(整理)导数微积分公式大全.
高等数学微积分公式
![高等数学微积分公式](https://img.taocdn.com/s3/m/a5c45f04b80d6c85ec3a87c24028915f814d845b.png)
高等数学微积分公式高等数学微积分公式微积分是数学中的一个重要分支,它研究的是函数的变化规律。
在微积分的学习中,我们需要掌握许多公式,在处理函数的变化过程中起到了非常重要的作用。
下面是高等数学中常见的微积分公式。
一、导数公式1.常数函数的导数公式:\[\frac{d}{dx} C=0\]其中C为常数。
2.幂函数的导数公式:\[\frac{d}{dx} x^{n}=nx^{n-1}\]其中n为常数。
3.自然指数函数的导数公式:\[\frac{d}{dx} e^{x}=e^{x}\]4.对数函数的导数公式:\[\frac{d}{dx} ln(x)=\frac{1}{x}\]5.三角函数的导数公式:\[\frac{d}{dx} sin(x)=cos(x)\]\[\frac{d}{dx} cos(x)=-sin(x)\]6.反三角函数的导数公式:\[\frac{d}{dx} sin^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}\] \[\frac{d}{dx} cos^{-1}(x)=-\frac{1}{\sqrt{1-x^{2}}}\]7.复合函数的导数公式(链式法则):设y=f(u)和u=g(x),则有\[\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\]二、微分公式1.常数函数的微分公式:\[d(C)=0\]其中C为常数。
2.幂函数的微分公式:\[d(x^{n})=nx^{n-1}dx\]其中n为常数。
3.指数函数的微分公式:\[d(e^{x})=e^{x}dx\]4.三角函数的微分公式:\[d(sin(x))=cos(x)dx\]\[d(cos(x))=-sin(x)dx\]5.反三角函数的微分公式:\[d(sin^{-1}(x))=\frac{dx}{\sqrt{1-x^{2}}}\]\[d(cos^{-1}(x))=-\frac{dx}{\sqrt{1-x^{2}}}\]6.复合函数的微分公式(链式法则):设y=f(u)和u=g(x),则有\[dy=\frac{dy}{du}\times du\]三、泰勒公式泰勒公式是微积分中的一个重要定理,它可以将一个函数在某点的值表示为一系列关于该点的导数的和。
导数微积分公式大全
![导数微积分公式大全](https://img.taocdn.com/s3/m/84c5155cccbff121dd3683d9.png)
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
16个微积分公式
![16个微积分公式](https://img.taocdn.com/s3/m/7f86ef03bf1e650e52ea551810a6f524ccbfcb99.png)
16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。
在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。
下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。
2.基本导数公式:a.(k)'=0,其中k是常数。
b. (x^n)' = nx^(n-1),其中n是实数。
c. (sin x)' = cos x。
d. (cos x)' = -sin x。
e.(e^x)'=e^x。
f. (ln x)' = 1/x。
3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。
b.(f(x)-g(x))'=f'(x)-g'(x)。
c.(k*f(x))'=k*f'(x),其中k是常数。
d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。
4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。
5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。
6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。
常用微积分公式大全
![常用微积分公式大全](https://img.taocdn.com/s3/m/cd19e2ac5ff7ba0d4a7302768e9951e79b89699c.png)
常用微积分公式大全微积分是数学的一个重要分支,它研究了函数的导数、积分以及它们之间的关系。
微积分公式是求导和积分的基本工具,以下是一些常用的微积分公式:1.基本导数法则:-导数和差法则:(f+g)'=f'+g'-常数倍法则:(c*f)'=c*f'-乘积法则:(f*g)'=f'*g+f*g'-商法则:(f/g)'=(f'*g-f*g')/g^22.基本函数的导数:-非常数次幂:(x^n)'=n*x^(n-1)- 幂函数:(a^x)' = ln(a) * a^x-自然指数函数:(e^x)'=e^x- 对数函数:(log_a x)' = 1 / (x ln(a))3. 链式法则:如果 y = f(u) 和 u = g(x) 是可导函数,那么复合函数 y = f(g(x)) 的导数为 dy/dx = (dy/du) * (du/dx)4.高阶导数:如果f'(x)存在,则f''(x)表示f'(x)的导数,称为f(x)的二阶导数。
同理,f''(x)的导数称为f(x)的三阶导数,以此类推。
