专题11 磁场(1)(解析版)
【2023全国各地中考物理真题分类汇编(下)】11 功、功率、机械效率(解析版)
![【2023全国各地中考物理真题分类汇编(下)】11 功、功率、机械效率(解析版)](https://img.taocdn.com/s3/m/80bbfa2ff08583d049649b6648d7c1c708a10b9b.png)
专题11 功、功率、机械效率考点1 功1.(2023·湖北恩施)如图所示,迅速向下撞击斧子的木柄,斧头能套紧在木柄上,是由于()A.斧头具有惯性B.木柄具有惯性C.柄对斧头做功D.斧头没受力【答案】A【解析】斧头松了,将木柄向下撞击地面时,木柄静止,斧头由于惯性还要保持原来的运动状态,结果就可以使斧头套紧在木柄上,故A符合题意,BCD不符合题意。
故选A。
2.(2023·北京)如图所示,小京用水平推力推着购物车在水平地面上做匀速直线运动,下列说法正确的是()A.小京对车的水平推力大于车受到的阻力B.车受到的支持力与车对地面的压力是一对平衡力C.若小京撤去对车的水平推力,车的运动状态将会发生改变D.若小京撤去对车的水平推力,小京仍对车做功【答案】C【解析】A.购物车在水平地面上做匀速直线运动,购物车处于平衡状态。
水平推力和阻力是二力平衡关系,应该相等,故A错误;B.车受到的支持力受力物体是车,车对地面的压力受力物体时是地面,受力物体不同,所以它们不是一对平衡力,故B错误;C.若小京撤去对车的水平推力,车在阻力作用下会慢慢停下,运动状态发生了改变,故C正确;D.若小京撤去对车的水平推力,对车没有的力的作用,不再对车做功,故D错误。
故选C。
3.(2023·湖南常德)“低碳出行,骑行天下”,骑行越来越受到人们的青睐。
下列有关自行车的结构及使用的说法中正确的是()A.上坡前加快蹬车是为了增大惯性B.自行车的刹车把手是一个费力杠杆C.自行车在水平路面快速行驶过程中,人和重力都做了功D.自行车轮胎做得凹凸不平是为了增大摩擦【答案】D【解析】A.惯性是物体本身具有的一种性质。
惯性大小只跟物体的质量大小有关,与物体是否运动、运动的快慢、是否受力等外界因素无关,故A错误;B.使用自行车的刹车手闸,动力臂大于阻力臂,人们用很小的力就能使车闸以较大的压力压到车轮的钢圈上,是一个省力杠杆,故B错误;C.自行车在水平路面上前进了一段距离,没有在重力方向上通过距离,则重力没有做功,故C错误;D.自行车轮胎做得凹凸不平,是在压力一定时,通过增大接触面的粗糙程度来增大摩擦力,故D正确。
专题11 电磁感应(解析版)
![专题11 电磁感应(解析版)](https://img.taocdn.com/s3/m/74ad1d6165ce0508773213af.png)
专题11 电磁感应1.(2021届福建省厦门外国语高三质检)2020年爆发了新冠肺炎,该病毒传播能力非常强,因此研究新冠肺炎病毒珠的实验室必须是全程都在高度无接触物理防护性条件下操作。
武汉病毒研究所是我国防护等级最高的P4实验室,在该实验室中有一种污水流量计,其原理可以简化为如图所示模型。
污水内含有大量正、负离子,从直径为d 的圆柱形容器右侧流入,左侧流出,流量值Q 等于单位时间通过横截面的液体的体积。
空间有垂直纸面向里的磁感应强度为B 的匀强磁场,并测出M 、N 间的电压U ,则下列判断正确的是( )A .正、负离子所受洛伦兹力方向是相同的B .容器内液体的流速为Uv Bd=C .污水流量计也可以用于测量不带电的液体的流速D .污水流量为2UdQ Bπ=【答案】B【解析】根据左手定则,正、负离子所受洛伦兹力方向相反,故A 错误;容器内离子受力平衡,有Uq Bqv d=,化简得Uv Bd=,故B 正确;不带电的液体不受洛伦兹力,所以不会发生偏转,在MN 两点之间不会产生电压,无法由B 选项的分析测流速,故C 错误;污水的流量为2()24U d Ud Q vS Bd Bππ===,故D 错误。
故选B 。
2.(2021届福建省厦门外国语高三质检)放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )A .4Tt =时刻,圆环有扩张的趋势 B .4Tt =时刻,圆环有收缩的趋势C .4T t =和34T t =时刻,圆环内的感应电流大小相等D .34Tt =时刻,圆环内有俯视逆时针方向的感应电流【答案】BC【解析】4Tt =时刻,螺线管中电流增大,产生的磁场变强,圆环中的磁通量增多,圆环要阻碍磁通量的增多,有收缩的趋势.故选项A 错误,选项B 正确.4T t =和34Tt =时刻,螺线管内电流的变化率相等,所以圆环内的感应电流大小相等.故C 选项正确.34Tt =时刻,螺线管中俯视顺时针方向的电流减弱,圆环中的向下磁通量减少,圆环要阻碍磁通量的减少,产生向下的磁通量,所以圆环内有俯视顺时针方向的感应电流,故D 选项错误。
高考一轮复习 专题11 电磁感应中的动力学能量和动量问题
![高考一轮复习 专题11 电磁感应中的动力学能量和动量问题](https://img.taocdn.com/s3/m/556244c5b9f67c1cfad6195f312b3169a451eae6.png)
专题十一电磁感应中的动力学、能量和动量问题考点一电磁感应中的动力学问题师生共研例1 如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2):(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小.【考法拓展1】在【例1】中,求金属棒从开始到刚离开磁场Ⅰ所经历的时间.【考法拓展2】在【例1】中,求金属棒由释放到ab连线滑过的距离x0.【考法拓展3】在【例1】中,求金属棒从开始到在磁场Ⅱ中达到稳定状态这段时间中电阻R产生的热量.练1 [2021·黑龙江大庆模拟](多选)在倾角θ=30°的斜面上固定两根足够长的平行金属导轨MN、EF,间距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.有两根质量均为m、电阻均为R、长度均为L的金属棒ab、cd垂直导轨放置且与导轨接触良好,光滑的ab棒用平行于导轨的不可伸长的轻绳跨过光滑定滑轮与质量为2m的重物P连接,如图所示.初始时作用在ab棒上一个外力(题中未画出)使ab棒、重物P保持静止,cd棒也静止在导轨上且刚好不下滑.已知重力加速度大小为g,导轨电阻不计,最大静摩擦力等于滑动摩擦力.现撤去外力,ab棒和重物P从静止开始运动,到cd棒刚好要向上滑动的过程中,则( )A.重物P向下做加速度不断减小的加速运动B.cd棒刚好要向上滑动时,ab棒中的电流大小I=C.cd棒刚好要向上滑动时,重物P的速度大小为v=D.重物P减少的重力势能等于ab棒、重物P增加的动能与ab、cd棒产生的焦耳热之和练2 [2020·全国卷Ⅰ](多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值练3 如图所示,间距为L的两根平行金属导轨弯成“L”形,竖直导轨面与水平导轨面均足够长,整个装置处于竖直向上大小为B的匀强磁场中.质量均为m、阻值均为R的导体棒ab、cd均垂直于导轨放置,两导体棒与导轨间动摩擦因数均为μ,当导体棒cd在水平恒力作用下以速度v0沿水平导轨向右匀速运动时,释放导体棒ab,它在竖直导轨上匀加速下滑.某时刻将导体棒cd所受水平恒力撤去,经过一段时间,导体棒cd静止,此过程流经导体棒cd的电荷量为q(导体棒ab、cd与导轨间接触良好且接触点及金属导轨的电阻不计,已知重力加速度为g),则下列判断错误的是( )A.导体棒cd受水平恒力作用时流经它的电流I=B.导体棒ab匀加速下滑时的加速度大小a=g-C.导体棒cd在水平恒力撤去后它的位移为s=D.导体棒cd在水平恒力撤去后它产生的焦耳热为Q=m-题后反思1.电磁感应中动力学问题的解题思路2.电磁感应中的动态分析导体受外力运动感应电动势感应电流导体受安培力―→合力变化加速度变化―→速度变化―→临界状态.考点二电磁感应中的能量问题多维探究1.能量转化2.求解焦耳热Q的三种方法3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.题型1|由焦耳定律求解焦耳热例 2 小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53 °,导轨上端串接一个R=0.05 Ω的电阻.在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T.质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24 m.一位健身者用恒力F=80 N 拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD棒进入磁场时速度v的大小.(2)CD棒进入磁场时所受的安培力F A的大小.(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.题型2|由安培力做功求解焦耳热例3 如图所示,足够长的粗糙斜面与水平面成θ=37°角放置,在斜面上虚线cc′和bb′与斜面底边平行,且两线间距为d=0.1 m,在cc′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g,总电阻为R=1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与cc′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)(1)线圈向下返回到磁场区域时的速度大小;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场区域过程中,线圈中产生的焦耳热.题型3|由能量守恒或功能关系求解焦耳热例4 [2021·广州市模拟]如图甲所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1 kg 的导体棒.从零时刻开始,对ab施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v t图象,其中AO是图象在O 点的切线,AB是图象的渐近线.除R以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R的阻值;(2)在棒运动100 m过程中电阻R上产生的焦耳热.练4 [2020·济南模拟]如图所示,水平传送带上放置n个相同的正方形闭合导线圈,每个线圈的质量均为m,电阻均为R,边长均为L,线圈与传送带间的动摩擦因数均为μ,线圈与传送带共同以速度v0匀速向右运动.MN与PQ为匀强磁场的边界,平行间距为d(L<d),速度v0方向与MN垂直.磁场的磁感应强度为B,方向竖直向下.当线圈右侧边进入磁场时与传送带发生相对运动,线圈的右侧边到达边界PQ 时又恰好与传送带的速度相同.设传送带足够长,且线圈在传送带上始终保持右侧边平行于磁场边界.已知重力加速度为g,线圈间不会相碰.求:(1)线圈的右侧边刚进入磁场时,线圈的加速度大小;(2)线圈右侧边从MN运动到PQ经过的时间t;(3)n个线圈均通过磁场区域到恢复和传送带共速,线圈释放的焦耳热.练5 [2021·石嘴山模拟]如图所示,光滑且足够长的平行金属导轨MN、PQ固定在竖直平面内,两导轨间的距离为L=1 m,导轨间连接的定值电阻R=3 Ω,导轨上放一质量为m=0.1 kg的金属杆ab,金属杆始终与导轨接触良好,杆的电阻r=1 Ω,其余电阻不计,AB位置下方存在磁感应强度为B=1 T 的匀强磁场,磁场的方向垂直导轨平面向里.重力加速度g取10 m/s2.现让金属杆从AB水平位置由静止释放,忽略空气阻力的影响,求:(1)金属杆的最大速度.(2)若从金属杆开始下落到刚好达到最大速度的过程中,电阻R上产生的焦耳热Q=0.6 J,此时金属杆下落的高度为多少?(3)达到最大速度后,为使ab杆中不产生感应电流,从该时刻开始,磁感应强度B′应怎样随时间t 变化?推导这种情况下B′与t的关系式.考点三电磁感应与动量的综合问题多维探究题型1|动量定理在电磁感应中的应用在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B lΔt=mv2-mv1,q=t.(2)求时间:Ft=I冲=mv2-mv1,I冲=BIlΔt=Bl(3)求位移:-BIlΔt=-=0-mv0,即-x=m(0-v0).例5 [2020·山东潍坊期末] (多选)如图所示,水平金属导轨P、Q间距为L,M、N间距为2L,P与M相连,Q与N相连,金属棒a垂直于P、Q放置,金属棒b垂直于M、N放置,整个装置处在磁感应强度大小为B、方向竖直向上的匀强磁场中.现给棒a一大小为v0、水平向右的初速度,假设导轨都足够长,两棒质量均为m,在棒a的速度由v0减小到0.8v0的过程中,两棒始终与导轨接触良好.以下说法正确的是( )A.俯视时感应电流方向为顺时针B.