三角形的综合运用-面积问题

合集下载

2023届高考数学二轮复习微专题:三角形中的面积问题 含答案解析

2023届高考数学二轮复习微专题:三角形中的面积问题 含答案解析

4 三角形中的面积问题1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =7,c =3且∠A =π3.则△ABC 的面积是________.2.在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是________.3.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知b>c ,a =6,b =5,△ABC 的面积为9.则sin B 的值是________.4.如图,在△ABC 中,已知AC =7,∠B =45°,D 是边AB 上的一点,AD =3,∠ADC =120°.则△ABC 的面积是________.5.我国南宋时期数学家秦九韶的著作《数书九章》中记载了求三角形面积的“三斜求积”方法,相当于如下公式:S △ABC =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222.现已知△ABC 的周长为42,面积为84,且cos B =513,则边AC 的长为________.6.如图,等腰△ABC 腰上的中线BD 为定长3,当顶角α变化时,则△ABC 面积的最大值为________.7.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知B =60°,c =8.(1)若点M 是线段BC 的中点,AM BM=3,求b 的值; (2)若b =12,求△ABC 的面积.答案及解析1.答案:6 3.解析:在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,可得49=b 2+9-2b ×3×12,解得b =8,所以△ABC 的面积为S △ABC =12bc sin A =12×8×3×32=6 3. 2.答案:152. 解法1取BC 中点E ,DC 中点F ,由题意得AE ⊥BC ,BF ⊥CD ,在△ABE 中,由余弦定理可得,cos ∠ABC =BE AB =14,所以 cos ∠DBC =-14,sin ∠DBC =1-116=154,所以 S △BCD =12×BD ×BC ×sin ∠DBC =152. 解法2△ABC 底边BC 上的高为42-12=15,所以S △ABC =12×2×15=15,S △BCD =12S △ABC =152. 3.答案:31313. 解析:因为△ABC 的面积S =12ab sin C ,所以12×6×5sin C =9,因为b>c ,所以cos C =45.在△ABC 中,由余弦定理得c 2=a 2+b 2-2ab cos C =13,所以c =13.又因为b =5,sin C =35,所以在△ABC 中,由正弦定理得sin B =b sin C c =31313. 4.答案:75+5538. 解析:在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD·CD cos ∠ADC ,72=32+CD 2-2×3CD cos 120°,解得CD =5.在△BCD 中,由正弦定理得BD sin ∠BCD =CD sin B ,BD sin 75°=5sin 45°,解得BD =5+532, 所以S △ABC =S △ACD +S △BCD =12AD·CD sin ∠ADC +12CD·BD sin ∠BDC =12×3×5sin 120°+12×5×5+532sin 60°=75+5538. 5.答案:15.解析:由cos B =513,得sin B =1213,由S △ABC =12ac sin B =84,得ac =182,又a +b +c =42,所以a +c =42-b ,由余弦定理得b 2=a 2+c 2-2ac cos B =(a +c)2-2ac -2ac cos B =(42-b)2-504,解得b =15.6.答案:6.解析:在△ABD 中,设AB =AC =x ,由余弦定理有BD 2=x 2+x 24-2x·x 2·cos α,即cos α=5x 2-364x 2. S △ABC =x 22sin α=x 221-(5x 2-364x 2)2= 18-9x 4+360x 2-16×81=18-9(x 2-20)2+36×64≤1836×64=6. 7.答案:(1)8;(2)242+8 3.解析:(1)因为点M 是线段BC 的中点,AM BM=3,设BM =x ,则AM =3x ,又B =60°,c =8,在△ABM 中,由余弦定理得3x 2=64+x 2-2×8x cos 60°,解得x =4(负值舍去),则BM =4,BC =8.所以△ABC 中为正三角形,则b =8. (2)在△ABC 中,由正弦定理b sin B =c sin C ,得sin C =c sin B b =8×3212=33. 又b>c ,所以B>C ,则C 为锐角,所以cos C =63. 则sin A =sin (B +C)=sin B cos C +cos B sin C =32×63+12×33=32+36,所以△ABC 的面积S =12bc sin A =48×32+36=242+8 3.。

【经典压轴题】三角形面积最值问题30题含详细答案

【经典压轴题】三角形面积最值问题30题含详细答案

试卷第1页,总14页………外…………○…………订…………○……学:___________考号:___________………内…………○…………订…………○……三角形面积最值问题30题含详细答案1.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.2.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.3.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.试卷第2页,总14页……订…………○……※※内※※答※※题※※……订…………○……①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值. ③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.4.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.试卷第3页,总14页…○…………外………………订…………………线…………○……___________考号:______…○…………内………………订…………………线…………○……5.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.6.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点. (1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标: (3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.7.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x试卷第4页,总14页装…………○……………○…………线※要※※在※※装※※订※答※※题※※装…………○……………○…………线轴的另一交点为E ,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.8.如图,四边形ABCD 是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB 、BA (或它们的延长线)于点E 、F ,∠EDF=60°,当CE=AF 时,如图1小芳同学得出的结论是DE=DF .(1)继续旋转三角形纸片,当CE≠AF 时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E 、F 分别在CB 、BA 的延长线上时,如图3请直接写出DE 与DF 的数量关系;(3)连EF ,若△DEF 的面积为y ,CE=x ,求y 与x 的关系式,并指出当x 为何值时,y 有最小值,最小值是多少?9.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)试卷第5页,总14页…………○………………○………………○…………………○……学校:____:___________班级:____:___________…………○………………○………………○…………………○……(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.试卷第6页,总14页…○…………外………订…………○………………○……※内※※答※※题※※…○…………内………订…………○………………○……10.如图,在平面直角坐标系xOy 中,反比例函数(0)m y x x =>的图像经过点34,2A ⎛⎫⎪⎝⎭,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =________,点C 的坐标为________;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图像于点E ,求ODE 面积的最大值.11.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?12.(问题提出)试卷第7页,总14页……○…………外装…………○……姓名:___________班级:____……○…………内装…………○……(1)如图①,在等腰Rt ABC 中,斜边4AC =,点D 为AC 上一点,连接BD ,则BD 的最小值为 .(问题探究)(2)如图2,在ABC 中,5AB AC ==,6BC =,点M 是BC 上一点,且4BM =,点P 是边AB 上一动点,连接PM ,将BPM △沿PM 翻折得到DPM △,点D 与点B 对应,连接AD ,求AD 的最小值.(问题解决)(3)如图③,四边形ABCD 是规划中的休闲广场示意图,其中135BAD ADC ∠=∠=︒,30DCB ∠=︒,AD =,3AB km =,点M 是BC 上一点,4MC km =.现计划在四边形ABCD 内选取一点P ,把DCP 建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP 、MP ,从实用和美观的角度,要求满足PMB ABP ∠=∠,且景观绿化区面积足够大,即DCP 区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P ?若存在,请求出DCP 面积的最小值;若不存在,请说明理由.13.在平面直角坐标系中,点O 是原点,四边形AOBC 是矩形,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O B C ,,的对应点分别为D E F ,,.(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .求点H 的坐标; (3)记K 为矩形AOBC 对角线的交点,S 为KDE 的面积,求S 的取值范围(直接写出结果即可).试卷第8页,总14页……外…………○……………订…………○…※※请※※线※※内※※答※※题※※……内…………○……………订…………○…14.(1)如图1,四边形ABCD 中,//AD BC ,点E 为DC 边的中点,连接AE 并延长交BC 的延长线于点F ,求证:ABF ABCD S S ∆=四边形.(S 表示面积)(2)如图2,在ABC ∆中,过AC 边的中点P 任意作直线EF ,交BC 边于点F ,交BA 的延长线于点E ,试比较EBF ∆与ABC ∆的面积,并说明理由.(3)如图3,在平面直角坐标系中,已知一次函数y kx b =+的图像过点()2,4P 且分别于x 轴正半轴,y 轴正半轴交于点A 、B ,请问AOB ∆的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.15.△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论; (3)连接BN .在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.16.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.试卷第9页,总14页…外…………○………………○…………订………○……学校:_____名:___________班级:___________考号…内…………○………………○…………订………○……(1)求x 的取值范围; (2)求ABC 面积的最大值.17.在平面直角坐标系中,抛物线265y x mx =-+与y 轴的交点为A ,与x 轴的正半轴分别交于点B (b ,0),C (c ,0).(1)当b =1时,求抛物线相应的函数表达式;(2)当b =1时,如图,E (t ,0)是线段BC 上的一动点,过点E 作平行于y 轴的直线l 与抛物线的交点为P .求△APC 面积的最大值;(3)当c =b + n .时,且n 为正整数.线段BC (包括端点)上有且只有五个点的横坐标是整数,求b 的值.18.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式; (2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P试卷第10页,总14页…外…………○…※…内…………○…的坐标;若不存在,请说明理由. 19.综合与实践问题情境:在综合与实践课上,老师让同学们以“两个大小不等的等腰直角三角板的直角顶点重合,并让一个三角板固定,另一个绕直角顶点旋转”为主题开展数学活动,如图1,三角板ABC 和三角板CDE 都是等腰直角三角形,90C ∠=︒,点D ,E 分别在边BC ,AC 上,连接AD ,点M ,P ,N 分别为DE ,AD ,AB 的中点.试判断线段PM 与PN 的数量关系和位置关系.探究展示:勤奋小组发现,PM PN =,PM PN ⊥.并展示了如下的证明方法:∵点P ,N 分别是AD ,AB 的中点,∴PNBD ,12PN BD =. ∵点P ,M 分别是AD ,DE 的中点,∴PM AE ∥,12PM AE =.(依据1)∵CA CB =,CD CE =,∴BD AE =,∴PM PN =. ∵PNBD ,∴DPN ADC ∠=∠.∵PM AE ∥,∴DPM DAC ∠=∠.∵90BCA ∠=︒,∴90ADC CAD ∠+∠=︒.(依据2)∴90MPN DPM DPN CAD ADC ∠=∠+∠=∠+∠=︒.∴PM PN ⊥. 反思交流:(1)①上述证明过程中的“依据1”,“依据2”分别是指什么? ②试判断图1中,MN 与AB 的位置关系,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,把CDE △绕点C 逆时针方向旋转到如图2的位置,发现PMN 是等腰直角三角形,请你给出证明;(3)缜密小组的同学继续探究,把CDE △绕点C 在平面内自由旋转,当4CD =,10CB =时,求PMN 面积的最大值.20.如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M 、N (点 M 在点 N 的上方).○…………外…………订………………○……级:___________考号:__○…………内…………订………………○……(1)求 A 、B 两点的坐标;(2)设 OMN 的面积为 S ,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.21.如图,抛物线y=ax 2+bx+c 经过点A (﹣1,0),C (0,3),抛物线的顶点在直线1x =上.(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设△PBC 的面积为S ,求S 的最大值并求出此时点P 的坐标; 22.综合与探究如图,已知抛物线()20y ax bx c a =++≠与x 轴交于A 、()20B ,两点,与y 轴交于点C ,顶点坐标为点1924D ⎛⎫⎪⎝⎭,. (1)求此抛物线的解析式;(2)点P 为抛物线对称轴上一点,当PA PC +最小时,求点P 坐标;(3)在第一象限的抛物线上有一点M ,当BCM ∆面积最大时,求点M 坐标; (4)在x 轴下方抛物线上有一点H ,ABH ∆面积为6,请直接写出点H 的坐标.○…………装………○…………线…………※※请※※不※※要※※在※※○…………装………○…………线…………23.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.二、填空题24.如图,直线AB 交坐标轴于A(-2,0),B(0,-4),点P 在抛物线1(2)(4)2y x x =--上,则△ABP 面积的最小值为__________.25.如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.………○…………装………………订……………线…………○……学校:___________姓名:_级:___________考号:………○…………装………………订……………线…………○……26.如图,30AOB ∠=,C 是BO 上的一点,4CO =,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC PD +的最小值为 ________,当PC PD +的值取最小值时,则OPC ∆的面积为________.27.如图,已知直线433y x =-与x 轴、y 轴分别交于A ,B 两点,P 是以(0,1)C 为圆心,1为半径的圆上一动点,连接PA ,PB ,当PAB ∆的面积最大时,点P 的坐标为__________.28.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.…………装…………○…订…………○……线…………○……※请※※不※※要※※在※※装※※订内※※答※※题※※…………装…………○…订…………○……线…………○……29.如图,在△ABC 中,∠ACB =120°,AC =BC =2,D 是AB 边上的动点,连接CD ,将△BCD 绕点C 沿顺时针旋转至△ACE ,连接DE ,则△ADE 面积的最大值=_____.30.如图,∠AOB=45°,点M 、N 分别在射线OA 、OB 上,MN=7,△OMN 的面积为14,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为_____参考答案1.(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛-+- ⎝⎭或⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解; (2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+, ()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =AC = 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =,∴CH 则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:x =故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛-+- ⎝⎭或13,22⎛-+ ⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.2.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或33(22+-+.(3)当32m =时,PAB∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】 【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=,得到m 的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =--, ∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,∴303k b b +=⎧⎨=-⎩,解得:k 1b 3=⎧⎨=-⎩,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-, ∵//CE y 轴, ∴(1,2)E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --,∴223(23)3MN a a a a a =----=-+, ∴232a a -+=,解得:2a =,1a =(舍去), ∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,∴2223(3)3MN a a a a a =----=-, ∴232a a -=,解得:a =,a =(舍去),∴M ,综合可得M 点的坐标为(2,1)-或33(22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -, ∴223(23)3PG m m m m m =----=-+, ∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+, ∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-.【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.3.①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为;③点N 的横坐标为:4或52+或52.【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC的距离d =N 作x轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得152m +=,252m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =.【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B(﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h 为sin 45)2BP t ︒=-,∴211(4)2(2)2222PBE S BE h t t t ∆=⋅=⨯-⨯=-+当2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即NQ PQ ==∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得152m =,252m =, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴m =,Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=,解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴52m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或52或52-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.4.(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫ ⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭. 【解析】【分析】(1)将点A (-1,0),B (3,0)代入y=ax 2+bx+2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD=BD ,即可求y 的值; (3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE 是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,-103)或M (-2,-103); 【详解】 解:(1)将点()()1,0,3,0A B -代入22y ax bx =++, 可得24,33a b =-=, 224233y x x ∴=-++; ∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+,∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠CD BD ∴=,22CD BD ∴=()22214y y ∴-+=+14y ∴=, 11,4D ⎛⎫∴ ⎪⎝⎭;(3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=,∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--矩形,()()(),,0,2,1,1E x y C F ,111•222CEF SEQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅- ()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯--- 224233y x x =-++, 21736CEF S x x ∆∴=-+ ∴当74x =时,面积有最大值是4948, 此时755,424E ⎛⎫ ⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x += 2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭ ②四边形CNBM 时平行四边形时,3122x += 2x ∴=,()2,2M ∴;③四边形CNNB 时平行四边形时,1322x +=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭; 综上所述:()2,2M 或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.5.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大.方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.6.(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DF DO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得; (3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG•MN 列出关于k 的等式求解可得.【详解】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2;(2)由(1)知点D 坐标为(1,0),设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0),则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°,∵∠BDC =90°,∴∠BDO+∠CDF =90°,∴∠BDO =∠DCF ,∴△BDO ∽△DCF , ∴BO DF DO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1,∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N ,由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0.∴x 1+x 2=2+k ,x 1•x 2=k .∴MN =|x 1﹣x 2|=|2﹣k|.则过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,1),所以DG=1,∴S△PDQ=12DG•MN=12×1×|x1﹣x2|=12|2﹣k|,∴当k=0时,S△PDQ取得最小值1.【点睛】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.7.(1)y=﹣x2+2x+3;(2)t=32时,△PAE的面积最大,最大值是278;(3)t的值为1.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线的对称性可求得E点坐标,从而可求得直线EA的解析式,作PM∥y轴,交直线AE于点M,则可用t表示出PM的长,从而可表示出△PAE的面积,再利用二次函数的性质可求得其最大值即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.【详解】解:(1)由题意得:0 4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,∴t=32时,△PAE的面积最大,最大值是278.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t =﹣t 2+2t+3﹣3,即﹣t 2+t =0,解得t =1或t =0(舍去), ②当∠APE =90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK =﹣t 2+2t+3,AQ =t ,KE =3﹣t ,PQ =﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE =∠APQ+∠PAQ =90°, ∴∠PAQ =∠KPE ,且∠PKE =∠PQA , ∴△PKE ∽△AQP , ∴PK KEAQ PQ=, ∴222332t t t t t t-++-=-+,即t 2﹣t ﹣1=0,解得:t 或t 0(舍去),综上可知存在满足条件的点P ,t 的值为1或12+. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与几何面积最值问题以及二次函数与特殊三角形的问题,解题的关键是灵活运用二次函数的性质及几何知识.8.(1)成立,证明见解析;(2)DF=DE .(3)当x=0时,y 最小值 【分析】(1)如图1,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE (ASA ),得DF=DE ;(2)如图2,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE(ASA ),得DF=DE ;(3)根据(2)中的△ADF ≌△BDE 得到:S △ADF =S △BDE ,AF=BE .所以△DEF 的面积转化为:y=S △BEF +S △ABD .据此列出y 关于x 的二次函数,通过求二次函数的最值来求y 的最小值. 【详解】(1)DF=DE .理由如下: 如图1,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(2)DF=DE .理由如下: 如图2,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(3)由(2)知,△ADF ≌△BDE .则S △ADF =S △BDE ,AF=BE=x . 依题意得:y=S △BEF +S △ABD =12(2+x )xsin60°+12×2×2sin60°x+1)2.即x+1)20, ∴该抛物线的开口方向向上, ∴当x=0即点E 、B 重合时,y 最小值=29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【分析】(1)由DE ∥BC ,得到DB ECAB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可. 【详解】[初步感知](1)∵DE ∥BC , ∴DB ECAB AC=, ∵AB=AC , ∴DB=EC , 故答案为:=, (2)成立.理由:由旋转性质可知∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形, ∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ,∠ABD=∠ACE , ∵∠BOD=∠AOC , ∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形, ∴∠AED=45°, ∴∠AEC=135°, 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴∠ADB=∠AEC=135°,BD=CE , ∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高, ∴AM=EM=MD , ∴AM+BD=CM ;故答案为:90°,AM+BD=CM ; 【拓展提升】 (5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变, △ADE 与△ADC 面积的和达到最大, ∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变, ∴要△ADC 面积最大, ∴点D 到AC 的距离最大, ∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7. 【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.10.(1)m=6,()2,0;(2)当a=1时,ODE 面积的最大值为278【分析】(1)将点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数解析式求出m ,根据坐标中点公式求出点C 的横坐标即可;(2)由AC 两点坐标求出直线AB 的解析式为3342y x =-,设D 坐标为33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭,则6,E a a ⎛⎫⎪⎝⎭,进而得到2327(1)88ODESa =--+,即可解答【详解】解:(1)把点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数(0)m y x x=>,得:324m =,解得:m=6,∵A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为:4022+=, 故答案为:6,(2,0);(2)设直线AB 对应的函数表达式为y kx b =+.将34,2A ⎛⎫ ⎪⎝⎭,(2,0)C 代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解得3432k b ⎧=⎪⎪⎨⎪=-⎪⎩. 所以直线AB 对应的函数表达式为3342y x =-. 因为点D 在线段AB 上,可设33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭, 因为//DE y 轴,交反比例函数图像于点E .所以6,E a a ⎛⎫ ⎪⎝⎭. 所以221633333273(1)2428488ODESa a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭. 所以当a =1时,ODE 面积的最大值为278. 【点睛】本题考查了函数与几何综合,涉及了待定系数法求函数解析式、三角形面积、坐标中点求法、二次函数的应用等知识点,解题关键是用函数解析式表示三角形面积.11.(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M在整个运动过程中用时最少是3秒. 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;。

