+B)

物化实验双液系的气-液平衡相图实验报告

物化实验双液系的气-液平衡相图实验报告

双液系的气-液平衡相图一实验目的1.绘制在pθ下环己烷-异丙醇双液系的气-液平衡相图,了解相图和相律的基本概念;2.掌握测定双组分液体的沸点及正常沸点的方法;3.掌握用折光率确定二元液体组成的方法。

二实验原理在常温下,任意两种液体混合组成的体系称为双液体系。

若两液体能按任意比例互溶,则称完全互溶双液体系,若只能部分互溶,则称部分互溶双液体系。

液体的沸点是指液体的蒸汽压与外界压力相等时的温度,在一定的外压下,纯液体的沸点有其特定值,但双液系的沸点不仅与外压有关而且还与两种液体的相对含量有关。

通常,如果液体与拉乌尔定律的偏差不大,在T—X图上溶液的沸点介于A、B二纯液体的沸点之间见图中于 (a)。

而实际溶液由于A 和B二组分的相互影响,常与拉乌尔定律有较大偏差,在T—X图上就会有最高或最低点出现,这些点称为恒沸点,其相应的溶液称为恒沸点混合物,如图2-4-1(b),(c)所示。

恒沸点混合物蒸馏时,所得的气相与液相组成相同,因此通过蒸馏无法改变其组成。

本实验是用回流冷凝法测定环已烷—异丙醇体系的沸点—组成图。

其方法是用阿贝折射仪测定不同组成的体系,在沸点温度时气、液相的折射率,再从折射率—组成工作曲线上查得相应的组成,然后绘制沸点—组成图。

三仪器和试剂沸点仪1套;恒温槽1台;阿贝折射仪1台;量筒8个;玻璃漏斗8个;滴管2个;环己烷(分析纯);异丙醇(分析纯);实验装置如下:四实验步骤1.工作曲线的绘制配制环己烷的质量百分数0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80和0.90的环己烷-异丙醇溶液。

计算所需环己烷和异丙醇的质量,并用分析天平准确称取。

为避免样品挥发带来的误差,称量应尽可能的迅速。

各种溶液的确切组成要按照实际称样结果精确计算。

调节超级恒温水浴的温度为35度,使阿贝折光仪上温度与其保持一致。

分别测定上述九个溶液以及异丙醇和环己烷的折光率。

根据这些数据作出折光率-组成工作曲线。

04 双液系的气-液平衡相图的绘制

04  双液系的气-液平衡相图的绘制

实验四 双液系的气-液平衡相图的绘制一、目的要求1.用沸点仪测定大气压下乙醇—环己烷或异丙醇-环己烷双液系气-液平衡时气相与液相组成及平衡温度,绘制温度—组成图,确定恒沸混合物的组成及恒沸点的温度。

2.了解物化实验中光学方法的基本原理,学会阿贝折光仪的使用。

3.进一步理解分馏原理。

二、预习要求1.理解分馏原理,了解影响双液系气-液平衡的因素。

2.熟悉阿贝折光仪的使用方法,了解折射率与物系组成的关系。

3.掌握如何由实验数据绘制t x -相图的方法。

三、实验原理两种在常温时为液态的物质混合起来而组成的二组分体系称为双液系。

两种液体若能按任意比例互相溶解,称为完全互溶的双液系;若只能在一定比例范围内互相溶解,则称部分互双液系。

双液系的气液平衡相图t x -图可分为三类。

如图4.1。

图 4.1 二元系统t x -图这些图的纵轴是温度(沸点),横轴是代表液体B 的摩尔分数B x 。

在t x -图中有两条曲线:上面的曲线是气相线,表示在不同溶液的沸点时与溶液成平衡时的气相组成,下面的曲线表示液相线,代表平衡时液相的组成。

例如图4.1(a)中对应于温度t 1的气相点为y 1,液相点为1l ,这时的气相组成y 1点的横轴读数是g B x ,液相组成点1l 点的横轴读数为lB x 。

y 1l 1t 1g B x l B x A B t/℃(a )气液t/℃A B B x →(b )t/ ℃气液A B B x →(c )如果在恒压下将溶液蒸馏,当气液两相达平衡时,记下此时的沸点,并分别测定气相图。

(馏出物)与液相(蒸馏液)的组成,就能绘出此t x图4.1(b)上有个最低点,图4.1(c)上有个最高点,这些点称为恒沸点,其相应的溶液称为恒沸混合物,在此点蒸馏所得气相与液相组成相同。