5.基本积分法则:- 恒等积分:∫(c dx) = c*x + C- 幂函数积分:∫(x^n dx) = (1/(n+1)) * x^(n+1) + C- 自然指数函数积分:∫(e^x dx) = e^x + C- 对数函数积分:∫(1/x dx) = ln,x, + C6. 替换法则:如果∫(f(g(x)) g'(x) dx) 可以被积分,则∫(f(u) du) = ∫(f(g(x)) g'(x) dx)7. 定积分:∫[a,b] f(x) dx 表示函数 f(x) 在区间 [a,b] 上的定积分,表示曲线围成的面积。
8.收敛性和发散性:如果一个定积分存在有限的数值,那么它是收敛的;如果一个定积分没有有限的数值,那么它是发散的。
导数微积分公式大全
![导数微积分公式大全](https://img.taocdn.com/s3/m/99c0b909cfc789eb172dc8e6.png)
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
导数微分积分公式大全
![导数微分积分公式大全](https://img.taocdn.com/s3/m/f76f6f37a517866fb84ae45c3b3567ec102ddcd5.png)
导数微分积分公式大全导数微分公式:1.常数函数的导数:f(x)=C,则f'(x)=0。
2. 幂函数的导数:f(x) = x^n,则f'(x) = nx^(n-1)。
3. 指数函数的导数:f(x) = a^x,则f'(x) = a^x * ln(a)。
4. 对数函数的导数:f(x) = ln(x),则f'(x) = 1/x。
5.三角函数的导数:- 正弦函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),则f'(x) = sec^2(x)。
6.反三角函数的导数:- 反正弦函数的导数:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
- 反余弦函数的导数:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
- 反正切函数的导数:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
7.当两个函数相加时,其导数为两个函数的导数之和。
8.当两个函数相乘时,其导数为一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以一个函数。
9.当一个函数的导数与一个常数相乘时,其导数等于常数乘以函数的导数。
10.当一个函数的导数与一个指数函数的底数e相乘时,其导数等于函数的导数。
积分公式:1. 幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数。
2.三角函数的积分:- 正弦函数的积分:∫sin(x) dx = -cos(x) + C。
- 余弦函数的积分:∫cos(x) dx = sin(x) + C。
- 正切函数的积分:∫tan(x) dx = -ln,cos(x), + C。
3.反三角函数的积分:- 反正弦函数的积分:∫arcsin(x) dx = x * arcsin(x) + √(1-x^2) + C。
导数公式大全
![导数公式大全](https://img.taocdn.com/s3/m/65e0690cddccda38366baf2a.png)
导数公式大全1、原函数:y=c(c为常数)导数:y'=02、原函数:y=x^n导数:y'=nx^(n-1)3、原函数:y=tanx导数:y'=1/cos^2x4、原函数:y=cotx导数:y'=-1/sin^2x5、原函数:y=sinx导数:y'=cosx6、原函数:y=cosx导数:y'=-sinx7、原函数:y=a^x导数:y'=a^xlna8、原函数:y=e^x导数:y'=e^x9、原函数:y=logax导数:y'=logae/x10、原函数:y=lnx导数:y'=1/xy=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1+x^2)导数(Derivative)是微积分中的重要基础概念。
当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
微积分的公式大全
![微积分的公式大全](https://img.taocdn.com/s3/m/f7efc1fe1b37f111f18583d049649b6648d7099a.png)
微积分的公式大全1.导数公式:- 限定义导数:f'(a) = lim[h->0] (f(a+h)-f(a))/h-幂函数的导数:(x^n)'=n*x^(n-1)-指数函数的导数:(e^x)'=e^x- 对数函数的导数:(ln(x))' = 1/x-三角函数的导数:- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (tan(x))' = sec^2(x)-反三角函数的导数:- (arcsin(x))' = 1/√(1-x^2)- (arccos(x))' = -1/√(1-x^2)- (arctan(x))' = 1/(1+x^2)2.积分公式:- 不定积分的基本公式:∫[f(x)+g(x)]dx = ∫f(x)dx + ∫g(x)dx - 幂函数的积分:∫x^n dx = x^(n+1)/(n+1) + C (其中C为常数) - 指数函数的积分:∫e^x dx = e^x + C- 对数函数的积分:∫1/x dx = ln,x, + C (其中C为常数)-三角函数的积分:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫tan(x) dx = -ln,cos(x), + C-反三角函数的积分:- ∫1/√(1-x^2) dx = arcsin(x) + C- ∫-1/√(1-x^2) dx = arccos(x) + C- ∫1/(1+x^2) dx = arctan(x) + C3.基本定理:- 第一基本定理:∫[a, b] f'(x)dx = f(b) - f(a) (即导函数的积分等于原函数在区间上的差)- 第二基本定理:∫[a, b] f(x)dx = F(b) - F(a) (即函数的积分等于其原函数在区间上的差)4.