备考2023年中考数学一轮复习-图形的性质_三角形_三角形的面积-综合题专训及答案

备考2023年中考数学一轮复习-图形的性质_三角形_三角形的面积-综合题专训及答案

备考2023年中考数学一轮复习-图形的性质_三角形_三角形的面积-综合题专训及答案三角形的面积综合题专训1、(2018赤峰.中考真卷) 阅读下列材料:如图1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:证明:过点A作AD⊥B C,垂足为D.在Rt△ABD中,∴∴同理:∴(1)通过上述材料证明:(2)运用(1)中的结论解决问题:如图2,在中,,求AC的长度.(3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C三个测量点,在B点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求A、B、C三点围成的三角形的面积.(本题参考数值:sin15°≈0.3,sin120°≈0.9,≈1.4,结果取整数)2、(2019长春.中考真卷) 图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上。

在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法。

(1)在图①中以线段AB为边画一个△ABM,使其面积为6。

(2)在图②中以线段CD为边画一个△CDN,使其面积为6。

(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90° 3、(2018连云港.中考真卷) 在数学兴趣小组活动中,小亮进行数学探究活动,△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明;(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长;(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系,并说明理由;(4)如图2,当△ECD的面积S1=时,求AE的长.4、(2019灌南.中考模拟) 正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD 于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH 为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO = S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?5、(2019.中考模拟) 如图,已知AD是△ABC的中线,∠ADC=45°,把△ADC沿AD 对折,点C落在点E的位置,连接BE,若BC=6cm.(1)求BE的长;(2)当AD=4cm时,求四边形BDAE的面积.6、(2018嘉兴.中考模拟) 如图,已知一次函数y=x﹣2与反比例函数y= 的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;(3)坐标原点为O,求△AOB的面积.7、(2019河南.中考模拟) 如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图1,直线l的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线l的垂线,垂足为点H,连接OP,求△OPH的面积;(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x-4,如图2,直线y=x-4与x轴交于点G.点P是四边形ABCO边上的一点,过点P分别作x轴、直线l的垂线,垂足分别为点E,F.是否存在点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.8、(2017揭西.中考模拟) 在矩形ABCD中,AB=4cm,AD=6cm,延长AB到E,使BE=2AB,连接CE,动点F从A出发以2cm/s的速度沿AE方向向点E运动,动点G从E点出发,以3cm/s的速度沿E→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止,设动点运动的时间为t秒.(1)当t为何值时,FC与EG互相平分;(2)连接FG,当t<时,是否存在时间t使△EFG与△EBC相似?若存在,求出t的值;若不存在,请说明理由.(3)设△EFG的面积为y,求出y与t的函数关系式,求当t为何值时,y有最大值?最大值是多少?9、(2019汇川.中考模拟) 如图,在中,,,点在上,经过点的与相切于点,交于点.(1)求证:平分;(2)若,求图中阴影部分的面积(结果保留).10、(2019顺城.中考模拟) 如图,在平面直角坐标系中,抛物线y=ax2+bx﹣与y轴交于点C,与x轴交于点A(﹣1,0),B(3,0).(1)求这个抛物线的解析式;(2)将△AOC以每秒一个单位的速度沿x轴向右平移,平移时间为t秒,平移后的△A′O′C′与△BOC重叠部分的面积为S,A与B重合时停止平移,求S与t的函数关系式;(3)点P在x轴上,连接CP,点B关于直线CP的对称点为B′,若点B′落在这个抛物线的对称轴上,请直接写出所有符合条件的点P的坐标.11、(2019德惠.中考模拟) 等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x 轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标=18.分别以AC、(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQACQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P 点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.12、(2020新泰.中考模拟) 如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A (m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.13、(2019平邑.中考模拟) 如图1,在平面直角坐标系中,直线与抛物线交于两点,其中, .该抛物线与轴交于点,与轴交于另一点.(1)求的值及该抛物线的解析式;(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△ 和等腰直角△ ,连接,试确定△ 面积最大时点的坐标.(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与△ 相似,若存在,请直接写出点的坐标;若不存在,请说明理由.14、(2020南充.中考真卷) 如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM=BN;(2)请判断△OMN的形状,并说明理由;(3)若点K在线段AD上运动(不包括端点),设AK=x,△OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且△OMN的面积为,请直接写出AK长.15、(2020吉林.中考真卷) 如图,是等边三角形,,动点P从点A出发,以的速度沿向点B匀速运动,过点P作,交折线于点Q,以为边作等边三角形,使点A,D在异侧.设点P的运动时间为,与重叠部分图形的面积为.(1)的长为________ (用含的代数式表示).(2)当点D落在边上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.三角形的面积综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

