历年国际奥数题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一届(1959)
1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。
2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;
(c)A=2。
3.a、b、c都是实数,已知 cos x的二次方程 acos2x + bcos x + c = 0,试用a,b,c作出一个关于cos 2x 的二次方程,使它的根与原来的方程一样。当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。
4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。
5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。
6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。
第二届(1960)
1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。
2.寻找使下式成立的实数x: 4x2/(1 - √(1 + 2x))2< 2x + 9
3.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令a为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证: tan a = 4nh/(an2 - a).
4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。X是对角线AC上任意一点,Y是B'D'上任意一点。a. 求XY中点的轨迹;b. 求(a)中轨迹上的、并且还满足 ZY=2XZ的点Z的轨迹。
6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。令V1为圆锥的体积,V2为圆柱的体积。(a).求证:V1不等于V2 ;(b).求V1/V2 的最小值;并在此情况下作出圆锥顶角的一般。第三届(1961)
1.设a、b是常数,解方程组 x + y + z = a; x2 + y2 + z2 = b2; xy=z2并求出若使x、y、z是互不相同的正数,a、b应满足什么条件?
2.设a、b、c是某三角形的边,A 是其面积,求证:a2 + b2 + c2 >= 4√3 A. 并求出等号何时成立。
3.解方程 cosnx - sinnx = 1, 其中n是一个自然数。
4.P是三角形ABC内部一点,PA交BC于D,PB交AC于E,PC交AB于F,求证AP/PD, BP/PE, CP/PF 中至少有一个不大于2,也至少有一个不小于2。
5.作三角形ABC使得 AC=b, AB=c,锐角AMB = a,其中M是线断BC的中点。求证这个三角形存在的充要条件是 b tan(a/2) <= c < b.又问上式何时等号成立。
6.三个不共线的点A、B、C,平面p不平行于ABC,并且A、B、C在p的同一侧。在p上任意取三个点A', B', C', A'', B'', C''设分别是边AA', BB', CC'的中点,O是三角形A''B''C''的重心。问,当A',B',C'变化时,O的轨迹是什么?
第四届(1962)
1.找出具有下列各性质的最小正整数 n:它的最后一位数字是6,如果把最后的6去掉并放在最前面所得到的数是原来数的4被。
2.试找出满足下列不等式的所有实数 x:√(3-x)- √(x+1) > 1/2.
3.正方体 ABCDA'B'C'D'(ABCD、A'B'C'D'分别是上下底)。一点 x沿着正方形ABCD的边界以方向ABCDA 作匀速运动;一点Y以同样的速度沿着正方形B'C'CB的边界以方向B'C'CBB'运动。点X、Y在同一时刻分别从点A、B'开始运动。求线断XY的中点的轨迹。
4.解方程cos2x + cos22x + cos23x = 1。
5.在圆K上有三个不同的点A、B、C。试在K上再作出一点D使得这四点所形成的四边形有一个内切圆。
6.一个等腰三角形,设R为其外接圆半径,内切圆半径为 r,求证这两个圆的圆心的距离是√(R(R-2r))。
7.求证:正四面体有5个不同的球,每个球都与这六条边或其延长线相切;反过来,如果一个四面体有5个这样的球,则它必然是正四面体。
第五届(1963)
1.找出下列方程的所有实数根(其中 p是实参数):√(x2-p)+2√(x2-1) = x.
2.给定一点A及线断BC,设空间中一点P使得存在线段BC上有一点X满足角APX是直角,试求出所有这样的点P的轨迹。
3.在一个 n边形中,所有内角都相等,边长依次是a1 >= a2 >= ... >= an,求证:所有边长都相等。
4.设 y是一个参数,试找出方程组 xi + xi+2 = y xi+1 (i = 1, ... , 5)的所有解 x1, ... , x5。
5.求证 cos pi/7 - cos 2pi/7 + cos 3pi/7 = 1/2.