微分方程:- 一阶线性ODE通解:y = ∫[a, x] f(t)*e^(∫[a, t] p(u)du) dt + Ce^(∫[a, x] p(t)dt)-二阶常系数齐次线性ODE通解:y=C1e^(r1x)+C2e^(r2x)-二阶常系数非齐次线性ODE通解:- 非齐次线性ODE的特解:y = yp- 齐次线性ODE的通解:y = yp + C1e^(r1x) + C2e^(r2x)5.极限公式:- 极限定义:lim[x->a] f(x) = L (当x趋近于a时,f(x)趋近于L) -极限的四则运算法则:- lim[x->a] [f(x) + g(x)] = lim[x->a] f(x) + lim[x->a] g(x) - lim[x->a] [f(x) - g(x)] = lim[x->a] f(x) - lim[x->a] g(x) - lim[x->a] [f(x) * g(x)] = lim[x->a] f(x) * lim[x->a] g(x) - lim[x->a] [f(x) / g(x)] = lim[x->a] f(x) / lim[x->a] g(x) (其中g(a)不等于0)- 极限函数的连续性:如果lim[x->a] f(x) = f(a)和lim[x->a]g(x) = g(a),则lim[x->a] [f(x) + g(x)] = f(a) + g(a)和lim[x->a] [f(x) * g(x)] = f(a) * g(a)。
16个基本导数公式详解
![16个基本导数公式详解](https://img.taocdn.com/s3/m/1c4ac237a517866fb84ae45c3b3567ec102ddcfb.png)
16个基本导数公式详解在微积分中,导数是一个基本的概念。
它描述了函数在给定点的变化率。
了解导数的基本公式对于求解微积分问题是至关重要的。
在本文中,我们将详细讨论16个基本导数公式,每个公式都将包含定义、求导法则和常见的具体例子。
1.常数函数的导数:定义:如果函数$f(x)$是一个常数,则$f'(x)=0$。
求导法则:常数的导数是0。
例如:对于函数$f(x)=5$,它的导数$f'(x)=0$。
2.幂函数的导数:定义:对于函数 $f(x)=x^n$,其中 $n$ 是一个正整数,则$f'(x)=nx^{n-1}$。
求导法则:对于幂函数,使用幂函数的指数作为系数,然后将指数减1例如:对于函数$f(x)=x^2$,它的导数$f'(x)=2x$。
3.指数函数的导数:定义:对于函数 $f(x)=a^x$,其中 $a$ 是一个正常数且 $a \neq 1$,则 $f'(x)=a^x \ln(a)$。
求导法则:对于指数函数,使用指数和常数的乘积,并且乘以自然对数的底数。
例如:对于函数 $f(x)=2^x$,它的导数 $f'(x)=2^x \ln(2)$。
4.对数函数的导数:定义:对于函数 $f(x)=\log_a(x)$,其中 $a$ 是一个正常数且 $a\neq 1$,则 $f'(x)=\frac{1}{x \ln(a)}$。
求导法则:对于对数函数,使用1除以输入的自变量乘以自然对数的底数。
例如:对于函数 $f(x)=\log_2(x)$,它的导数 $f'(x)=\frac{1}{x\ln(2)}$。
5.正弦函数的导数:定义:对于函数 $f(x)=\sin(x)$,则 $f'(x)=\cos(x)$。
求导法则:正弦函数的导数是余弦函数。
例如:对于函数 $f(x)=\sin(2x)$,它的导数 $f'(x)=2\cos(2x)$。
6.余弦函数的导数:定义:对于函数 $f(x)=\cos(x)$,则 $f'(x)=-\sin(x)$。
导数微积分公式大全
![导数微积分公式大全](https://img.taocdn.com/s3/m/e8ca98c48662caaedd3383c4bb4cf7ec4afeb6d4.png)
导数微积分公式大全1.函数的导数定义公式:若函数$f(x)$在区间$[a, b]$内有定义,且对于任意$x\in(a, b)$,函数$f(x)$在点$x$处的导数存在,则导数的定义如下:\begin{align*}f'(x) &= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) -f(x)}{\Delta x}\\&= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\end{align*}2.基本导数法则:(1)常数函数导数:若$f(x)=C$,其中$C$为常数,则$f'(x)=0$。
(2)幂函数导数:若$f(x) = x^n$,其中$n$为正整数,则$f'(x) = nx^{n-1}$。
(3)指数函数导数:若$f(x)=e^x$,则$f'(x)=e^x$。
(4)对数函数导数:若$f(x) = \ln x$,则$f'(x) = \frac{1}{x}$。
(5)三角函数导数:若$f(x) = \sin x$,则$f'(x) = \cos x$;若$f(x) = \cos x$,则$f'(x) = -\sin x$;若$f(x) = \tan x$,则$f'(x) = \sec^2 x$。
3.四则运算法则:若函数$f(x)$和$g(x)$都在一些区间上可导,则其和、差、积、商的导数如下:(1)和的导数:$(f+g)'(x)=f'(x)+g'(x)$(2)差的导数:$(f-g)'(x)=f'(x)-g'(x)$(3) 积的导数:$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x)\cdot g'(x)$(4) 商的导数:$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$4.复合函数导数:若函数$y=f(g(x))$可微分,则导数$f'(g(x))$和$g'(x)$的乘积等于复合函数$y$对$x$的导数:\\frac{dy}{dx} = \frac{dy}{dg} \cdot \frac{dg}{dx}\]5.高阶导数:若函数$f(x)$的导数$f'(x)$存在,则导数$f'(x)$的导数称为$f(x)$的二阶导数,表示为$f''(x)$,类似地,导数$f''(x)$的导数称为$f(x)$的三阶导数,以此类推。