海伦公式与三角形面积的综合题

海伦公式与三角形面积的综合题
三角形面积的计算
公式:面积 = (底 × 高) / 2
适用范围:适用于所有三角形,无论是直角三角形、等腰三角形还是普通三角形
推导过程:基于矩形面积和三角形底边与高之间的关系推导得出
应用示例:通过已知三角形的底和高,可以直接计算出三角形的面积
直角三角形:当其中一个角为90度时,面积可以通过两条直角边计算
解题思路总结:回顾解题过程,总结解题思路和注意事项,提高解题能力。
题目:已知三角形三边长分别为a、b、c,求三角形面积
单击此处添加标题
单击此处添加标题
注意事项:在应用海伦公式时,需要先判断是否能使用该公式,即判断是否能构成三角形
解析:根据海伦公式,先求出半周长s=(a+b+c)/2,然后计算面积S=sqrt[s*(s-a)*(s-b)*(s-c)]
三角形面积与高的关系:通过海伦公式可以推导出三角形面积与高的关系,进而求解相关问题
三角形面积与其他几何量的关系:通过海伦公式可以推导出三角形面积与其他几何量的关系,进而求解相关问题
海伦公式与三角形面积的综合应用
理解海伦公式:海伦公式用于计算三角形面积,需要知道三角形的三边长。
确定解题步骤:首先根据题目条件,利用海伦公式计算三角形面积;然后根据三角形面积和题目要求,推导出其他相关量。
掌握解题技巧:在解题过程中,需要注意三角形边长和高的关系,以及如何利用这些关系进行计算。
总结解题思路:综合应用海伦公式和三角形面积,通过计算和推导得出最终结果。
理解题目要求:仔细阅读题目,明确要求求解的问题和已知条件。
确定解题思路:根据题目要求,选择合适的海伦公式和三角形面积公式,并确定解题步骤。
单击此处添加标题
单击此处添加标题
答案:根据解析,三角形面积为S=sqrt[s*(s-a)*(s-b)*(s-c)]

求解三角形面积问题的方法

求解三角形面积问题的方法

三角形面积问题的难度不大,通常要求根据已知的三角形边、角及其关系,求三角形的面积或最值.这类问题侧重于考查正余弦定理、勾股定理、三角函数的定义、三角形的面积公式的应用.下面结合一道例题,谈一谈求解三角形面积问题的方法.例题:已知ΔABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,若a cos B =b cos A ,边BC 上的中线AD =4,求ΔABC面积的最大值.要求ΔABC 面积的最大值,需先根据三角形的面积公式S =12bc sin A 或S =12×底×高,求得三角形ΔABC 的面积表达式;再运用基本不等式或三角函数的性质求得ΔABC 面积的最值.一、利用正余弦定理我们知道,正弦定理:a sin A =b sin B =csin C=2R .余弦定理:a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .要求三角形的面积或最值,需利用正余弦定理进行边角互化.一般地,若已知的边及其关系较多,往往需运用余弦定理将边化角;若已知的角及其关系较多,往往需运用正弦定理将角化边.也可同时运用正余弦定理建立关于边、角的方程(组),通过解方程(组),求得三角形的边、角及其关系式,从而求得三角形的面积或最值.解法一:因为a cos B =b cos A ,由正弦定理a sin A =bsin B可得sin A cos B =sin B cos A ,由两角差的正弦公式可得sin(A -B )=0,则A -B =kπ(k ∈Z ),而A,B ∈()0,π,则A =B ,所以c =2a cos A .因为边BC 上的中线AD =4,在ΔABD 中,由余弦定理可得16=c 2+(a 2)2-2c ⋅a2cos B ,得a 2=641+8cos 2B.所以ΔABC 的面积S =12ac sin B =64sin B cos B sin 2B +9cos 2B.由基本不等式可得,sin 2B +9cos 2B ≥6sin 2B cos 2B =6sin B cos B,当且仅当sin B =3cos B 时等号成立,所以S ΔABC 的最大值为323.我们先运用正弦定理,将已知关系式a cos B =b cos A 中的边化为角,得出A =B ;然后运用余弦定理,建立a 、c 及其夹角B 之间的关系式,从而求得ΔABC 面积的表达式;再通过三角恒等变换,运用基本不等式求得ΔABC 面积的最值.解法二:由解法一可知A =B ,因为CA =a ,所以CD =12a ,则S ΔABC =2S ΔADC =2×12⋅a ⋅12a sin C ,在ΔACD 中,由余弦定理得a 2cos C =5a 24-16,由sin 2C +cos 2C =1,得:sin C =S ΔABC =2⋅12a ⋅12a sin C=16当a =853时,S ΔABC 的最大值为323.先利用正弦定理将边化为角,得出A =B ;然后用余弦定理建立a 与cos C 之间的关系式,进而用其表示出44方法集锦ΔABC 的面积;最后根据二次函数的单调性和有界性求得ΔABC 面积的最值.二、坐标法坐标法是指建立合适的直角坐标系,通过坐标运算求得问题的答案.运用坐标法求解三角形面积问题时,要将三角形的高线、等腰三角形的中线,角的平分线视为坐标轴,这样能快速求得各个点的坐标,有利于简化运算.在求三角形的面积时,通常要用两点间的距离公式、点到直线的距离公式来求三角形的边长或高线长.解:以AB 为x 轴,AB 的中点为原点,建立如图1所示的平面直角坐标系,设C (0,h ),可得A (-c 2,0),B (c 2,0),D (c 4,h2),由两点间的距离公式可得|AD|2=9c 216+h 24,即16=9c 216+h 24≥2⋅34c ⋅h 2,可得ch ≤643,当且仅当3c 4=h 2=22,即c =823,h =42时取等号,所以S ΔABC =12ch ≤12×643=323.建立坐标系后,设出D 点的坐标,并求得A 、C 的坐标,即可根据两点间的距离公式求得AD 的长,据此建立三角形底边和高线之间的关系式,再运用基本不等式即可求得ΔABC 面积的最值.图1图2三、利用阿波罗尼斯圆的定义阿波罗尼斯圆是一种特殊的几何图形.若PAPB=k ,则P 点的轨迹在一个定圆上,这个圆被称为阿波罗尼斯圆.在解答三角形问题时,若已知某个动点与两个定点之间的距离成倍数关系,则可将该点的轨迹视为阿波罗尼斯圆,据此确定P 点的轨迹方程,从而将三角形问题转化为动点的轨迹问题,通过寻找最值点求得三角形面积的最值.解:因为a cos B =b cos A ,由正弦定理可得A =B ,则|CA|=2|CD|,可知点C 的轨迹为阿波罗尼斯圆,其圆心在直线AD上,半径为83,由图2可知,当ΔADC 的高最长,即为圆的半径83时,三角形的面积最大,此时ΔABC 的面积最大,即S ΔABC =2×S ΔADC =2×12×4×83=323.利用阿波罗尼斯圆的定义,关键在于确定圆的方程、圆心、半径,然后结合圆的性质寻找取得最值的情形,并据此建立关系式,将三角形面积问题转化与圆有关的最值问题.四、割补法割补法主要用于求解图形面积问题.对于一些不规则或不易求得面积的几何图形,往往可以通过分割和填补的方式,将图形转化为规则的或容易求出面积的图形,便可直接运用规则图形的面积公式快速求得图形的面积或表达式,进而求得问题的答案.解:因为a cos B =b cos A ,由正弦定理可得A =B ,则|CA|=2|CD|,如图3,设G 为ΔABC 的重心,即为ΔABC 外接圆的圆心,则GA =83,设∠GAC =α,则S ΔABC =6×S ΔAGO =6×12×83×83cos αsin α=323sin2α≤323,当且仅当α=π4时取等号.我们根据题意很难直接求得ΔABC 的面积,于是运用割补法将ΔABC 三角形分成6个全等的小三角形,将问题转化为求S ΔAGO 的最值,根据三角函数的有界性求得问题的答案.在割补图形时,往往要仔细研究图形的结构特征,对其进行合理的分割,且割补的方式不一样,运算的过程也会有所差异.可见,解答三角形面积问题的方法很多,同学们需运用发散性思维,将问题与三角形的性质、正余弦定理、图形的面积公式、阿波罗尼斯圆的定义等关联起来,寻找最佳的解题方案.在解答三角形面积问题时,需注意一些隐含的条件,如(1)三角形的边长、面积均为正值;(2)三角形的内角为(0,180o ),三个内角和为180o ;(3)三角形的两边之和大于第三边,两边之差小于第三边,否则会容易得出增解或错解.(作者单位:江苏省如东县掘港高级中学)图345。