四、仪器和药品1.仪器玻璃沸点仪一套;阿贝折光仪一台;WLS系列可调式恒流电源一台;SWJ型精密数字温度计一台;SYC超级恒温槽一台。

2.药品无水乙醇(AR)或异丙醇(AR);环己烷(AR)。

6-2二组分系统理想液态混合物的气—液平衡相图

6-2二组分系统理想液态混合物的气—液平衡相图
二组分系统液态互溶情况:
(a)完全互溶
(b)完全不互溶 (c)部分互溶
液态完全互溶系统 p-x、t-x图
理想系统 真实系统
一般正偏差 最大正偏差
一般负偏差 最大负偏差
液态部分互溶系统 t-x图
气相组成介于两液相之间 气相组成位于两液相同侧
液态完全不互溶系统 t-x图
完全互溶系统:理想液态混合物系统气-液平衡相图
1. 压力—组成图
A、B形成理想液态混合物:均符合拉乌尔定律
A组分分压: pA pA* xA pA* 1 xB
B组分分压: pB pB* xB
pA,pB,p和xB均成
气相总压: p pA pB
直线关系
pA* 1 xB pB* xB
pA* pB* pA* xB
液相线:气相总压 p 与液相组成 xB 之间的关系曲线
nL
解: (1) 先确定系统点的总组成
xM
nB nA nB
6 46
0.6
利用
nG (xM yB ) nL (xB xM ) 即 nG (0.6 0.2) nL (0.7 0.6) (1)
nG nL n总 =4+6=10mol (2)
解得
nG =2mol
nL =8mol
(2) 气相中: 甲苯 nB nG yB 2 0.2 0.4mol 苯 nA nG yA 2 0.8 1.6mol
(4)最大负偏差系统
p实际 p理想
且在某一组成范围内比 难挥发组分的饱和蒸气 压还小,实际蒸气总压 出现最小值
液相线
氯仿(A)—丙酮(B)系统
加上气相线:
一般正偏差系统
一般负偏差系统
最大正偏差系统
液相线 气相线

实验七双液系气液平衡相图的测定

实验七双液系气液平衡相图的测定
5. 通过折射仪的水温要恒定,使用折射仪时,棱镜 不能触及硬物(如滴管),擦拭棱镜用擦镜纸。
数据处理
1. 将实验中测得的折射率—组成数据列表,并绘制成 工作曲线。
2. 将实验中测得的沸点—折射率数据列表,并从工作 曲线上查得相应的组成,从而获得沸点与组成的关 系。
3. 绘制沸点—组成图,并标明最低恒沸点和组成。 4. 在精确的测定中,还要对温度计的外露水银柱进行
仪器操作
使用方法
3. 调光: 转动镜筒使之垂直,调节反射镜使入射光进入棱镜,
同时调节目镜的焦距,使目镜中十字线清晰明亮。调节消 色散补偿器使目镜中彩色光带消失。再调节读数螺旋,使 明暗的界面恰好同十字线交叉点处重合。这时镜筒的轴与 掠射光线平行。 4. 读数:
从读数望远镜中读出刻度盘上的折射率数值。常用的 阿贝折射仪可读至小数点后的第四位,为了使读数准确, 一般应将试样重复测量三次,每次相差不能超过0.0002, 然后取平均值。
仪器操作
注意事项
1.使用时要注意保护棱镜,清洗时只能用擦镜纸而不能用滤纸 等。加试样时不能将滴管口触及镜面。对于酸碱等腐蚀性液 体不得使用阿贝折射仪。
2.每次测定时,试样不可加得太多,一般只需加2~3滴即可。 3.要注意保持仪器清洁,保护刻度盘。每次实验完毕,要在镜
面上加几滴丙酮,并用擦镜纸擦干。最后用两层擦镜纸夹在 两棱镜镜面之间,以免镜面损坏。 4.读数时,有时在目镜中观察不到清晰的明暗分界线,而是畸 形的,这是由于棱镜间未充满液体;若出现弧形光环,则可 能是由于光线未经过棱镜而直接照射到聚光透镜上。
0.200mL、…、0.900mL的环己烷,再依次移入 0.900mL、0.800mL、…、0.100mL的异丙醇,轻 轻摇动,混合均匀,配成9份已知浓度的溶液(按 纯样品的密度,换算成质量百分浓度)。用阿贝 折射仪测定每份溶液的折射率及纯环己烷和异丙 醇的折射率。以折射率对浓度作图,即可绘制工 作曲线。

双液体系气—液平衡相图的绘制及思考题

双液体系气—液平衡相图的绘制及思考题

双液体系气—液平衡相图的绘制一、实验目的1. 绘制环己烷—异丙醇双液体系的沸点组成图,确定其恒沸组成和恒沸温度。

2. 掌握回流冷凝管法测定溶液沸点的方法。

3.掌握阿贝折射仪的使用方法。

二、实验原理两种液体物质混合而成的两组分体系称为双液系。

根据两组分间溶解度的不 同,可分为完全互溶、部分互溶和完全不互溶三种情况。

两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。

当压力保持一定,混合物沸点与两组分的相对含量有关。

恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图 (a)所示。

(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图 (b)所示。

(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点如图 (c))所示。

上图为二组分真实液态混合物气—液平衡相图(T-x 图)t At AtAt Bt B t Bt / o Ct / o t / o x Bx Bx BABAABB(a)(b)(c)x 'x '后两种情况为具有恒沸点的双液系相图。

它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。

为了测定双液系的T-x相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。

本实验以环己烷-异丙醇为体系,该体系属于上述第三种类型,在沸点仪中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。

本实验中两相的成分分析均采用折光率法测定。

三、仪器与试剂1、仪器:沸点仪1台;调压变压器1台;阿贝折射仪1台;温度计(0-100℃) 1支;长滴管1个;短滴管2支;2、试剂:环己烷(分析纯);异丙醇(分析纯)异丙醇—环己烷标准溶液(异丙醇分别为0.20,0.40,0.50,0.60,0.80,0.90)四、主要实验步骤1. 测定环己烷、异丙醇及标准溶液的折射率调节阿贝折射仪,用一支干燥的短滴管吸取环己烷数滴,注入折射仪的加液孔内,测定其折射率n,读数两次,取其平均值。

双液系气液平衡相图的绘制

双液系气液平衡相图的绘制

实验四双液系气液平衡相图的绘制姓名:谭成彬班级:生物工程学院生物工程07级四班学号;07041010428一、实验目的1.测定常压下环己烷—乙醇二元系统的气液平衡数据,绘制沸点—组成相图。

2.掌握双组份沸点的测定方法,通过实验进一步理解分馏原理。

3.掌握阿贝斯折射仪的使用方法。

二、实验原理两种液体物质混合而成的两组分体系称为双液系。

根据两组间分溶解度不同,可分为完全互溶、部分互溶和完全不互溶三种情况。

两种挥发性液体混合成完全互溶体系时,如果该两组分的蒸汽压不同,则混合物的组成于平衡的气相的组成不同。

当压力保持一定,混合物沸点与两组分的含量有关。

恒定压力下,真实的完全互溶双液系的气—液平衡相图(T—x图),根据体系对拉乌尔的偏差情况,可分为三类:1)一般偏差:混合物的沸点介于两种纯组分之间,如果苯—苯体系,如图1(a)所示。

2)最大负偏差:混合物存在最高沸点,如盐—水体系,如图1(b)所示。

3)最大正偏差:混合物纯在最低沸点,如正丙醇—水体系,如图1(c)所示。

(a) (b)(c)图1 二组分也太混合物气——液平衡相图(T—x图)对于后两种情况,为具有沸点的双系相图。

他们爱最高或最低衡沸点时气相和液相组成相同,因而不能像第一类那样通过反复蒸馏的方法而使双液系的两个组分分离,而只能采取精馏扥那个方法分离出一种纯物质和另一种衡沸混合物。

为了测定双液系的T—x图,需要在气—液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。

本实验一环己烷—乙醇为体系,该体系属于上述第三类型,在沸点仪中蒸馏不同组成的混合物,、液二相组成,即可作出T—x 相图。

本实验气液两相的组成均采用折光率测定。

折光率是物质的一个特征数值,天宇物质的浓度计温度有关,因此在测定物质的折光率是要求温度恒定。

溶液的浓度不同、组成不同,折光率也不同,因此可先配制一系列已知组成的溶液,在恒定温度下扯其折光率,作出折光率—组成曲线,便可通过折光率的大小在工作曲线上找出未知溶液的组成。

二组分理想液态混合物的气-液平衡相图.

二组分理想液态混合物的气-液平衡相图.
精馏是多次蒸馏过程
x1>x2>x3 ---→纯A y1< y2/<y3 / --→纯B • 6.3 精馏操作的条件
蒸气总压介于两纯组分饱和 蒸气压之间
恒沸点:沸腾时温度不变
特点—该点气相组成始终等于液 相组成
相律解释—C=S-R-R/=2-0-1=1, F=1-2+1=0
恒沸混合物不是化合物
§6.6 精馏原理
• 6.1 精馏操作的理论基 础
易挥发组分在气相中的含量 大于液相中的含量,难挥发组 分在液相中的含量大于气相中 的含量
• 6.2 精馏操作过程分析
• 5.1 真实液态混合物与理想 液态混合物的差别 • 5.2 蒸气压-组成图
(1)一般正、负偏差
在一定温度下,混合物中任一组分是否在 全部组成范围内都符合拉乌尔定律
§6.5 二组分真实液态混合物的气-
液平衡相图• 5.1 真实液态 Nhomakorabea合物与理想 液态混合物的差别 • 5.2 蒸气压-组成图
(1)一般正、负偏差 (2)最大正、负偏差
液相线—泡点,泡点线
(2)对比T-x图与p-x图
① p-x图中液相区在上,气相区在
下; T-x图则相反
② p-x图中液相线为直线,气相线
为曲线;T-x图中液相线和气相
线都为曲线
(3)a→b系统加热过程状态变化分析
易挥发组分在气相中的含量大于 液相中的含量
§6.5 二组分真实液态混合物的气-
液平衡相图
§6.4 二组分理想液态混合物的气-
液平衡相图 复 习
• 4.1 二组分系统相律分析
温度-组成图:恒定压力下研究
• 4.2 压力-组成图
T、x、y之间关系
• 4.3 温度-组成图

双液系的气-液平衡相图ppt课件

双液系的气-液平衡相图ppt课件

三.仪器与试剂 [注意按实际使用的记录]
四.试验步骤
1.工作曲线绘制
(1)调节超级恒温水浴温度在室温5℃以上,以适应季 节的变化,但所选温度应易于获得试样的密度数据。 环己烷和乙醇分别恒温10min,根据配制混合物所需 的体积,用移液管精确量取,配制环己烷摩尔分数为 0.10,0.20,0.30,0.40,0.50,0.60,0.70, 0.80,0.90 的环己烷-乙醇溶液各10ml。为避免样 品的挥发带来的误差,配制应尽可能迅速。 (2)用尽可能短的软管将阿贝折光仪连接在前述调好 的恒温水浴上,以保持折光仪棱镜处于恒定温度。测 量上述9个溶液以及无水乙醇和纯环己烷的折光率。
按上述相同的步骤,用第二套沸点仪测定环己 烷摩尔分数为0.90 的环己烷-乙醇溶液的沸 点以及气相和液相的折射率测定。
6.系列环己烷-乙醇溶液以及环己烷的测定 按上述第5步所述步骤,分别用第一套沸点仪从
低组成向高组成逐一测定各溶液的沸点、大气压 及两相样品的折光率,而用第二套沸点仪从高组成 向低组成逐一测定各溶液的沸点、大气压及两相 样品的折光率。直至完成所有溶液的测定。 系列溶液可回收供其它同学使用;每个试样测定 后,将沸点仪尽量倒干净即可,不必干燥。记录温度 数据时千万不要忘记注明所用温度计的编号或代 码!
2.精密数字温度温差仪温度的校正
将两套精密数字温度温差仪的探头同时放入 恒温水浴中,测定温度的差值,以其中一套的 读数为基准,对另一套精密数字温度温差仪读 数进行校正。并作燥的沸点仪安装好。检查 带有温度计的软木塞是否塞紧,电热丝要靠 近烧瓶底部的中心。温度计探头的位置应 处在支管之下,但至少要高于电热丝1 cm。 温度计套管中应加入适量的硅油或液体石 蜡,以完全浸没测温探头敏感部分(约2.5~ 3cm),便于传热。

二组分体系气-液平衡相图

二组分体系气-液平衡相图
2.与此同时另一同学练习折射仪的用法并测定折射仪标尺零点,钠黄光D线(波长589.26nm)
通过25℃的无水乙醇,折射率应为 n D =1.3594(文献值),如果25℃实测值为1.3600,则1.3600-
1.3594=0.0006 表 明 标 尺 零 点 有 正 误 差,应 予 校 正,校 正 值 △ = - 0.0006,实 验 中 每 次 测 定 应 加 上
△,此例为减去0.0006。用环己烷(
n
D 25
=1.4326)校正零点也是同样。
3.测定乙醇-环己烷溶液不同组成时的沸点及此时(气液平衡)气、液相的组成。待上述无水 乙醇冷却至近于室温或不烫手时,加1.5ml环己烷至无水乙醇中,测定沸点并测沸腾时气、液组成。 再 依 次 加 入 环 己 烷 2.0、2.0、8.0、10.0、10.0、10.0ml 至 无 水 乙 醇 中,分 别 测 其 沸 点 和 气、液 相 组 成。
file://E:\whsy\whsy05.htm
2008-4-22
二组分体系气-液平衡相图
页码,3/3
五.数据处理
1.根据沸点数据以及从折射率-组成曲线内插得到气液组成;
乙醇-环己烷溶液不同组成的沸点及气、液组成
加入量
T
n液
n气
液相组成
气相组成
20ml乙醇 加1。5环己烷 加2.0环己烷 加2.0环己烷 加8.0环己烷 加10.0环己烷 加10.0环己烷 加10.0环己烷
4.同法测定环己烷-乙醇不同组成的沸点及其相应的气、液组成。在沸点仪先加入25ml环己 烷,测定沸点,然后依次加入无水乙醇0.5、0.5、0.5、1.0、1.0、2.0、5.0ml,分别测定沸点和气、 液组成。
判断沸点的准则:温度计汞柱上升明显变缓;液体发生大量气泡;蒸汽冷凝得到的液体很快充 满支管。此时一手握住台架,一手扶好台架底座,倾斜沸点仪,将支管中冷凝液倒回液体中(此步 骤简称“回流”),,立即读温度计示值,反复回流数次待温度计示值稳定,就是沸点。

双液系气——液平衡相图实验项目改进措施探讨

双液系气——液平衡相图实验项目改进措施探讨

双液系气——液平衡相图实验项目改进措施探讨
双液系气-液平衡相图实验是一种常用的实验手段,可以用来检测液体和气体之间的相互作用机理。

为了更好地提高实验效果,可以采取一些措施进行改进。

1. 优化实验设备:双液系气-液平衡相图实验需要使用到高精度的设备,如温度传感器、压力传感器等,这些设备的准确性对实验结果影响较大。

因此,为了提高实验结果的准确性,应该优化实验设备,使其能够准确的测量和记录实验数据。

2. 增加实验次数:双液系气-液平衡相图实验需要进行多次实验,以便获得更多的数据,从而更准确地分析实验结果。

因此,建议增加实验次数,以获得更多的实验数据。

3. 调整实验参数:双液系气-液平衡相图实验的实验参数,如温度、压力等,对实验结果也有很大的影响。

因此,在实验中,应根据实验需要,适当调整实验参数,以获得更准确的实验结果。

4. 加强实验记录:双液系气-液平衡相图实验要求将实验数据准确记录下来,以便日后分析比较实验结果。

因此,建议加强实验记录,使实验数据准确可靠。

物理化学6-03理液相图

物理化学6-03理液相图

气相组成 yB 0 0.2530 0.4295 0.5667 0.6656 0.7574 0.8179 0.8782 0.9240 0.9672 0.9827 1.000
蒸气总压 p / 102kPa 0.3846 0.4553 0.5225 0.5907 0.66499 0.7166 0.7722 0.8331 0.8907 0.9845 0.9179 0.9982
F=2-1+1=2 F=2-2+1=1
p T一定 a
•系统点: 相图上表示系统总状态 (总组成)的点;
b
•相点:表示各个相的状态(组成) 的点.
c
•结线:两个平衡相点的连结线.系 统点总是在结线上
单相区系统点与相点合二为一, 两相共存区系统点与相点是分 开的。 真正代表系统状态的是两个相点。
0 A
• 点、线、区的含义及 各状态下自由度数;
100 t/℃ L
M
G
• 露点与泡点的含义;
* tB
80 l (A+B) F=2
• 区分系统点与相点,会 读系统总组成与相组 成; • 二组分系统恒压变温 过程相变化的分析, 及 与纯组分相变的差异. • 恒压变温过程(点击这里).
60 0.6 0.0 0.2 1.0 0.4 0.8 B xB A •C6H5CH3(A) - C6H6 (B)系统的 沸点-组成图
将吉布斯相律应用于二组分系统 ( C = 2 )
F = 2-P+2=4-P
P=1,F=3 最多3个独立变量(T, p, 组成)
P=2,F=2
P=3,F=1 P=4,F=0 最多4个相平衡共存(无变量) 指定温度, 则有压力-组成图 ;
指定压力, 则有温度-组成图 .

三组分液液平衡相图与萃取

三组分液液平衡相图与萃取
1
的组成。例如 o 点的组成,可通过 o 点作三条线 oa,ob 和 oc,分别平行于正三角形的 3 条
边,其中 xA=oa,xB=ob,xC=oc。由平面几何不难证明:
xA + xB + xC = oa + ob + oc = 1 这表明 3 个组成中只有 2 个是独立的。
(25-2)
这种表示法有下列 3 个重要的特点:
c
(E) A
c
(R) A
=
(n − n1) / l n1 / v
= KDc,A
(25-11)
n1
=
n⎜⎜⎝⎛
v K Dc,A l
+
v
⎟⎞ ⎟⎠
(25-12)
现若再次用体积为 l 的萃取剂 C 对萃余液作第二次萃取,萃取结果仍有 n2 的 A 残留在 萃余液中,则不难计算
n2
=
n1⎜⎜⎝⎛
v K Dc,Al
A(R 相)
A(E 相)
其平衡条件是 A 在两个液相中的化学势或逸度相等:
μ
(R A
)
=
μ
(E A
)
(25-4)

f A( R )
=
f
(E A
)
假如 A 在 R 相和 E 相中都很稀,则由 Henry 定律可得:
f
(R A)ຫໍສະໝຸດ =K(R) Hx , A
xA( R )
(25-5) (25-6)
3
f
( A
1. 系统组成的表示
对于三组分凝聚系统,相律可表示为:
F = K −π +1−0−0 = 4−π
(25-1)
其自由度最多可有 3 个,即温度和 2 个组分的浓度。因此,相图可由正三棱柱体表示,其中

气液平衡相图的测定

气液平衡相图的测定
背景
随着工业的发展,多相流体的处理和分离技术在石油、化工、能源等领域的应用 越来越广泛。气液平衡相图作为描述多相流体相平衡关系的基础数据,对于这些 领域的技术开发、工艺优化和过程控制具有重要的指导作用。
气液平衡相图的重要性
基础研究
气液平衡相图是研究多相流体热力学性质的基础数据,对于理解多相流体的相平衡规律、界面张力以及传递性质 具有重要意义。
03
气液平衡相图的测定方法
实验设备与材料
气液平衡相图测定仪
用于测定气液平衡相图,包括恒温槽、压力表、气、氮气、水等。
辅助工具
如注射器、管路、密封圈等。
实验步骤与操作
设定温度
根据实验需求设定恒温槽的温 度,确保实验过程中温度恒定。
开始实验
加强气液平衡相图在工 业上的应用研究,推动 其在更多领域的应用普 及。
跨学科合作
加强与其他学科的合作, 如化学工程、物理化学、 材料科学等,共同推进 气液平衡相图的研究和 应用。
人才培养与交流
加强人才培养和学术交 流,促进气液平衡相图 领域的持续发展。
THANKS
感谢观看
工业应用
在石油、化工、能源等领域,气液平衡相图是设计和优化油藏工程、油气分离、吸收解吸、萃取精馏等工艺过程 的关键参数。通过测定气液平衡相图,可以预测多相流体的流动特性、分离效果和经济性,为工业过程的优化提 供科学依据。
02
气液平衡相图的基本概念
相平衡
相平衡是指在一定的温度和压力条件下,物质的气相和液相达到平衡状态的状态 。在这种状态下,气相和液相之间不再发生质量传递,即气相和液相的组成保持 不变。
05
应用与展望
工业应用
分离过程优化
气液平衡相图在工业上可用于优 化分离过程,如蒸馏、吸收等,

二组分液液平衡系统相图讲义

二组分液液平衡系统相图讲义
W醇 7.81% W醇100.0
W醇8.4( 7g)
水-正丁醇溶解度图
二组分液液平衡系统相图
(2)当正丁醇的加入量为 25.0g时,系统的总组成为:
W 醇 %2.5 02.1 500.002% 0
此时系统的物系点为d,在液液两相平衡共存区内,共轭两 液相的相点为a和b,它们的组 成是水层中W醇%=7.81%;醇层 中W醇% =79.9%,由杠杆规则:
不断加入,l1 相会减少,l2 相的量
会增加。当总组成为 X 时 :
• 当体系的总组成为 X2 时,l1 相恰好消失。
• 如果继续加酚至组成为 b 时,则体系中只有一个水在酚 中的不饱和溶液相了。
二组分液液平衡系统相图
2.若某温度时有一组成为 d 的溶液,其状态点在ACB曲 线的外面,故此时只有一 个液相存在。
An
A"
T1
两相
313 D
C
E
0 0 .2 0 .4 0 .6 0 .8 1 .0
H 2 O 质量分数
C6H5NH2
H 2O -C 6H 5N H 2 的 溶 解 度 图
帽形区内两相共存
二组分液液平衡系统相图
一、部分互溶液体的相互溶解度 2.具有最低临界溶解温度
水-三乙基胺的溶解
度图如图所示。
343
二组分液液平衡系统相图
一、部分互溶液体的相互溶解度
1.具有最高临界溶解温度
D点:苯胺在水中的饱和溶解度 E点:水在苯胺中的饱和溶解度
温度升高,互溶程度增加
B点:水与苯胺完全互溶
T B 是最高临界溶解温度
DB线是苯胺在水中的溶解度曲线 EB线是水在苯胺中的溶解度曲线
T/K
453

4.4 两组分气液液相图

4.4 两组分气液液相图
上部会溶点 上部会溶温度
系线(联结线)
CK 线 , C’K 线 : 溶解度随 温度的变化曲线称为 溶 解度曲线(雾点线)。
H2O(A)--i-C4H9OH(B)的液液平衡相图
返回章首
具有下部会溶点的 液液平衡相图
具有上部会溶点和下部 会溶点的液液平衡相图
水(A)--三乙胺(B)的液液相图
水(A)--烟碱(B)的液液相图
温度对溶解度影响的原因:Smix 0; 组分间存在氢键。
返回章首
2.气液液平衡 部分互溶系统的气液液平衡相图(类型1)
二元系的气液液相图
不同压力的二元系气液液相图
(2异丁醇(B)的气液液平衡相图
返回章首
wO
w L1
w
V
水(A)--异丁醇(B)的气液液平衡相图
D D O L D H V 11 2 W W WLL w w w w wO O D O D L H V 2 W W W w O w wLL11 W w
返回章首
部分互溶系统的精馏
wO
w L1
w
V
水(A)--异丁醇(B)的气液液平衡相图
两塔流程分离醇与水
返回章首
部分互溶系统的气液液 平衡相图(类型2)
完全不互溶系统的 二元气液液相图
H2O(A)--SO2(B)气液液相图
完全不互溶系统的二元气液液相图
返回章首
温度降至c点,开始凝结出纯B。 温度继续下降,纯 B 液体的量
4-4 两组分系统的气液液平衡相图
1.液液平衡 p 一定, T~wB 部分互溶实验
水(A) - 异丁醇(B)
t/℃
20
50
6.6
80
7.2
110
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试剂和仪器
沸点测定仪 各种沸点测定仪的具体构造虽然各有 特点,但其设计思想都集中于如何正确测 定沸点和气液相的组成,便于取样分析, 防止过热及避免分馏等方面。
蒸汽冷凝部分的设计是关键之一。若收集 冷凝液的凹形半球容积过大,在客观上即 造成溶液得分馏;而过小则回因取太少而 给测定带来一定困难。 连接冷凝和圆底烧瓶之间的连接管过短或 位置过低,沸腾的液体就有可能溅入小球 内;相反,则易导致沸点较高的组分先被 冷凝下来,这样一来,气相样品组成将有 偏差。
本实验所用沸点仪如图所示:这是 一只带回流凝管的长颈园底烧瓶。 冷凝管底部有一半球形小室,用于 收集冷凝下来的气相样品。电流经 变压器和粗导线通过浸于溶液中的 电热丝。这样既可减少溶液沸腾时 的过热现象,还能防止暴沸。
沸点测定仪 1只 阿贝折射仪 1台 调压变压器 1只 烧杯500ml 1只 玻璃水银温度计(50-100℃最小分度值 0.1℃) 1 支 吸液管(1ml) 2只,(2ml) 1只, (5ml) 2只 环己烷(分析纯) 无水醇(分析纯)
实验步骤
1、工作曲线绘制 本实验可用折光率-组成工作曲线来测 得平衡体系的两相组成。根据教材中所列 的环己烷-无水乙醇组成 / 折光率表,绘制 环己烷-无水乙醇组成/折光率曲线。
安装沸点仪 将烘干的沸点仪按装好,检查带有温度 计的软木塞是否塞紧,电热丝要靠近烧瓶 底部的中心,温度计银球的位置应处在支 管之下,但和加热丝之间要有一定距离。
取样并测定折光率 切断电源,停止加热,用盛冷水的烧杯 套在沸点仪底部使体系冷却。用一只干燥的 滴管自冷凝管中取出小球内的全部冷凝液, 用另一只干燥的滴管由支管吸取烧瓶内的溶 液 1ml 左右,上述样品可分别作为平衡时的 气相样品和液相样品,用阿贝折光仪测其折 光率。最后将溶液倒入指定的储液瓶。
注意事项
加热电热丝一定要被欲测液体浸没,否则通 电加热时会引起有机溶液的燃烧或烧断加热 丝,所加电压不能太大,加热丝上有小气泡 逸出即可,温度计水银球不要直接碰到加热 丝。
一定要使体系达到平衡,即温度计读数稳定, 先停止通电加热再取样分析。 使用折光仪时,棱镜上不能触及硬物(如滴 管)。
记录完毕后,再向蒸馏瓶内再加入0.5cm3乙 醇,按前述方法测定沸点及气液两相的折射率。 再依次加入2,3cm3乙醇,作同样实验。 上述实验结束后,将母液放入回收瓶内。用少 量乙醇洗涤蒸馏瓶。待其冷却至室温后,注入 30cm3乙醇,然后按前述方法测定依次测定加入 0.5,2,3,5cm3环己烷,测定其沸点。分别测定 它们的沸点及气液相样品的折射率。
操作要点
由于沸点及气液两相折光率的测定需要气液平衡 的条件下测定,因此应注意以下几个操作要点:
变压器调节电压时,应由零开始逐渐加大电压使溶液 缓慢加热。每种浓度样品其沸腾状态应尽量一致。即 气泡连续、均匀冒出为好,不要过于激烈也不要过于 慢。 蒸气在冷凝管中的高度应保持在2cm左右,温度计读 数稳定后体系达到平衡,(温度保持恒定,证明气液相 达到平衡,一般约10分钟) 最初收集在球形凹槽内的冷凝液常不能代表平衡时的 气相的组成。因此需将最初的冷凝液倾倒回烧瓶2~3次。
校正后溶液的正常沸点为 t沸=t测+△t压+△t露 作出折光率-组成标准曲线。根据所得蒸 出液和蒸馏液的折光率,在标准曲线上找 出对应的成分。
作环己烷-乙醇的T-x图。并从图中确定 出最低恒沸点和恒沸物组成。
数据处理
沸点温度校正 (1) 正常沸点。在标准大气压下测得的沸点 称为正常沸点。通常外界压力并不恰好等 于 101.325KPa,因此,应对实验测得值作 压力校正。应用特鲁顿规则及克劳修斯- 克拉见龙公式校正。
△t压=(273.15+ t测)/10· (101325-P)/101325
温度露茎校正 在作精密的温度测量时,需对温度计读数 校正。根据玻璃与水银膨胀系数的差异, 校正计算式为: △t露=1.6×10-4· n· (tA-tB) 式中 tA、tB 为露茎部位的温度值, n 为露出 在体系外的水银柱长度。即图4中温度计的 观测值与沸点仪软木塞处温度计读数之差, 并以温度差值作为长度单位。
测定沸点 在已洗净烘干的蒸馏瓶内加入30cm3环 己烷,向蒸馏瓶内加入0.5cm3乙醇,其液面 应在温度计水银球的中部,电热丝应完全浸 没于溶液中,打开冷却水,接通电源。用调 压变压器调节电压,由零开始逐渐加大电压 使溶液缓慢加热,观查电热丝上是否有小气 泡逸出。
调节电压和冷却水流量,使蒸气能在冷 凝管中的高度保持在2cm左右。至温度计的读 数稳定后再维持3~5min,使体系达到平衡, 在这过程中,不时将小球中凝聚的液体倾入 烧瓶,记录温度计读数和露茎的温度及大气 压力。(温度保持恒定,证明气液相达到平衡, 一般约10分钟)
液体的沸点 是指液体的蒸气压与外界压力相等时的 温度。在一定的外压下,纯液体的沸点有其 确定值。但双液系的沸点不仅与外压有关, 而且还与两种液的相对含量有关。根据相律, 自由度=组分数-相数+2,因此,一个以 气-液共存的二组分体系,其自由度为2。
只要任意再确定一个变量,整个体系的 存在状态就可以用二维图形来描述。在一 定温度下,可以画出体系的压力 P 和组分 x 的关系图,如体系的压力确定,则可作温 度 T 对 x 的关系图。在 T-x 相图上,还有温 度、液相组成和气相组成三个变量,则其 它两个变量必须有相应的确定值。
双液系的气-液平衡相图
实验目的与要求
绘制在常压下环己烷-乙醇双液系的气液 平衡相图,了解相图和相律的基本概念。 掌握测定双组分液体的沸点及正常沸点的 方法。 掌握用折射率确定二元液体组成的方法。
实验原理
气-液相图 两种液态物质混合而成的二组分体系 称为双液系,两个组分若能以任意比例相 互溶解,称为完全互溶双液系。两个组分 若只能在一定比例范围内相互溶解,称为 部分互溶双液系。
相关文档
最新文档