微积分的公式大全
![微积分的公式大全](https://img.taocdn.com/s3/m/145d065f26d3240c844769eae009581b6bd9bd32.png)
微积分的公式大全微积分是数学的一个重要分支,涉及到函数的极限、导数、积分等概念和方法。
以下是微积分中常见的公式:1. 极限公式:- 函数f(x)当x趋近于a时的极限:lim[x→a]f(x)- 无穷小量的定义:lim[x→0]f(x)=02. 导数公式:- 导数的定义:f'(x)=lim[h→0](f(x+h)-f(x))/h- 幂函数的导数:(x^n)'=nx^(n-1)- 三角函数的导数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x- 指数函数和对数函数的导数:(e^x)'=e^x,(lnx)'=1/x3. 积分公式:- 不定积分的定义:∫f(x)dx=F(x)+C,其中F(x)为f(x)的一个原函数,C为常数- 基本积分法则:∫u(x)v'(x)dx=u(x)v(x)-∫u'(x)v(x)dx- 幂函数的不定积分:∫x^n dx=(x^(n+1))/(n+1)+C,其中n不等于-1- 三角函数的不定积分:∫sinx dx=-cosx+C,∫cosx dx=sinx+C - 指数函数和对数函数的不定积分:∫e^x dx=e^x+C,∫1/xdx=ln|x|+C4. 微分方程公式:- 一阶线性微分方程:dy/dx+p(x)y=q(x),通解为y=e^(-∫p(x)dx)∫[e^(∫p(x)dx)]q(x)dx- 欧拉-拉格朗日方程:d/dx(∂L/∂(dy/dx))-∂L/∂y=0,其中L为拉格朗日量5. 泰勒展开公式:- 函数f(x)在x=a处的n阶泰勒展开:f(x)=f(a)+(f'(a)(x-a))/1!+(f''(a)(x-a)^2)/2!+...+(f^n(a)(x-a)^n)/n!,其中f^n(a)为f(x)的n阶导数在x=a处的值这些公式只是微积分中的一部分,它们在解决函数的性质、曲线的切线与极值、曲线下面积等问题中发挥着重要的作用。
微积分常用公式及运算法则上
![微积分常用公式及运算法则上](https://img.taocdn.com/s3/m/09ddaf61bdd126fff705cc1755270722192e59c4.png)
微积分常用公式及运算法则上微积分是数学中的一个重要分支,广泛应用于物理、工程、经济学等领域。
在学习微积分的过程中,掌握常用的公式和运算法则是非常重要的。
下面是微积分中常用的公式和运算法则的详细介绍。
一、常用公式1.导数公式(1)常数的导数:若c为常数,则d/dx(c)=0。
(2)乘方函数的导数:若y=x^n,则dy/dx=nx^(n-1)。
(3)指数函数的导数:若y=e^x,则dy/dx=e^x。
(4)对数函数的导数:若y=ln(x),则dy/dx=1/x。
(5)三角函数的导数:(a)若y=sin(x),则dy/dx=cos(x)。
(b)若y=cos(x),则dy/dx=-sin(x)。
(c)若y=tan(x),则dy/dx=sec^2(x)。
(d)若y=cot(x),则dy/dx=-csc^2(x)。
(e)若y=sec(x),则dy/dx=sec(x)tan(x)。
(f)若y=csc(x),则dy/dx=-csc(x)cot(x)。
2.积分公式(1)不定积分:若F(x)是f(x)的一个原函数,则∫f(x)dx=F(x)+C,其中C为常数。
(2)定积分:若f(x)在区间[a, b]上可积,则∫[a, b]f(x)dx是f(x)在[a, b]上的定积分。
3.常用等式(1)和差化积:(a+b)(a-b)=a^2-b^2(2)完全平方差:a^2-2ab+b^2=(a-b)^2(3)二次方程的根:若ax^2+bx+c=0(a≠0)有实根,则判别式D=b^2-4ac≥0。
(4)勾股定理:在直角三角形ABC中,设∠C=90°,则a^2+b^2=c^2,其中a、b为直角边,c为斜边。
二、运算法则1.四则运算法则(1)加法法则:(f+g)'=f'+g'。
(2)减法法则:(f-g)'=f'-g'。
(3)乘法法则:(f*g)'=f'*g+f*g'。
高数微积分公式大全(总结的比较好)
![高数微积分公式大全(总结的比较好)](https://img.taocdn.com/s3/m/efca306702768e9951e738de.png)
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫=⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =++九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos axe xdx ⎰令,sin ,cos ax u e x x =均可。
微积分公式大全
![微积分公式大全](https://img.taocdn.com/s3/m/1a7f3ed050e79b89680203d8ce2f0066f5336403.png)
微积分公式大全一、基本公式:1.微分基本公式(导数):(1)常量函数导数:(k)'=0;(2)幂函数导数:(x^n)'=n·x^(n-1);(3)指数函数导数:(a^x)'= ln(a)·a^x;(4)对数函数导数:(log_a x)'= 1/(x·ln(a));(5)三角函数导数:(sin x)'=cos x, (cos x)'=-sin x, (tan x)'=sec^2 x;(6)反三角函数导数:(arcsin x)'=1/√(1-x^2), (arccos x)'=-1/√(1-x^2), (arctan x)'=1/(1+x^2);(7)复合函数导数:f(g(x))'=f'(g(x))·g'(x);2.积分基本公式:(1)不定积分:∫(k)dx=kx+C, ∫(x^n)dx= (x^(n+1))/(n+1)+C;(2)定积分:∫(a~b)f(x)dx= F(b)- F(a),其中 F(x) 是 f(x) 在[a, b] 上的一个原函数;(3)换元积分:∫f(g(x))·g'(x)dx=∫f(u)du, 其中 u = g(x);(4)分部积分:∫u·dv = u·v - ∫v·du;二、微分学公式:1.高阶导数:如果函数f(x)的n阶导数存在,则记作f^(n)(x),有以下公式:(1)常函数的n阶导数为0;(2)幂函数的n阶导数为n!(n-1)!·x^(n-m);(3)指数函数的 n 阶导数为a^x·ln^n(a);(4)对数函数的n阶导数为(-1)^(n-1)·(n-1)!/x^n;(5)三角函数的n阶导数:sin(x):n 为奇数时,n 阶导数为sin(x+ nπ/2);n 为偶数时,n 阶导数为cos(x+ nπ/2);cos(x):n 为奇数时,n 阶导数为 -cos(x+ nπ/2);n 为偶数时,n 阶导数为sin(x+ nπ/2);tan(x):n 为奇数时,n 阶导数为 (-1)^(n-1)·2^(n-1)·B_n·(2n)!·x^(2n-1),其中 B_n 为 Bernoulli 数;n为偶数时,n阶导数为0;2.泰勒展开:函数f(x)的泰勒展开式为:f(x)=f(a)+f'(a)·(x-a)+f''(a)·(x-a)^2/2!+......+f^(n)(a)·(x-a)^n/n!+......;当x接近a时,可以使用前n阶导数来估算函数的值;三、积分学公式:1.牛顿-莱布尼茨公式:设函数F(x)是f(x)在[a,b]上的一个原函数,则有∫(a~b)f(x)dx= F(b)- F(a);2.反常积分:(1)瑕积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域内发散;(2)收敛式积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域外收敛为 ln,x;(3)点收敛、条件收敛和绝对收敛;3.广义积分:(1)广义积分存在:∫(a~+∞)f(x)d x= A 表示对于任意定义域上的f(x),在 a 之后的任意区间上都是收敛的;(2)比较判别法:若存在p>0和M>0,使得,f(x),<=M·g(x),那么当f(x)的积分是收敛的,那么g(x)的积分也是收敛的;(3)绝对收敛:如果,f(x),在定义域上是收敛的,那么f(x)的积分是绝对收敛的;(4)积分判别法:如果积分是收敛的,但是f(x)的绝对值不是;或者f(x)的绝对值是收敛的,但是积分是发散的,那么f(x)的积分是条件收敛的;以上仅是微积分常用公式的集合,只能作为参考,实际应用仍需根据具体问题进行判断和运用。
高等数学微积分公式大全
![高等数学微积分公式大全](https://img.taocdn.com/s3/m/75002d39bb1aa8114431b90d6c85ec3a86c28b5b.png)
高等数学微积分公式大全高等数学微积分公式是高等数学中重要的一部分,也是我们在研究数学问题和应用数学技术时必须掌握的基础。
下面就让我们来看看高等数学微积分中常用的公式吧。
第一部分:导数公式1. 导数的定义公式$$f'(x)=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$2. 导数的四则运算公式$$\left(f(x)\pm g(x)\right)'=f'(x)\pm g'(x)$$$$\left(f(x)g(x)\right)'=f'(x)g(x)+f(x)g'(x)$$$$\left(\frac{f(x)}{g(x)}\right)'=\frac{f'(x)g(x) -f(x)g'(x)}{g^2(x)}(g(x)\neq 0)$$$$\left(g(f(x))\right)'=g'(f(x))f'(x)$$3. 高阶导数公式$$f''(x)=(f'(x))'$$$$f'''(x)=(f''(x))'$$$$f^{(n)}(x)=\left(f^{(n-1)}(x)\right)'$$4. 链式法则$$\frac{d}{dx}f(g(x))=f'(g(x))g'(x)$$5. 反函数求导若$f(x)$的反函数为$y=g(x)$,则有$$\frac{d}{dx}g(x)=\frac{1}{f'(g(x))}$$6. 隐函数求导设有方程$F(x,y)=0$,其中$y$是$x$的隐函数,则有$$\frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$第二部分:微分公式7. 微分的定义公式$$df(x)=f'(x)dx$$8. 微分的四则运算公式$$(u\pm v)'=u'dx\pm v'dx$$$$(uv)'=(u'v+uv')dx$$$$\left(\frac{u}{v}\right)'=\frac{u'v-uv'}{v^2}dx(v\neq 0)$$$$(g\circ f)'=(g'\circ f)f'dx$$9. 高阶微分公式$$d^2y=d(dy)=d\left(\frac{dy}{dx}\right)=\frac{d^ 2y}{dx^2}dx$$$$d^3y=d(d^2y)=d\left(\frac{d^2y}{dx^2}\right)=\f rac{d^3y}{dx^3}dx$$$$d^ny=d(d^{n-1}y)=d\left(\frac{d^{n-1}y}{dx^{n-1}}\right)=\frac{d^ny}{dx^n}dx$$10. 多元函数微分公式设$z=f(x,y)$,则有$$dz=\frac{\partial z}{\partialx}dx+\frac{\partial z}{\partial y}dy$$其中,$\frac{\partial z}{\partial x}$表示$f(x,y)$对$x$的偏导数,$\frac{\partial z}{\partialy}$表示$f(x,y)$对$y$的偏导数。
考试必备 高数微积分公式大全
![考试必备 高数微积分公式大全](https://img.taocdn.com/s3/m/e3bba759f01dc281e53af06e.png)
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()s i n c o s x x '= ⑷()cos sin x x '=- ⑸()2t a n s e c x x '=⑹()2c o t c s c x x '=-⑺()sec sec tan x x x '=⋅ ⑻()c s c c s c c o tx x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln x a x a'=⒀()a r c s i n x '=⒁()a r c c o s x '=-⒂()21arctan 1x x'=+ ⒃()21a r c c ot 1x x'=-+⒄()1x '=⒅(1'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦(2)()()()()n n cu x cux =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k kk nk u x v x cux v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n n x n = (2)()()n ax bnax bea e++=⋅ (3)()()ln n x x na a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n nnn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1nn n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1dx xd xμμμ-= ⑶()s i n c o s d x x d x= ⑷()cos sin d x xdx =- ⑸()2t a n s e c d x x d x =⑹()2c o t c s cd x x d x=- ⑺()sec sec tan d x x xdx =⋅ ⑻()c s c c s c c o t d x xx d x=-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x =⑿()1logln x a d dx x a=⒀()1arcsin d x =⒁()1a r c c o s d x d x=-⒂()21arctan 1d x dx x=+ ⒃()21a r c c o t 1d x d xx=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11xx d x cμμμ+=++⎰ ⑶ln dx x c x=+⎰⑷ln xxaa dx c a=+⎰ ⑸x xe dx e c =+⎰ ⑹c o s s i n x d x xc=+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221s e c t a n c o s d x x d xx c x ==+⎰⎰ ⑼221csc cot sin xdx x c x==-+⎰⎰ ⑽21a r c t a n 1d x x c x=++⎰⑾arcsin x c =+⎰八、补充积分公式tan lncos xdx x c =-+⎰c o t l n s i n xd x x c=+⎰ sec ln sec tan xdx x x c =++⎰c s c l n c s cc o t xd x x x c=-+⎰ 2211arctanx dx c axaa=++⎰2211ln2x a dx c x a ax a-=+-+⎰arcsinx c a=+⎰ln dx x c =++⎰九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx = 形如sin n x xdx ⎰令n u x =,sin dv xdx =形如cos n x xdx ⎰令n u x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
高数微积分公式大全
![高数微积分公式大全](https://img.taocdn.com/s3/m/a9473ff9856a561252d36f74.png)
高等数学微积分公式大全一、基本导数公式⑴()0c ′= ⑵1x xµµµ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− ⑺()sec sec tan x x x ′=⋅ ⑻()csc csc cot x x x ′=−⋅ ⑼()xxee′= ⑽()ln xxaaa ′= ⑾()1ln x x′=⑿()1log ln xax a′= ⒀()21arcsin 1x x′=− ⒁()21arccos 1x x′=−−⒂()21arctan 1x x ′=+ ⒃()21arccot 1x x ′=−+⒄()1x ′=⒅1′=二、导数的四则运算法则()u v u v ′′′±=± ()uv u v uv ′′′=+ 2u u v uv v v ′′′− =三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±(2)()()()()n n cu x cu x =(3)()()()()n n nu ax b a uax b +=+ (4)()()()()()()()0nn n k k k n k u x v x c u x v x −=⋅=∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n nax b a ax b n π+=++⋅(5) ()()cos cos 2n nax b a ax b n π+=++⋅(6)()()()11!1n n nn a n ax b ax b +⋅ =− ++ (7) ()()()()()11!ln 1n n n na n axb ax b −⋅−+=−+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx µµµ−= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =− ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =− ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =−⋅ ⑼()xx d ee dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a =⒀()21arcsin 1d x dx x =− ⒁()21arccos 1d x dx x=−− ⒂()21arctan 1d x dx x=+ ⒃()21arccot 1d x dx x =−+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udv d v v − =七、基本积分公式⑴kdx kx c =+∫ ⑵11x x dxc µµµ+=++∫ ⑶ln dx x c x=+∫ ⑷ln xxa a dx c a=+∫ ⑸x x e dxe c =+∫ ⑹cos sin xdx x c =+∫ ⑺sin cos xdx x c =−+∫ ⑻221sec tan cos dx xdx x c x ==+∫∫ ⑼221csc cot sin xdx x c x ==−+∫∫⑽21arctan 1dx x c x =++∫ ⑾arcsin dx x c + 八、补充积分公式tan ln cos xdx x c =−+∫ cot ln sin xdx x c =+∫sec ln sec tan xdx x x c =++∫ csc ln csc cot xdx x x c =−+∫2211arctan xdx c a x a a=++∫ 2211ln 2x a dx c x a a x a −=+−+∫arcsin x c a + ln x =+十、分部积分法公式⑴形如n axx e dx ∫,令nu x =,axdv e dx = 形如sin n x xdx ∫令nu x =,sin dv xdx =形如cos n x xdx ∫令nu x =,cos dv xdx = ⑵形如arctan n x xdx ∫,令arctan u x =,ndv x dx = 形如ln n x xdx ∫,令ln u x =,ndv x dx =⑶形如sin axe xdx ∫,cos ax e xdx ∫令,sin ,cos axu e x x =均可。
微积分的公式大全
![微积分的公式大全](https://img.taocdn.com/s3/m/bee83470366baf1ffc4ffe4733687e21af45ff3c.png)
微积分的公式大全1.导数的定义和性质:- 导数的定义:若函数 f(x) 在点 x0 处的导数存在,且为 f'(x0),则导数为 f'(x) = lim(h->0) [f(x0 + h) - f(x0)] / h。
-导数的性质:(1)和差的导数法则,(2)常数倍数的导数法则,(3)乘积的导数法则,(4)商的导数法则,(5)复合函数的导数法则。
2.常见函数的导数公式:- 幂函数的导数:d(x^n)/dx = nx^(n-1)。
- 指数函数的导数:d(e^x)/dx = e^x。
- 对数函数的导数:d(ln(x))/dx = 1/x。
- 三角函数的导数:(1) d(sin(x))/dx = cos(x),(2)d(cos(x))/dx = -sin(x),(3) d(tan(x))/dx = sec^2(x)。
3.微分和积分的基本公式:- 微分:dy = f'(x) dx。
- 积分基本定理:若 F'(x) = f(x),则∫f(x) dx = F(x) + C,其中 C 是常数。
-积分的性质:(1)定积分,(2)不定积分,(3)函数的积分求导,(4)分部积分法。
4.常见函数的积分公式:- 幂函数的积分:∫x^n dx = x^(n+1) / (n+1) + C,其中n ≠ -1- 指数函数的积分:∫e^x dx = e^x + C。
- 对数函数的积分:∫(1/x) dx = ln,x, + C。
- 三角函数的积分:(1) ∫sin(x) dx = -cos(x) + C,(2) ∫cos(x) dx = sin(x) + C,(3) ∫tan(x) dx = -ln,cos(x), + C。
5.微分方程的公式:- 一阶线性常微分方程的通解:dy/dx + P(x) y = Q(x),通解为 y= e^(-∫P(x)dx) (∫Q(x) e^(∫P(x)dx) dx + C)。
高数微积分公式大全
![高数微积分公式大全](https://img.taocdn.com/s3/m/57a5f054f6ec4afe04a1b0717fd5360cba1a8d2b.png)
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln xa x a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v u v v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()nn n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()nn cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nx n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln x a d dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin dx x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ c o t l n s i n x d x x c =+⎰ sec ln sec tan xdx x x c =++⎰ c s c l n c s cc o t xd x x x c=-+⎰ 2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin axe xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。
(整理)导数微积分公式大全
![(整理)导数微积分公式大全](https://img.taocdn.com/s3/m/cf8cd1a9360cba1aa911da7f.png)
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数、微分、积分公式总结
【导数】
(1)(u ± v)′=u′±v′
(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)
╭u╮′u′v- u v′
(4)│——│=———————( v ≠ 0 )
╰v╯v²
【关于微分】
左边:d打头
右边:dx置后
再去掉导数符号′即可
【微分】
设函数u=u(x),v=v(x)皆可微,则有:
(1)d(u ± v)= du ± dv
(2)d(u v)= du·v + u·dv
╭u╮du·v - u·dv
(3)d│——│=———————( v ≠ 0 )
╰v╯v²
(5)复合函数(由外至里的“链式法则”)
dy
——=f′(u)·φ′(x)
dx
其中y =f(u),u =φ′(x)
(6)反函数的导数:
1
[ fˉ¹(y)]′=—————
f′(x)
其中,f′(x)≠ 0
【导数】
注:【】里面是次方的意思
(1)常数的导数:
(c)′=0
(2)x的α次幂:
╭【α】╮′【α -1】
│x│=αx
╰╯
(3)指数类:
╭【x】╮′【x】
│a│=alna(其中a >0 ,a ≠ 1)
╰╯
╭【x】╮′【x】
│e│=e
╰╯
(4)对数类:
╭╮′1 1
│logx│=——log e=———(其中a >0 ,a ≠ 1)
╰a╯x a xlna
1
(lnx)′=——
x
(5)正弦余弦类:
(sinx)′=cosx
(cosx)′=-sinx
【微分】
注:【】里面是次方的意思
(1)常数的微分:
dC =0
(2)x的α次幂:
【α】【α -1】
dx=αxdx
(3)指数类:
【x】【x】
da=alnadx(其中a >0 ,a ≠ 1)
【x】【x】
de=edx
(4)对数类:
1 1
dlogx=——log e=———dx(其中a >0 ,a ≠ 1)
a x a xlna
1
dlnx =——dx
x
(5)正弦余弦类:
dsinx =cosxdx
dcosx =-sinxdx
【导数】
(6)其他三角函数:
1
(tanx)′=————=sec²x
cos²x
1
(cotx)′=-————=-csc²x
sin²x
(secx)′=secx·tanx
(cscx)′=-cscx·cotx
(7)反三角函数:
1
(arcsinx)′=———————(-1 <x <1)
/ ̄ ̄ ̄ ̄ ̄
√1-x²
1
(arccosx)′=-———————(-1 <x <1)
/ ̄ ̄ ̄ ̄ ̄
√1-x²
1
(arctanx)′=—————
1+x²
1
(arccotx)′=-—————
1+x²
【微分】
(6)其他三角函数:
1
dtanx =————=sec²xdx
cos²x
1
dcotx =-————=-csc²xdx
sin²x
dsecx =secx·tanxdx
dcscx =-cscx·cotx dx
(7)反三角函数:
1
darcsinx =———————dx(-1 <x <1)
/ ̄ ̄ ̄ ̄ ̄
√1-x²
1
darccosx =-———————dx(-1 <x <1)
/ ̄ ̄ ̄ ̄ ̄
√1-x²
1
darctanx =—————dx
1+x²
1
darccotx =-—————dx
1+x²
导数的应用(一)——中值定理
特殊形式
【拉格朗日中值定理】—————→【罗尔定理】
【拉格朗日中值定理】
如果函数y =f(x)满足:
(1)在闭区间〔a ,b〕上连续;
(2)在开区间(a ,b)上可导。
则:在(a ,b)内至少存在一点ξ(a <ξ < b ),使得
f(b)-f(a)
f′(ξ)=————————
b -a
【罗尔定理】
如果函数y =f(x)满足:
(1)在闭区间〔a ,b〕上连续;
(2)在开区间(a ,b)上可导;
(3)在区间端点的函数值相等,即f(a)=f(b)。
则:在(a ,b)内至少存在一点ξ(a <ξ < b ),使得f′(ξ)=0。
导数的应用(二)——求单调性、极值(辅助作图)
【单调性】
(1)如果x ∈(a ,b)时,恒有f′(x)>0 ,
则f(x)在(a ,b)内单调增加;
(2)如果x ∈(a ,b)时,恒有f′(x)<0 ,
则f(x)在(a ,b)内单调减少。
【极值】
若函数f(x)在点x₁处可导,且f(x)在x₁处取得
极值,则f′(x₁)=0 。
导数的应用(三)——曲线的凹向与拐点(辅助作图)
【凹向】
设函数y =f(x)在区间(a ,b)内具有二阶导数,
(1)若当x∈(a ,b)时,恒有f〃(x)>0 ,
则曲线y =f(x)在区间(a ,b)内上凹;
(2)若当x∈(a ,b)时,恒有f〃(x)<0 ,
则曲线y =f(x)在区间(a ,b)内下凹。
【拐点】
曲线上凹与下凹的分界点。