6.五个同学A、B、C、D、E参加竞赛,一种猜测说比赛结果的名次依然是ABCDE。但是实际上没有一位同学的名次被猜中,而且预测中名次相邻的同学也没有真的相邻(例如,C、D两位同学名次不是(1,2)、(2,3)、(3,4)、(4,5)中的任何一种)。还有一种猜测说结果会是DAECB的顺序。实际恰好有两个同学所得的名次与预测的一样;而且有两对同学(4个不同的同学)的名次像预测中的一样是相连。试讨论最后的名次如何?第六届(1964)
1.(a) 求所有正整数 n 使得2n - 1 能被 7整除;(b) 求证不存在正整数 n 使得 2n + 1 能被 7 整除。
2.假设a、b、c是某三角形的三边长,求证: a2(b + c - a) + b2(c + a - b) + c2(a + b - c) <= 3abc.
3.△ABC的三边长为别为a、b、c.分别平行于ABC的各边作△ABC内切圆的切线,每条切线都在ABC中又切出一个小三角形,再在每个这样的小三角形中作内切圆,求这四个内切圆的面积之和(用a,b,c表示)。
4.十七个人互相通信,每一个人都和其他人写信。在他们的信上一共讨论有三个不同的话题,每两个人只讨论一个话题,求证:这些人当中至少有三个人他们所讨论的话题是一样的。
5.平面上有五个点,任意两点的连线都不平行,也不垂直,现从每一个点向其他四点两两连接的直线作垂线,试求出所有这些垂线的交点的最大数目。
6.四面体ABCD的中心是D0,过A、B、C作DD0的平行线,这些线分别交平面BCD、CAD、ABD于点 A0、 B0、C0,求证:ABCD的体积是A0B0C0D0的三分之一;再问如果D0为△ABC内的任意一点,结果是否仍然成立?第七届(1965)
1.试找出所有位于区间[0, 2pi] 的x使其满足 2 cos x ≤ | √(1 + sin 2x) - √(1- sin 2x)| ≤ √2 .
2.如下方程组的系数 aij,a11x1 + a12 x2+ a13 x3 = 0 ,a21x1 + a22x2 + a23x3 = 0 ,a31x1 + a32x2 + a33x3 = 0满足:a.a11、a22、a33 是正数,其余是负数; b.每个方程中的系数之和是正的。求证:该方程组的有唯一的解 x1 = x2 = x3 = 0。
3.四面体ABCD被平行于AB、CD边的一个平面分割成两部分,并且该平面到AB边的距离是该平面到CD边距离的 k倍。试求出这两部分的体积比。
4.四个实数,它们中的任何三个的乘积再加上第四个数都等于2,求出这四个数的所有可能值。
5.△OAB中的角O是锐角,M是边AB上任意一点,从M向OA、OB边引垂线,垂足分别为P、Q。设△OPQ的垂心为,求出当M在AB边上移动时点H的轨迹;若M在△OAB内部移动是H的轨迹又是什么?
6.平面上给定了 n>2个点,任何两点之间都有线断相连,这些线断长度中的最大值被定义为这个点集的直径,求证:长度为直径的线断至多有n条。
第八届(1966)
1.在一次数学竞赛中共有A、B、C三道题,25名参赛者每人至少答对了一题。在所有没有答对A的学生中,答对B的人数是答对C的人数的两倍,只答对问题A的人数比既答对A又至少答对其他一题的人数多1。又已知在所有恰好答对一题的参赛者中,有一半没有答对A。请问有多少学生只答对B?
2.三角形ABC,如果, BC + AC = tan C/2 (BC tan A + AC tan B).则该三角形为等腰三角形。
3.求证:从正四面体的内切圆圆心到各顶点距离之和小于从空间中任意其他点到各顶点距离之和。
4.对任何自然数 n以及满足 sin 2nx 不为 0 的实数x,求证: