第四节矩`协方差矩阵.

合集下载

矩阵的方差 协方差

矩阵的方差 协方差

矩阵的方差协方差矩阵方差与协方差是统计学中常用的两个概念,用于衡量变量之间的相关性以及数据的离散程度。

在数据分析和机器学习等领域中,矩阵方差与协方差的概念被广泛运用,成为了测量和建模数据之间关系的重要工具。

一、方差(Variance)方差是用来度量随机变量离其期望值的平均距离,衡量数据的离散程度和分布的散布程度。

对于一个样本集合X={X1,X2,...,Xn},其方差定义为:Var(X) = E((X-EX)²)其中,E表示期望值运算符,EX表示X的期望值。

方差越大,数据的分散程度越大。

对于一个n×d的矩阵X,如果将其看作是包含n个样本的d维向量,我们可以通过求解X在每个维度上的方差来得到矩阵的方差。

即,对于每个维度i,我们可以计算矩阵X在该维度上的样本方差:Var(X[:,i]) = Var([X₁,i; X₂,i; ...; Xn,i])其中,Var表示方差运算符,X[:,i]表示X矩阵中的第i列。

将每个维度上的样本方差组成一个向量Var(X)=[Var(X[:,1]),Var(X[:,2]),...,Var(X[:,d])],即可得到矩阵X的方差。

二、协方差(Covariance)协方差用于度量两个变量之间的线性关系。

对于两个随机变量X和Y,其协方差定义为:Cov(X,Y) = E((X-EX)*(Y-EY))其中,EX和EY分别表示X和Y的期望值。

协方差可正可负,正值表示两个变量正相关,负值表示两个变量负相关,数值的绝对值表示相关程度的强弱。

对于一个n×d的矩阵X,我们可以通过协方差矩阵来度量各个维度之间的相关性。

协方差矩阵的定义如下:Cov(X) = E((X-EX)(X-EX)ᵀ)其中,(X-EX)(X-EX)ᵀ是一个n×n的矩阵,表示X中每个样本向量与其均值向量之间的差值,ᵀ表示转置运算符。

协方差矩阵的对角线元素为各个维度上的方差,非对角线元素为不同维度之间的协方差。

概率论-4.4 矩和协方差矩阵

概率论-4.4 矩和协方差矩阵

3
目录
上页
下页
返回
对n维随机变量来说,可作类似推广:
其中
c11 c12 L c1n
C
c21
c22
L
c2n
M M
M
Байду номын сангаас
cn1 cn2 L cnn
cij Cov(Xi , X j ) E Xi E(Xi ) X j E(X j ) ,i, j 1, 2,L , n
称C为n维随机变量 (X1, X 2,L , X n ) 的协方差矩阵。
2020年4月26日星期日
2
目录
上页
下页
返回

X1 X2
它的转置为
E( )
X1, X2 这时ξ的数学期望为
E(X1)
E
(
X
2
)
类似于一维随机变量,可以对ξ定义二阶中心矩:
E[
E(
)][
E(
)]
E
X1 X2
E(X1) E(X2)
(
X1
E(
X1),
X
2
E(
X
2
))
E
X
2020年4月26日星期日
1
目录
上页
下页
返回
注意到
D(X ) E X E(X )2
自然地推广到
E X E(X )k
称上式为X的k阶中心矩。
E(X kY l ), E X E(X )k Y E(Y )l
分别称为X的k+l阶混合矩和k+l阶混合中心矩。 特别地,当k=1,l=1时,二阶混合中心矩就是协方差。
第四节 矩和协方差矩阵
由于

4.3 协方差与相关系数及矩与协方差矩阵

4.3 协方差与相关系数及矩与协方差矩阵
2 1 y2 y 1 同理, fY ( y ) , 0 其它
由f ( x , y ) f X ( x ) fY ( y )可得X与Y不独立.
注意 1、设有随机变量X,Y,下列事实是等价的:
(1) cov( X ,Y ) 0
( 2) X与Y不相关
( 3) E ( XY ) E ( X ) E (Y ) (4) D( X Y ) D( X ) D(Y )
性质6 若X ,Y相互独立, 则cov( X ,Y ) 0;
性质7 若U ,V为随机变量, 且E (U 2 ), E (V 2 )都存在, 则
[ E (UV )]2 E (U 2 ) E (V 2 );
取U X E ( X ),V Y E (Y ), 则有 [cov( X ,Y )]2 D( X ) D(Y ).
定义3 若 cov( X ,Y ) 0或 XY 0,
则称随机变量X与Y不相关.
几点说明:
(1) cov( X ,Y ) E ( XY ) E ( X ) E (Y ), cov( X , X ) D( X ).
( 2)离散型 : cov( X ,Y ) [ xi E ( X )][ y j E (Y )] pij .
定义2
设( X ,Y )是二维随机变量 若 cov( X ,Y ), D( X ), D(Y )都 , cov( X ,Y ) 存在, 且D( X ) 0, D(Y ) 0, 则称 为随 D( X ) D(Y ) 机变量X与Y的相关系数或标准协方 , 记为 XY ,即 差
XY
cov( X ,Y ) . D( X ) D(Y )
ex3.设随机变量X的概率分布密度为 1 x f ( x) e x , 2 (1)求X的数学期望E(X)和方差D(X). (2)求cov(X,|X|),并问X与|X|是否不相关? (3)问X与|X|是否相互独立?为什么? 1 x 解 (1) EX xf ( x )dx x e dx 0, 2 DX E[ X E ( X )]2 E ( X 2 )

《概率论》第4章矩、协方差矩阵

《概率论》第4章矩、协方差矩阵

为 k l 阶混合中心矩
E假(定X )其中各数学1 阶期原望点都矩存在
D“矩(X”) 是来自于2物阶理中学心中矩力矩的概念
Cov(X y,Y )
2 阶混合中心矩
y f (x)
O
x d第x 四章 随机x变量的数字特征
§4 矩、协方差矩阵
2/8
对于二维r.v ( X1,,X记2 )
c11 E[( X1 E( X1))2 ] D( X1) c12 E[(X1 E(X1))(X2 E(X2 ))] Cov(X1, X 2 )
7/8
(X1, X2 ,L , Xn ) ~ N(,C) X1, X2,, Xn 的任一线性
组合 l1X1 l2 X2 ln Xn 服从一维正态分布 正态r.v的线性变换不变性:设
(X1, X2 ,, Xn ) ~ N(,C) 令
Y1 a11 X1 a12 X2 a1n Xn
Y2
§4 矩、协方差矩阵
1/8
对于 r.v X ,Y , 称
E( X k ) ( k 1, 2,)
为 k阶原点矩,简称 k阶矩 .称
E[( X E( X ))k ] ( k 2,3,)
为 k阶中心矩 .称
E( X kY l ) (k,l 1, 2,)
为 k l 阶混合矩 .称
E[( X E(X ))k (Y E(Y ))l ] (k,l 1, 2,)
)e2 xp2{
12(x(X1)1( y)2TC21)(X
(y
)}2
2 2
)2
]}
与一维记再正记C态Xr.vcc12密11xyf度c(c,1x222)函数比11211较2, e2则xp{122(x2
)
2
}

矩协方差矩阵

矩协方差矩阵



26 12
设(X1, X2,…, Xn) 是n 维随机变量, Xi与Xj的相关系数 ρij ( i , j =1,2,…,n )存在,
11 12 1n
则称矩阵
R
...2.1........2.2...............2
n
n1 n2 nn
为该随机变量的相关矩阵.
X+Y 与3X –Y 的相关系数为
Cov( X Y ,3X Y ) 2 1
D( X Y ) D(3X Y ) 4 16 4
(X+Y ,3X –Y)的协方差矩阵
C

4 2
2 16
(X+Y ,3X –Y)的相关矩阵
R


1 0.25
C C11 C21
C12 C22



2 1
1
2
1

2 2
2

例1 若 D( X ) 1, D(Y ) 4, XY 1 4,
求(X+Y ,3X –Y)的协方差矩阵和相关矩阵.
解:
Cov(X ,Y ) XY
D( X )
D(Y )
思考题答案:
协方差矩阵的主对角线上的元素Cii是相应的第i个 随机变量的方差;
相关矩阵的主对角线上的元素ρii都为1.
练习题:
1.已知随机变量X,Y 的联合分布为
XY 2 0 1 1 0.30 0.12 0.18
1 0.10 0.18分布随机变量 (X,Y) 的期望向量μ和协 方差矩阵V,分别是
C22 E{[X2 E( X2 )]2} D( X2 )

协方差矩阵的矩阵公式

协方差矩阵的矩阵公式

协方差矩阵的矩阵公式协方差矩阵是统计学中常用的一种矩阵,用于衡量两个随机变量之间的线性关系。

在统计学和金融领域中,协方差矩阵被广泛应用于风险分析、资产组合优化和相关性分析等方面。

本文将介绍协方差矩阵的矩阵公式以及其在实际应用中的意义。

我们来看一下协方差的定义。

协方差是衡量两个随机变量之间关系的统计量,它描述了这两个变量的变化趋势是否一致。

协方差的计算公式如下:cov(X,Y) = E[(X-μX)(Y-μY)]其中,X和Y分别是两个随机变量,μX和μY分别是X和Y的均值,E表示期望值。

协方差的值可以为正、负或零,分别表示正相关、负相关和无相关。

协方差矩阵是由多个随机变量的协方差组成的矩阵。

假设有n个随机变量,我们可以用一个n×n的矩阵来表示它们之间的协方差关系。

协方差矩阵的计算公式如下:Cov(X) = [cov(X1,X1) cov(X1,X2) ... cov(X1,Xn)cov(X2,X1) cov(X2,X2) ... cov(X2,Xn)...cov(Xn,X1) cov(Xn,X2) ... cov(Xn,Xn)]其中,Cov(X)表示协方差矩阵,cov(Xi,Xj)表示随机变量Xi和Xj之间的协方差。

协方差矩阵具有以下几个重要的性质和应用:1. 对称性:协方差矩阵是对称矩阵,即cov(Xi,Xj) = cov(Xj,Xi)。

这意味着随机变量之间的协方差是相互关联的,而且关联的程度是相等的。

2. 正定性:协方差矩阵是一个正定矩阵,即对于任意非零向量a,有a^T Cov(X) a > 0。

这表示协方差矩阵具有良好的性质,可以用来描述随机变量之间的方差和相关性。

3. 主成分分析:协方差矩阵在主成分分析中起着重要的作用。

主成分分析是一种降维技术,可以通过对协方差矩阵进行特征值分解,找到数据集中最重要的主成分。

4. 风险分析:在金融领域中,协方差矩阵被广泛应用于风险分析。

通过计算资产收益率的协方差矩阵,可以评估不同资产之间的风险敞口,帮助投资者进行风险管理和资产配置。

第四节矩与协方差矩阵

第四节矩与协方差矩阵
概率统计

相互独立, 设随机变量 X 和 Y 相互独立,且 X ~ N ( 1, 2 ), Y ~ N (0, 1 ).
试求: 试求:Z = 2X – Y + 3 的概率密度 解: 因为:X ~ N ( 1, 2 ), Y ~ N ( 0, 1 ),且 X 与 Y 独立 因为: , 的联合分布为正态分布, 故: X 和 Y 的联合分布为正态分布,X 和 Y 的任 意线性组合是正态分布. 意线性组合是正态分布 即: Z ~ N ( E(Z),D(Z) ) , 而: E( Z ) = 2E( X ) - E( Y ) + 3 = 2 + 3 = 5 D( Z ) = 4D( X ) + D( Y ) = 8 + 1 = 9
概率统计
所以: 所以: Z ~ N ( 5, 32 ) 的概率密度为: 故: Z 的概率密度为:
fZ (z) =
1 3 2π
e
( z5)2 18
∞< z < ∞
概率统计

2
c22 = E{[ X2 E( X2 )] }
2
c11 c12 将它们排成矩阵的形式: 将它们排成矩阵的形式 ቤተ መጻሕፍቲ ባይዱ c21 c22
称此矩阵为( 协方差矩阵. 称此矩阵为(X1, X2)的协方差矩阵
概率统计
这是 一个 对称 矩阵
▲ 类似可 注: 类似可定义 n 维随机变量 X1, X2, …, Xn ) 的 维随机变量( 协方差矩阵. 协方差矩阵 若 ci j = Cov( Xi , X j ) i, j = 1, 2,…, n 都存在, 都存在,则称矩阵 : c11 c12 L c21 c22 L C= M M L cn1 cn2 L

概率论课件矩、协方差矩阵

概率论课件矩、协方差矩阵
中心矩
中心矩是相对于均值(期望值)的矩,用于描述随机变量分布的形状和离散程 度。
标准化矩
标准化矩是对中心矩进行标准化处理后的矩,用于比较不同随机变量的分布特 性。
样本矩与总体矩
பைடு நூலகம்样本矩
样本矩是从总体中抽取样本后计算得到的矩,用于估计总体矩。
总体矩
总体矩是描述总体分布特性的矩,是样本矩的极限值。
03 协方差矩阵
详细描述
分析矩和协方差矩阵需要使用相关的统计方 法和技巧,如主成分分析、因子分析、聚类 分析等。通过对矩和协方差矩阵的分析,可 以提取数据集中的主要特征、发现变量之间 的潜在关系、对数据进行分类或聚类等。
实例三:数据集的矩和协方差矩阵应用
总结词
数据集的矩和协方差矩阵在概率论中有着广泛的应用 ,如统计推断、假设检验、回归分析等。
THANKS FOR WATCHING
感谢您的观看
VS
第二阶原点矩(即方差)
协方差矩阵的对角线元素是各个随机变量 的方差,非对角线元素是各个随机变量的 协方差。
协方差矩阵与方差-协方差矩阵的关系
方差-协方差矩阵是一个包含各个随机 变量的方差和协方差信息的矩阵,而 协方差矩阵只包含各个随机变量的协 方差信息。
方差-协方差矩阵是协方差矩阵的一个 扩展,它同时包含了随机变量的方差 信息,而协方差矩阵只包含随机变量 的协方差信息。
详细描述
在统计推断中,矩和协方差矩阵可用于估计总体参数和 进行假设检验。例如,利用样本矩估计总体矩,然后使 用这些估计值进行假设检验或置信区间的计算。在回归 分析中,矩和协方差矩阵可用于估计回归系数和进行模 型诊断。通过分析回归模型的矩和协方差矩阵,可以检 验模型的假设是否成立、诊断模型的问题等。此外,在 时间序列分析和金融数据分析等领域,矩和协方差矩阵 也具有重要的应用价值。

协方差矩阵怎么求协方差矩阵的计算公式

协方差矩阵怎么求协方差矩阵的计算公式

协方差矩阵怎么求协方差矩阵的计算公式1.给定n个变量X1,X2,...,Xn,首先需要计算这些变量的均值,分别记为µ1,µ2,...,µn。

2. 然后,计算变量Xi和变量Xj之间的协方差,记为Cov(Xi, Xj),其中i和j的取值范围是1到n。

协方差的计算公式如下:Cov(Xi, Xj) = Σ((Xi-µi)*(Xj-µj))/(n-1)其中,Σ表示求和运算符号,µi和µj分别表示变量Xi和Xj的均值。

3.将所有的协方差放在矩阵的对应位置,得到一个n×n的矩阵,即协方差矩阵。

下面以一个简单的例子来说明如何计算协方差矩阵:设有三个变量X1,X2,X3,数据如下表所示:Xi,1,2,3,4,5X1,12,13,14,15,16X2,18,20,22,24,26X3,10,11,12,13,14首先计算每个变量的均值:µ1=(12+13+14+15+16)/5=14µ2=(18+20+22+24+26)/5=22µ3=(10+11+12+13+14)/5=12然后计算变量之间的协方差:Cov(X1, X1) = [(12-14)^2 + (13-14)^2 + (14-14)^2 + (15-14)^2 + (16-14)^2]/(5-1) = 2Cov(X1, X2) = [(12-14)*(18-22) + (13-14)*(20-22) + (14-14)*(22-22) + (15-14)*(24-22) + (16-14)*(26-22)]/(5-1) = 2Cov(X1, X3) = [(12-14)*(10-12) + (13-14)*(11-12) + (14-14)*(12-12) + (15-14)*(13-12) + (16-14)*(14-12)]/(5-1) = 2Cov(X2, X1) = 2Cov(X2, X2) = 8Cov(X2, X3) = 2Cov(X3, X1) = 2Cov(X3, X2) = 2Cov(X3, X3) = 2最后,将计算得到的协方差填入协方差矩阵:Covariance Matrix =222282222这样,我们就得到了三个变量之间的协方差矩阵。

4-4协方差矩阵

4-4协方差矩阵

矩与协方差矩阵
二、协方差矩阵
为二元随机变量,其有四个二阶中心矩 设(X,Y)为二元随机变量,其有四个二阶中心矩. 为二元随机变量 主要针对多维随机变量的中心矩与混合中心矩来 以二元随机变量为例. 谈,以二元随机变量为例 ∆
E ( X − EX ) 2 = c11 = COV ( X , X )
2 ∆
E (Y − EY ) = c 22 = COV (Y ,Y ) E ( X − EX )(Y − EY ) = c12 = COV ( X ,Y )

E (Y − EY )( X − EX ) = c 21 = COV (Y , X )

c11 由c11,c12,c21,c22,有 有 c 21 协方差矩阵
n 2
2 σ n n−1 n− 3 n− 3 = ⋅ ⋅ Γ 2 2 π 2 n 22σ n n−1 n− 3 1 1 = ⋅ ⋅ ⋅ ⋯ ⋅ Γ 2 2 2 2 π
= 2 σn
n 2
π
(n − 1)!! ⋅
因而, 因而, E X n
( )
2
n 2
π

n
(n − 1)!!
σ n (n − 1)!! n为偶数, = n为奇数. 0
1 Γ = π 2
矩与协方差矩阵
E Xn 特别是,当X~N(0, 1),则有 特别是, 则有
( )
σ n (n − 1)!! n为偶数, = 0 n为奇数.
EX
( )
n
(n − 1)!! n为偶数 = , n为奇数 0
c12 称此矩阵为(X,Y)的 的 称此矩阵为 c 22
矩与协方差矩阵

概率论第四章随机变量的数字特征第4节矩和协方差矩阵

概率论第四章随机变量的数字特征第4节矩和协方差矩阵

特别,若 X ~ N 0, 1 , 则
E X n
n 1!!
0
n为偶数 n为奇数 ,
n 4时, EX 4 3.
返回主目8 录
练习一下
• 已知随机变量的X和Y的联合分布为
Y X
-2
0
1
-1
0.30
0.12
0.18
1
0.10
0.18
0.12
求X和Y的协差矩阵.
0.96 0.24
0.24 1 .65
DX
所以,
E X n nE Y n
n yn fY
y dy
n
y
n
e
y2 2
dy
2
⑴.当 n为奇数时,由于被积函 数是奇函数,所以
E X n 0 .
返回主目5 录
第四章 随机变量的数字特征
(2).当n为偶数时,由于被积函 数是偶函数,所以
EX n
2 n
y
n
e
y2 2
E X n
n
22
n
n
1
n
1
n
22
n
n
1
n
3
n
3
2 2 2 2 2
n
22
n
n
1
n
3
1
1
22
2 2
n
22
n
n 1!!
n
22
n n 1!!
返回主目7 录
第四章 随机变量的数字特征
因而,
§5 矩
E X n
n n 1!!
0
n为偶数 n为奇数
其中,
135 n n为奇数 n!! 2 4 6 n n为偶数

4.4 矩、协方差矩阵

4.4 矩、协方差矩阵
f ( x1 , x2 )
1 1 T 1 exp ( X μ ) C ( X μ ) . 22 12 ( 2 π ) (det C ) 2
引入列矩阵
X
x1 μ1 E ( X 1 ) x2 μ2 E ( X 2 ) 和 μ , xn μ E ( X ) n n
x1 X , x2
μ1 μ . μ2
( X1 , X 2 ) 的协方差矩阵为
c11 C c 21
2 c12 σ1 c 22 ρσ1σ 2
ρσ1σ 2 2 , σ2
ρσ1σ 2 2 σ1
存在, 称它为 X 的 k 阶中心矩 .

E ( X kY l ),
k , l 1,2, 存在,
称它为 X 和 Y 的k l 阶混合矩 .

E{[ X E ( X )]k [Y E (Y )]l }, k , l 1,2,
存在 , 称它为 X 和 Y 的 k l 阶混合中心矩 .
c11 C c 21
c12 c 22
其中 c1c12 E{[ X 1 E ( X 1 )][ X 2 E ( X 2 )]},
c 21 E{[ X 2 E ( X 2 )][ X 1 E ( X 1 )]}, c 22 E{[ X 2 E ( X 2 )]2 }.
说明
(1) 以上数字特征都是随机 变量函数的数学期望; ( 2) 随机变量 X 的数学期望 E ( X ) 是 X 的一阶原
点矩, 方差为二阶中心矩 , 协方差 Cov( X ,Y )是 X

协方差矩阵定义公式

协方差矩阵定义公式

协方差矩阵定义公式协方差矩阵(Covariance matrix)是用于衡量两个或多个随机变量之间关系的矩阵。

它包含了随机变量之间的协方差信息,可以帮助我们分析它们之间的线性关系以及各自的方差。

协方差矩阵的定义公式如下:设有n个随机变量X₁, X₂, ..., Xₙ,它们的协方差矩阵记作Σ,其中Σ的元素为σ(i,j),i和j分别为随机变量的序号。

协方差矩阵的定义公式为:Σ(i,j) = Cov(Xᵢ, Xₙ) = E[(Xᵢ-μᵢ)(Xₙ-μₙ)]其中,E是期望运算,Cov(Xᵢ, Xₙ)表示随机变量Xᵢ和Xₙ之间的协方差,μᵢ和μₙ分别为Xᵢ和Xₙ的均值。

协方差矩阵的元素表示了对应随机变量之间的线性关系:- 当两个随机变量之间的协方差为正值时,表示它们之间呈正相关性。

正相关性意味着当其中一个随机变量上升时,另一个随机变量也有可能上升。

- 当两个随机变量之间的协方差为负值时,表示它们之间呈负相关性。

负相关性意味着当其中一个随机变量上升时,另一个随机变量有可能下降。

- 当两个随机变量之间的协方差接近于0时,表示它们之间呈弱相关性。

弱相关性意味着当其中一个随机变量发生变化时,另一个随机变量的变化情况不确定。

协方差矩阵是一个对称矩阵,即σ(i,j) = σ(j,i),因为Cov(Xᵢ,Xₙ) = Cov(Xₙ, Xᵢ),表示随机变量之间的协方差是相互的。

协方差矩阵还可以通过协方差的样本估计来计算。

给定观测样本集合X={x₁, x₂, ..., xₙ},其中每个观测向量xᵢ是一个维度为d的向量,协方差矩阵的样本估计公式为:Σ(i,j) = S(i,j) = 1/(n-1) * Σ[(xᵢ-ₙ )(xₙ-ₙ )]其中,S(i,j)表示协方差矩阵的样本估计,ₙ 是样本集合的均值。

协方差矩阵在统计学和金融领域广泛应用。

在统计学中,协方差矩阵可以用于分析多个变量之间的相关性,进而判断它们是否可以用同一个模型进行描述。

协方差矩阵

协方差矩阵

XY 1
cov( X , Y ) 0
ቤተ መጻሕፍቲ ባይዱ
Y E (Y ) X E( X ) P 1 D( X ) D(Y ) PY X 1

XY 0
X,Y 不相关
cov( X , Y ) 0 E ( XY ) E ( X ) E (Y ) D( X Y ) D( X ) D(Y )
例1
已知 X,Y 的联合分布为:
pij
Y 1
X
1 p 0
0 0 q
0 < p <1 p+q=1
0
求 cov (X,Y),XY . 解 X P
1
p
0
q
Y
1 p
0 q
XY P
1 p
0 q
P
E ( X ) p, E (Y ) p, D( X ) pq, D(Y ) pq,
E ( XY ) p, D( XY ) pq,
若(X,Y)为离散型,
cov( X , Y ) ( xi E ( X ))( y j E (Y )) pij
i 1 j 1


若(X,Y)为连续型,
cov( X , Y )


( x E ( X ))( y E (Y )) f ( x, y )dxdy.
P(Y E (Y ) t0 ( X E ( X ))) 1
时,等式成立 —Cauchy-Schwarz不等式.
证明

g (t ) E[(Y E (Y )) t ( X E ( X ))]2 D(Y ) 2t cov( X , Y ) t 2 D( X ) 对任何实数 t ,g (t ) 0 4 cov 2 ( X , Y ) 4 D( X ) D(Y ) 0

《概率论与数理统计》六

《概率论与数理统计》六

E( X ) xk pk . k 1
例1 设甲、乙两射手在同样条件下进行射击,其命中环数是一
随机变量,分别记为X、Y,并具有如下分布律
X 10 9 8 7
Y 10 9 8 7
Pk 0.6 0.1 0.2 0.1
Pk 0.4 0.3 0.1 0.2
试问甲、乙两射手的射击水平哪个较高?
解 100.6 90.180.2 70.1 100.4 90.3 80.1 70.2
i1 j1
2
E(Y )
yf ( x, y)dxdy dx
ydy
0
0
3
1
2(1 x )
1
E(XY )
xyf ( x, y)dxdy dx
xydy
0
0
6
三、数学期望的性质
假设以下随机变量的数学期望均存在. 1. E(C)=C, (C是常数) 2. E(CX)=CE(X), (C是常数) 3. E(X+Y)=E(X)+E(Y), 4. 设X与Y相互独立, 则 E(XY)=E(X)E(Y)
1
e
x
,
0,
x0 x0
( 0)
求将这5个元件串联组成的系统的平均寿命.

Xk的分布函数为
F
(
x)
1
e
x
,
0,
x0 x0
串联时系统寿命 N min( X1 , X2 , , X5 ) ,
其分布函数为 Fmin ( x) 1
[1
F(
x)]5
1
e
5x
,
0,
x 0, x 0.
fmin
2 X 3, 一台付款 2500 元; X 3, 一台付款3000元.

矩、协方差矩阵【概率论与数理统计+浙江大学】

矩、协方差矩阵【概率论与数理统计+浙江大学】

E(Z)=2E(X)-E(Y)&#(Y)=8+1=9
Z~N(5, 32)
故 Z 的概率密度是
fZ (z)
3
1
2
( z5)2
e 18 ,
z
例 设随机变量X,Y独立,均服从正态分布 N (, 2)
令U=aX+bY, V=aX-bY,问常数a,b满足什么条件时 随机变量U,V相互独立?
若它的概率密度为
f
(x1,x2,
…,xn)

(2
1 )n 2
|
C
|1
2
exp{
1 2
(X

)C 1( X

)}
则称 X 服从 n 元正态分布.
其中C是(X1,X2, …,Xn) 的协方差矩阵.
|C|是它的行列式,C 1表示C的逆矩阵,
X 和 是 n 维列向量,X 表示X 的转置.
概率论与数理统计
第四节 矩、协方差矩阵
原点矩 中心矩 协方差矩阵 n 元正态分布的概率密度
一、 原点矩 中心矩
定义 设X和Y是随机变量,若 E( X k ), k 1,2,
存在,称它为X的k阶原点矩,简称 k阶矩. 若 E{[ X E( X )]k}, k 2,3,
存在,称它为X的k阶中心矩.
2. 正态变量的线性变换不变性.
若 X=(X1, X2 , … , Xn) 服从 n 元正态分布, Y1,Y2, …,Yk是Xj(j=1,2,…,n)的线性函数, 则 (Y1,Y2, …,Yk) 也服从多元正态分布.
3. 设(X1,X2, …,Xn)服从n元正态分布,则 “X1,X2, …,Xn相互独立”
可见,均值 E(X)是X一阶原点矩,方差D(X)

3.5矩协方差矩阵

3.5矩协方差矩阵

四阶中心矩可以描述随机变量分布的尖峭程度,通常
用 4 / 4 3来度量分布的尖峭程度,称它为峰态系 数,简称为峰态。正态分布的偏态和峰态都等于零。
四. 协方差矩阵
定义3.7 设 量,若
cii
2 i
D( X i )(i
1, 2,
, n) 存在,记
例3.19 设随机变量X服从正态分布 N (, 2 ),求它的
中心矩 k .
解 已知,E(X ) , 因此
k
(x )k
1
e dx
(
x )2 2 2
2

x
t,

k
k 2
t
k
e
t2 2
dt
,此广义积分绝对
收敛。当k为奇数时 k 0; 当k为偶数时,令
t2
u
, 2

k
k
2 k 2
t e
cij cov(Xi , X j ), E{[X E(X )][X E(X )]T} (cij )nn,
则称矩阵Σ为n维随机变量X的协方差矩阵
(cij )nn
cc1211 ...
c12 c22 ...
... ... ...
c1n c2n
...
cn1 cn2 ... cnn
对于二维随机变量(X,Y)
c11 E[ X E( X )]2, c12 E{[ X E( X )][Y E(Y )]}
c21 E{[Y E(Y )][ X E( X )]}, c22 E[Y E(Y )]2
(X,Y)的协方差矩阵为
c11 c21
c12
c22
显然,协方差矩阵是一个对称矩阵,而且,它是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档