三角形的面积教学设计优秀10篇

三角形的面积教学设计优秀10篇

三角形的面积教学设计优秀10篇《三角形的面积》教学设计篇一教学目标:1.知识与技能:(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:理解并掌握三角形面积的计算公式教学难点:理解三角形面积计算公式的推导过程教学准备:教具:多媒体课件、红领巾实物。

学具:剪刀、各种不同类型的三角形等。

教学过程:创设情境,引入课题一、创设情境,引入探索1、出示红领巾,问:会计算它的面积吗?2、学生交流(课件演示)揭题二、自主合作,探究新知1、请看大屏幕说一说你看到了什么?课件出示不同的三角形{学生口述)2、三角形面积公式的推导活动一:请同学们拿出准备的三角形,用推导平行四边形面积的方法,试着拼一拼,摆一摆,看能不能推导出三角形的面积公式。

动手前,注意老师提出的这几个问题:你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)(1)学生分小组进行操作实践活动(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。

拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长×宽,所以,三角形的面积=底×高÷2。

拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形的2倍,平行四边形的面积=底×高,所以三角形的面积=底×高÷2。

三角形的面积问题

三角形的面积问题

三角形的面积问题一、题目1. 一个三角形的底是5厘米,高是3厘米,求这个三角形的面积。

- 解析:根据三角形面积公式S = (1)/(2)ah(其中a为底,h为高),这里a = 5厘米,h=3厘米,所以S=(1)/(2)×5×3=(15)/(2) = 7.5平方厘米。

2. 三角形的底边长8分米,高为4分米,它的面积是多少?- 解析:由三角形面积公式S=(1)/(2)ah,a = 8分米,h = 4分米,可得S=(1)/(2)×8×4=16平方分米。

3. 已知一个三角形的高是6米,底是高的2倍,求这个三角形的面积。

- 解析:首先求出底a = 6×2=12米,高h = 6米,再根据面积公式S=(1)/(2)ah,可得S=(1)/(2)×12×6 = 36平方米。

4. 有一个三角形,底是9厘米,高比底少3厘米,求其面积。

- 解析:高h=9 - 3=6厘米,底a = 9厘米,根据S=(1)/(2)ah,S=(1)/(2)×9×6 = 27平方厘米。

5. 三角形的底是12米,高是底的(1)/(3),求这个三角形的面积。

- 解析:高h = 12×(1)/(3)=4米,底a = 12米,由S=(1)/(2)ah可得S=(1)/(2)×12×4 = 24平方米。

6. 一个等腰三角形的底边长10厘米,腰长8厘米,求这个三角形的面积(先求高)。

- 解析:先求高h,根据等腰三角形三线合一性质,作底边上的高,将等腰三角形分成两个直角三角形,底的一半是10div2 = 5厘米,腰长8厘米,根据勾股定理h=√(8^2)-5^{2}=√(64 - 25)=√(39)厘米。

再根据面积公式S=(1)/(2)ah,a = 10厘米,S=(1)/(2)×10×√(39)=5√(39)平方厘米。

7. 直角三角形的两条直角边分别为6厘米和8厘米,求其面积。

三角形中线等分面积的应用

三角形中线等分面积的应用

第5讲例说三角形中线等分面积的应用如图1,线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD ·AE ,S △ADC =12DC ·AE ,因为BD =DC ,所以S △ABD =S △ADC 。

因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题。

一、求图形的面积例1、如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.分析:因为E 、F 分别是BC 和CD 的中点,则连接CG 后,可知GF 、GE 分别是△DGC 、△BGC 的中线,而由S △BCF=S △DCE=4ab,可得S △BEG=S △DFG,所以△DGF 、△CFG 、△CEG 、△BEG 的面积相等,问题得解。

解:连接CG ,由E 、F 分别是BC 和CD 的中点,所以S △BCF=S △DCE=4ab,从而得S △BEG=S △DFG,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等且等于31×4ab =12ab ,因此S 四边形ABGD=ab -4×12ab =32ab。

例2、在如图3至图5中,△ABC 的面积为a .(1)如图2, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图4的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图6).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图6),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.图1图2图4F 图5图3应用:去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图5).求这两次扩展的区域(即阴影部分)面积共为多少m 2?分析:从第1个图可以发现AC 就是△ABD 的中线,第2个图通过连接DA ,可得到△ECD 的中线DA ,后面扩展的部分都可以通过这样的方法得到三角形的中线,从而求出扩展部分的面积,发现规律。

五年级数学《三角形的面积》优秀教学设计(通用7篇)

五年级数学《三角形的面积》优秀教学设计(通用7篇)

五年级数学《三角形的面积》优秀教学设计作为一位兢兢业业的人民教师,时常需要用到教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

那么应当如何写教学设计呢?以下是小编为大家收集的五年级数学《三角形的面积》优秀教学设计(通用7篇),仅供参考,欢迎大家阅读。

五年级数学《三角形的面积》优秀教学设计1教学内容:三角形的面积第84-85页教学目标:1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。

使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:理解三角形面积计算公式,正确计算三角形的面积.教学难点:在转化中发现内在联系及推导说理。

学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

红领巾等。

教学过程复习导入:1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?指名说一说,师可再现推导过程。

2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

二、探究三角形的面积公式.1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?2.用两个完全一样的直角三角形拼.(1)教师参与学生拼摆,个别加以指导(2)演示课件:拼摆图形(3)讨论①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?3.用两个完全一样的锐角三角形拼.(1)组织学生利用手里的学具试拼.(指名演示)(2)演示课件:拼摆图形(突出旋转、平移)教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?4.用两个完全一样的钝角三角形来拼.(1)由学生独立完成.(2)演示课件:拼摆图形5.讨论:(1)两个完全相同的三角形都可以转化成什么图形?(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?(3)三角形面积的计算公式是什么?6、引导学生明确:①两个完全一样的三角形都可以拼成一个平行四边形。

三角形的面积教学设计范文3篇

三角形的面积教学设计范文3篇

三角形的面积教学设计范文3篇三角形的面积教学设计范文1教学内容:三角形的面积第84-85页教学目标:1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

2、通过操作和对图形的观察、比较,发展学生的空间观念。

使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

3、培养学生的创新意识和合作精神。

教学重点:理解三角形面积计算公式,正确计算三角形的面积、教学难点:在转化中发现内在联系及推导说理。

学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

红领巾等。

教学过程复习导入:1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?指名说一说,师可再现推导过程。

2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

二、探究三角形的面积公式、1、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?2、用两个完全一样的直角三角形拼、(1)教师参与学生拼摆,个别加以指导(2)演示课件:拼摆图形(3)讨论①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?3、用两个完全一样的锐角三角形拼、(1)组织学生利用手里的学具试拼、(指名演示)(2)演示课件:拼摆图形(突出旋转、平移)教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?4、用两个完全一样的钝角三角形来拼、(1)由学生独立完成、(2)演示课件:拼摆图形5、讨论:(1)两个完全相同的三角形都可以转化成什么图形?(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?(3)三角形面积的计算公式是什么?6、引导学生明确:①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。

二次函数背景下三角形面积最值问题的几种解法

二次函数背景下三角形面积最值问题的几种解法

数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。

(新)冀教版数学五上《三角形面积的应用》教案(推荐)

(新)冀教版数学五上《三角形面积的应用》教案(推荐)

第三课时三角形面积的应用教学内容:冀教版小学数学五年级上册第60、61页三角形面积的应用。

教学提示:学生已掌握了三角形面积的计算公式,在此基础上引导学生把计算结果同实际的需要联系起来,培养数学应用意识和解决实际问题的能力。

教学目标:1、知识与技能:结合具体情境,经历综合应用知识解决实际问题的过程。

2、过程与方法:通过解决与三角形面积有关的简单问题,获得综合应用所学知识解决实际问题的经验和方法。

3、情感态度与价值观:愿意对数学问题进行讨论,感受数学运算的合理性与结果运用的现实性,培养数学应用意识。

重点、难点:教学重难点:会应用三角形的面积计算公式解决一些简单的实际问题。

教学准备:多媒体课件,图形。

教学过程:一、复习导入同学们,我们已经学习了哪几种平面图形的面积?谁能说一说怎样求他们的面积?(学生自愿回答)【设计意图:让学生复习长方形、正方形、平行四边形、三角形的面积公式,为下面的学习打下伏笔。

】二、探索新知1、课件出示例题:有两块白布,用它们做医院包扎使用的三角巾(不可拼接),第一块白布:长135分米,宽9分米。

第二块白布:长140分米,宽10分米。

9dm2、提出问题。

第一块白布可做多少块这样的三角巾呢?第二块白布可做多少块这样的三角巾呢?请同学试着用自己的方法算一算。

3、解决问题。

学生试算,教师巡视。

了解学生计算的方法。

师:学生汇报计算的结果。

生:我先算第一块白布和一块三角巾的面积,再计算第一块白布可做多少块三角巾。

135×9=1215(平方分米)9×9÷2=40.5(平方分米)1215÷40.5=30(块)生:我列成了一个综合算式(135×9)÷(9×9÷2)生:边长是9分米的正方形白布可以做2块三角巾,那么第一块白布可做多少块三角巾,就用135÷9×2=30(块)【设计意图:通过让学生自己尝试解决问题,经历成功与失败,培养学生克服困难的精神和勇气。

相似三角形的面积问题题型总结+答案

相似三角形的面积问题题型总结+答案

相似三角形的有关面积问题复习引入:求三角形而积常用方法1、面积公式:2、等髙法:3、相似三角形:【精选例题】【例题】如图,平行四边形ABCD中,AE:EB=2:3,则SΔAPE≡SΔCPD=解答:4:25。

【例题】如图,AC是平行四边形ABCD的对角线, 且BE=EF=FD Z求SΔ AMH: S忖训边形ABCD的值。

解答:Y平行四边形ABCD…∙∙AB∕∕CD, AD//BC・•・△ BME〜A DAE, △ DHF〜心BMF・•・ BM: DA=BE: DE z DH: BM=DF: BF・・• BE=EF=FD z所以BE: DE=DF: BF=I: 23・•・ AD=2BM z BM=2DH^WAD=4DH z∕. AH=-AD43・・AMHZS ∙f⅛PK⅛J∣;ABCD=—G8变式:如图,在平行四边形ABCD中∙AE:EB=2:3.则厶AEF和厶CDF的周长比_____ 解答:∙.∙四边形ABCD是平行四边形,.∙. AB=CD,AB//CD, SAADE_a 2 SΔABC"b22SAABD aSΔACD'b又・•・ Z EAF=Z DCF, Z AEF=Z CDF, /. A AEF〜△ CDF,•••△AEF 的周长:Δ CDF 的周长=AE: CD=2: 5・变式:如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3, Δ BEF的面积为4,则平行四边形ABCD的而积为_________ ・答案T四边形ABCD是平行四边形,・•・AD=CB Z CB∕∕AD z BC∕∕AB.∙. △ DEF- △AEB, •・• DE:AB=2:3,・•・DE:AE=2:5> .Β.SΔ DEF:SAAEB=4:25,T ∆ BEF的面积为4,・•・SAAEB二25,・•・ S HI边形ABFD=SAAEB-SA DEF=21,TAD=CB, DE:AD二2:3, /. DEBC=23∙∙.∙AB∕∕CD, /. ∆ BEF^ Δ CDF,二S A DEF:SACBF=49 A SΔ CBF=9,.,.S 平行Pa边影ABCD=S 円边形ABFD+S° CBF=21+9=30【例题】如图,EE√∕FF√∕MM√∕BC,若AE=EF=FIVI=MB,则SA AEExSNgEEIHF:S啊边形FFiWM:SN奶MMlCB 为_____ 答案:设SA AEEI=X∙.∙ EE√∕FF1.∙. Δ AEE I- ∆ AFF1(平行于三角形一边的宜线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似)•・・WAEE = 竺(相似三角形而积比等于对应边的平方比)S S AF F; AF2•・• AE=EF/. ∆∆ = l ・•・S^AEE∖=I .・・SΔ AFFl= 4x .∙. Sl f Q边形 EE l F I F=3x AF 2 S s AFF y 4同理可得S w⅛mFFιMιM= 5x S UQ边形MMICB二IX/. SA AED:S JM边形EEIFIF:S Wi4® FFIMIM:S 曲边形MMiCB==1:3:5:7变式:如图,在Δ ABC中,FG//DE//AB,且AF=FG=CGo设Δ ABC被分成的三部分的面积分别为S“ S?和求Si: S2: S3C解答:∙∙∙F∖ G为AC边上的三等分点,D、E为AB边上的三等分点・•・ AF: AG: AC=I: 2: 3T FD//EG//BC 八SΔCFG:SΔ CDE: SΔ CAB=I: 4: 9, .β. SI: S2: S3=l: 3: 5变式:如图,DE//FG//BC,设ZkABC 被分成的三部分的而积分别为S1,S2,S3,且SI 二S2=S3,则AD:DF:FB 二 答案:∖∙ S1=S2,・・ S A ADE:SAAFG=4:2,.β. DE 2:FG 2=1:2, .β. DE:FG=l:%/2 :同理,DE:BC=1:A /3, Λ DE : FG : BC=I: √2 : √3 o【例题】如图:在梯形ABCD 中,AD∕/BCBC=2AD,对角线AC 与BD 相交于点0,把4 ABO z Δ BCO,Δ COD z Δ DOA 的面积分别记作S1,S2,SXS4,则下列结论中,正确的是()a・•・ ON:MN=2:3,・•・ 2S Δ AOB=S Δ OBC Z S2=2S1.同理 S2=2S3./. S2=2S1=2S3=4S4变式:如图表示一个梯形两条对角线相交于一点,则图中面枳相等的三角形共有()o【例题】如图,点D 、E 、F 分别是△ ABC 三边上的中点•若△ ABC 的而积为12cm ∖则厶DEF 的而积为 cm 2.答:•••点D. E 、F 分别是AABC 三边上的中点, ••・DF 、DE 、EF 为Δ ABC 的中位线, ∙∙∙ Δ ABCS Δ DEF,相似比为1:2,所以而积比为1:2, S ΔABC: S Δ DEF=4:1=12:S A DEF> S Δ DEF=3cm 2・变式:如图,分别取等边三角形ABC 各边的中点D, E, F,得ADEE 若△ ABC 的边长为a.C. S1=S3・•・ ONzOM=AD:BC=I:2,D. S1÷S3=S2+S4ABOC, 答案:D即(1)∆ DEF与厶ABC相似吗?如果相似,相似比是多少?⑵分别求出这两个三角形的面积。

三角形的面积教学设计(通用15篇)

三角形的面积教学设计(通用15篇)

三角形的面积教学设计三角形的面积教学设计(通用15篇)作为一名人民教师,通常会被要求编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。

如何把教学设计做到重点突出呢?以下是小编为大家整理的三角形的面积教学设计,欢迎阅读与收藏。

三角形的面积教学设计篇1教学内容:人教版小学数学教材五年级上册第91页主题图、92页例2、“做一做”,“你知道吗?”教学目标:1、知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。

教学重点:理解并掌握三角形面积的计算公式。

教学难点:理解三角形面积计算公式的推导过程。

考点分析:能根据具体情况应用三角形面积公式解决实际问题。

教学方法:创设情境——新知讲授——巩固总结——练习提高。

教学用具:多媒体课件、三角形学具教学过程:一、创设情境师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。

同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)师:同学们,红领巾是什么形状的?生:三角形的师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。

板书:三角形的面积二、新知探究1、课件出示一个平行四边形师:平行四边形的面积怎么计算?生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)师:平行四边形的面积公式是怎样得到的?生说推导过程师:在研究平行四边形的面积的时,我门是把平行四边形转化成学过的长方形来研究的,那三角形的面积你打算怎么研究呢?生1:我想把它转化成已学过的图形。

生2:我想看看三角形能不能转化成长方形或平行和四边形。

2、动手实验师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。

相似三角形与面积有关的问题-含详细参考答案

相似三角形与面积有关的问题-含详细参考答案

中考数学复习之相似三角形有关的面积问题(学案)知识与方法梳理 处理面积问题的三种方法 1. 公式法2. 割补法(分割求和,补形作差)3. 转化法(相似类、同底类、共高或等高类)利用常见结构进行转化是在复杂背景下处理面积问题的通常思路,在转化过程中需要结合背景的特点.动态背景:要抓住变化过程中所求面积不变的特征;函数背景:优先考虑公式法,或者割补之后采用公式法,也可结合几何特征进行转化; 探索规律背景:根据结构特征确定第一项的处理办法,后续进行类比. 面积问题中的常见结构举例例1:如图,在Rt ABC △中,1D 是斜边AB 的中点.过1D 作11D E AC ⊥于E 1,连接1BE 交1CD 于2D ,过2D 作22D E AC ⊥于2E ,连接2BE 交1CD 于3D ,过3D 作33D E AC ⊥于3E ,连接3BE 交1CD 于4D …如此继续.11E BD 1S S ∆=22E BD 2S S ∆=33E BD 3S S ∆=nn E BD n S S ∆=则n S =____________ABC S △(用含n 的代数式表示).32E 1D 4D 3D 2D 1CBA分析:题目中的相似三角形非常之多,三角形的面积关系也非常之多,这是面积问题同学们需要面对的第一大难题,处理好这些关系,才能最终解决问题; 解:1.易知E 1为AC 的中点,S ∆ABE1=12S ∆ABC ,D1为AB 的中点,S ∆BD1E1=12S ∆ABE1,故S ∆BDE =14S ∆ABC ;2. D 1E 1||BC ,1112D E AC =,故E 2为E 1C 的三等分点,12113BE E BCE S S ∆∆=,D 2为BE 1的三等分点,故222123BD E BE E S S ∆∆=,112BE C ABC S S ∆∆=,故2219BD E ABC S S ∆∆=3. 易知221123D E D E =,111AC 2D E =,故221AC 3D E =,D 3为BE 2的四等分点,231211212BE E BE E ABC S S S ∆∆∆==,,而33116BD E ABC S S ∆∆=;综合上述,猜想S n =21(1)ABCS n ∆+练习题1. 如图,△ABC 的面积为63cm 2,D 是BC 上的一点,且BD :CD =2:1,DE △AC 交AB 于点E ,延长DE 到F ,使FE :ED =2:1,连接CF ,则△CDF 的面积为 .FED CBA2. 如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,G 为EC 的中点,连接DG 并延长交BC 的延长线于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积为_______.G ODCAE BF3. 如图,在梯形ABCD 中,AB △CD ,AB =3CD ,对角线AC ,BD 交于点O ,中位线EF 与AC ,BD 分别交于点M ,N ,则图中阴影部分的面积是梯形ABCD 面积的( ) A .12 B .13 C .14 D .474. 如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1△A 2B 2△A 3B 3,A 2B 1△A 3B 2△A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中阴影部分的面积为_______.12345.如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD,BF为邻边作平行四边形BDEF,又AP△BE,且AP=BE(点P,E在直线AB的同侧),若14BD AB,则△PBC的面积与△ABC的面积的比值是___________.ABCD EFPG6.如图,已知直线l1:y=23x+83与直线l2:y=-2x+16相交于点C,直线l1,l2分别交x轴于A,B两点,矩形DEFG的顶点D,E分别在l1,l2上,顶点F,G都在x轴上,且点G与点B重合,那么S矩形DEFG:S△ABC=____________.7.已知:如图,DE是△ABC的中位线.点P是DE的中点,连接CP并延长交AB于点Q,那么S△DPQ:S△ABC=_________.QP EDC BA8.如图,在△ABC中,CE:EB=1:2,DE△AC.若△ABC的面积为S,则△ADE的面积为____________.9.如图,已知△ABC△△DCE△△HEF,三条对应边BC,CE,EF在同一条直线上,连接BH,分别交AC,DC,DE于点P,Q,K.若△DQK的面积为2,则图中阴影部分的面积为__________.10.如图,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN,EM交于点F.若AB=13cm,BC=10cm,DE=5cm,则图中阴影部分的面积为___________.参考答案1.422.7 4 S3.C4.21 25.3 46.8:9 7.1:248.2 9 S9.26 10.30cm2。

有关《三角形的面积》教学设计(通用5篇)

有关《三角形的面积》教学设计(通用5篇)

In the future, you only need to be better than one person, and that person is who you are now.整合汇编简单易用(页眉可删)有关《三角形的面积》教学设计(通用5篇)《三角形的面积》教学设计1教学内容:《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?出示:2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。

(出示课题)【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。

】二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。

(同桌合作)(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。

】2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋(2)汇报、交流:学生有几种剪拼法,就交流几种。

如:①6×4÷26×(4÷2)=12(平方厘米)=12(平方厘米)②6×4÷26÷2×4=12(平方厘米)=12(平方厘米)【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。

三角形面积的计算_应用题

三角形面积的计算_应用题

三角形面积的计算_应用题三角形是几何学中最基本的图形之一,在很多应用领域中都会涉及到对三角形面积的计算。

本文将介绍一些常见的三角形面积计算方法,并在实际应用中进行例题演练。

一、三角形面积的计算方法1. 通过底边和高的关系计算面积:若已知三角形的底边长度为a,高为h,则三角形的面积可以通过以下公式计算得出:面积 = 1/2 * a * h例如,若底边长度为6cm,高为4cm,则三角形的面积为:1/2 *6cm * 4cm = 12cm²。

2. 通过三条边的长度计算面积:若三角形的三条边长度分别为a、b、c,则可以使用海伦公式计算三角形的面积:面积 = sqrt(s * (s-a) * (s-b) * (s-c))其中,s为半周长,计算公式为:s = (a+b+c)/2例如,若三角形的三条边长度分别为3cm、4cm、5cm,则三角形的半周长s为:(3cm+4cm+5cm)/2 = 6cm,面积为:sqrt(6cm * (6cm-3cm) * (6cm-4cm) * (6cm-5cm)) = 6cm²。

二、实际应用中的三角形面积计算1. 建筑工程中的三角形面积计算在建筑设计和施工中,经常需要计算三角形的面积。

例如,在地板铺设过程中,需要计算地板砖的需要量,可通过测量三角形的底边和高,使用底边和高的关系计算出面积,从而确定所需地板砖的数量。

2. 农业领域中的三角形面积计算农业领域中,有时需要计算农田或农作物的面积。

例如,在大田种植中,若农田形状为三角形,可通过测量底边和高,或测量三条边长,使用相应的三角形面积计算方法,计算出农田的面积,帮助农民做好种植计划和施肥布草工作。

3. 地理测量中的三角形面积计算地理测量中,常常需要计算区域的面积,其中一种方法是通过测量区域的周长和内角,将区域划分为多个三角形,然后使用三角形面积计算方法计算出每个三角形的面积,再将各个三角形的面积相加得到整个区域的面积。

六年级数学下册综合算式专项练习题解三角形的面积问题

六年级数学下册综合算式专项练习题解三角形的面积问题

六年级数学下册综合算式专项练习题解三角形的面积问题在六年级数学下册中,综合算式是一个重要的知识点,其中涉及到了三角形的面积问题。

解答这些问题需要掌握计算三角形面积的公式及其应用。

下面将通过一系列综合算式专项练习题来解析三角形的面积问题。

1. 计算以下三角形的面积:(1) 边长分别为3cm、4cm、5cm的直角三角形(2) 边长分别为6cm、8cm、10cm的直角三角形(3) 边长分别为9cm、12cm、15cm的直角三角形解析:三角形的面积可以通过以下公式进行计算:面积 = 底边长度 ×高 / 2在直角三角形中,底边和高分别对应直角边和斜边上的线段。

(1) 对于边长分别为3cm、4cm、5cm的直角三角形:底边长度 = 3cm,高 = 4cm面积 = 3cm × 4cm / 2 = 6cm²(2) 对于边长分别为6cm、8cm、10cm的直角三角形:底边长度 = 6cm,高 = 8cm面积 = 6cm × 8cm / 2 = 24cm²(3) 对于边长分别为9cm、12cm、15cm的直角三角形:底边长度 = 9cm,高 = 12cm面积 = 9cm × 12cm / 2 = 54cm²2. 根据已知边长计算以下三角形的面积:(1) 一个边长为6cm的等边三角形(2) 一个边长为5cm的等腰三角形,底边为8cm解析:(1) 对于边长为6cm的等边三角形:由于等边三角形的三条边相等,因此底边和高也相等。

底边长度 = 6cm,高 = 6cm面积 = 6cm × 6cm / 2 = 18cm²(2) 对于底边为8cm、两腰边为5cm的等腰三角形:等腰三角形中,底边可以看作底边的一半,将底边长度除以2得到相应的底边长。

底边长度 = 8cm / 2 = 4cm,高 = 5cm面积 = 4cm × 5cm / 2 = 10cm²3. 解决以下问题:(1) 边长分别为8cm、15cm、17cm的三角形的面积是多少?(2) 一个边长为10cm的等边三角形的面积是多少?(3) 一个边长为7cm的等腰三角形,底边为12cm,面积是多少?解析:(1) 对于边长分别为8cm、15cm、17cm的三角形:底边长度 = 8cm,高 = 15cm面积 = 8cm × 15cm / 2 = 60cm²(2) 对于边长为10cm的等边三角形:由于等边三角形的三条边相等,因此底边和高也相等。

与三角形面积有关的问题

与三角形面积有关的问题

高中数学:与三角形面积有关的问题(1)(2014·新课标全国卷Ⅰ)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为3 .解析:因为a =2,所以(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(sin A -sin B )=(c -b )sin C ,由正弦定理可得(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,故A =π3.因为cos A =12=b 2+c 2-42bc ≥2bc -42bc ,所以bc ≤4,当且仅当b =c 时取等号.由三角形面积公式知S △ABC =12bc sin A =12bc ·32=34bc ≤3,故△ABC 面积的最大值为 3.(2)(2019·湖南五市十校联考)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.①求A ;②若AD 为BC 边上的中线,cos B =17,AD =1292,求△ABC 的面积.解:①a cos C +3a sin C -b -c =0,由正弦定理得sin A cos C +3sin A sin C =sin B +sin C ,即sin A cos C +3sin A sin C =sin(A +C )+sin C ,亦即sin A cos C +3sin A sin C =sin A cos C +cos A sin C +sin C , 则3sin A sin C -cos A sin C =sin C ,又sin C ≠0,所以3sin A -cos A =1,所以sin(A -30°)=12.在△ABC 中,0°<A <180°,则-30°<A -30°<150°,所以A -30°=30°,得A =60°.②在△ABC 中,因为cos B =17,所以sin B =437.所以sin C =sin(A +B )=32×17+12×437=5314.由正弦定理得,a c =sin A sin C =75.设a =7x ,c =5x (x >0),则在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B ,即1294=25x 2+14×49x 2-2×5x ×12×7x ×17,解得x =1(负值舍去),所以a =7,c =5,故S △ABC =12ac sin B =10 3.1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解.(2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.提醒:正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.(1)(2019·云南第一次统一检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若B =π2,a =6,sin 2B =2sin A sin C ,则△ABC 的面积S =( B )A.32 B .3 C.6 D .6解析:由sin 2B =2sin A sin C 及正弦定理,得b 2=2ac ,①又B =π2,所以a 2+c 2=b 2.②联立①②解得a =c =6,所以S =12×6×6=3.(2)(2016·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .①求C ;②若c =7,△ABC 的面积为332,求△ABC 的周长.解:①由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C . 可得cos C =12,所以C =π3.②由已知,得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25.∴a +b =5. 所以△ABC 的周长为5+7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5-3三角形的综合应用--面积问题
【课前预习】阅读教材P-完成下面填空
1、 三角形面积公式:
(1) C S ∆AB = =
= =
(2) C S ∆AB = (海伦公式)
【课初5分钟】课前完成下列练习,课前5分钟回答下列问题
1.若 x ,x+1,x+2是钝角三角形的三边,则实数 x 的取值范围是( ).
(A ) 0<x<3 (B ) 1<x<3
(C ) 3<x<4 (D ) 4<x<6
2.在ABC ∆中,已知a 、b 和锐角A ,要使三角形有两解,则应满足的条件是( )
A a=bsinA
B bsinA>a
C bsinA<b<a
D bsina<a<b
3.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)
4.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。

5、在△ABC 中,已知b=1,c=3,A=600,
则S △ABC = 。

6.在△ABC 中,若8,3,7===c b a ,则其面积等于( )
A .12
B .
2
21 C .28 D .36
【课中35分钟】边听边练边落实
7、在ABC ∆中,1660=︒=b A ,,面积3220=S ,求a 。

8.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2
3,求b 。

9.在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;
(Ⅱ)设ABC △的面积332
ABC S =
△,求BC 的长
10.在△ABC 中,a 、b 是方程x 2-23x +2=0的两根,且2cos(A +B )=-1.
(1)求角C 的度数;
(2)求c ;
(3)求△ABC 的面积.
【课末5分钟】 知识整理、理解记忆要点
1.
2.
3.
4.
【课后15分钟】 自主落实,未懂则问
1.若在△ABC 中,060,1,ABC A b S ∆∠==则
C B A c b a sin sin sin ++++=_______。

2、在△ABC 中,BC=2,AC=2,C=1500,则△ABC 的面积为
3.,在△ABC 中,0120,,A c b a =>=,ABC S =, 求c b ,。

4.ABC ∆中,32
31)B A (cos ,4b ,5a =-==,求ABC ∆的面积. ( 提示:在ABC ∆中,作DAC A B,∠=-,设CD=x,则BD=BC-CD=5-x,)
互助小组长签名:。

相关文档
最新文档