棒b的最大速度为0.4v0C.回路中产生的焦耳热为0.1mD.通过回路中某一截面的电荷量为题型2|动量守恒定律在电磁感应中的应用例6 [2019·全国卷Ⅲ,19](多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是( )练6 [2020·山东阳谷二中期末](多选)如图所示,在高为h的桌面上固定着两根平行光滑金属导轨,导轨左段弯曲,右段水平,两部分平滑连接,导轨间距为L,电阻不计,在导轨的水平部分有竖直向上的匀强磁场,磁感应强度为B,ab、cd为两根相同的金属棒,质量均为m,长度均为L,电阻均为r.开始时cd静置于水平导轨上某位置,将ab从弯曲导轨上距离桌面高为h处由静止释放,cd离开导轨水平抛出,落地点ef距轨道末端的水平距离也为h,金属棒在运动过程中没有发生碰撞且与导轨接触良好,重力加速度为g.以下说法正确的是( )A.cd在导轨上的最大加速度为B.cd在导轨上的最大加速度为C.ab的落地点在ef的右侧D.电路中产生的热量为mgh练7 如图甲所示,两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平面轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b.杆a、b电阻分别为R a=2 Ω,R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以大小5 m/s的初速度(设为v0)开始向左滑动,同时由静止释放杆a.杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A.从杆a下滑到水平轨道时开始计时,a、b杆运动图象如图乙所示(以杆a运动方向为正),其中m a=2 kg,m b=1 kg,g=10 m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b上产生的焦耳热.专题十一 电磁感应中的动力学、能量和动量问题考点突破例1 解析:(1)金属棒进入磁场Ⅰ做匀速运动,设速度为v 0,由平衡条件得mgsin θ=F 安① 而F 安=B 0I 0L ,② I 0=B 0Lv 0R +r③代入数据解得v 0=2 m/s.④(2)金属棒滑过cd 位置时,其受力如图所示.由牛顿第二定律得 mgsin θ-F ′安=ma ,⑤ 而F ′安=B 1I 1L ,⑥ I 1=B 1Lv 0R +r,⑦代入数据可解得a =3.75 m/s 2.⑧(3)金属棒在进入磁场Ⅱ区域达到稳定状态时,设速度为v 1,则mgsin θ=F ″安,⑨ 而F ″安=B 1I 2L ○10 I 2=B 1Lv 1R +r,⑪代入数据解得v 1=8 m/s.⑫答案:(1)2 m/s (2)3.75 m/s 2 (3)8 m/s考法拓展1 解析:金属棒从静止开始到刚进入磁场Ⅰ的时间t 1=v 0gsin θ=0.4 s ,在磁场Ⅰ运动时间t 2=x 1v 0=0.5 s ,所以金属棒从开始到刚离开磁场Ⅰ所经历的时间为t =t 1+t 2=0.9 s.答案:0.9 s考法拓展2 解析:金属棒在未进入磁场前做初速度为0的匀加速直线运动a =gsin θ,由运动学公式得v 20=2ax 0,代入数据解得x 0=0.4 m. 答案:0.4 m考法拓展3 解析:金属棒从开始运动到在磁场Ⅱ中达到稳定状态过程中,根据能量守恒得 mg(x 0+x 1+x 2)sin θ=Q +12mv 21,Q R =R R +r Q =7.5 J.答案:7.5 J练1 解析:本题考查电磁感应中的楞次定律,通过分析安培力判断物体的运动状态,回路中的电流以及焦耳热.重物P 和ab 棒是一个系统,重物P 的重力不变,ab 棒的重力沿斜面向下的分力不变,而ab 棒切割磁感线的速度在增大,则沿斜面向下的安培力随之增大,则ab 与P 的加速度变小,所以重物P 向下做加速度不断减小的加速运动,A 正确;cd 棒刚开始恰好不下滑,则有mgsin θ=μmgcos θ,cd 棒刚好要向上滑动时,则有BIL =mgsin θ+μmgcos θ,联立解得I =mgBL ,B 正确;cd 棒刚好要向上滑动时,ab 棒切割磁感线产生的感应电动势E =BLv ,感应电流I =BLv 2R ,可得v =2mgRB 2L 2,C 正确;由能量守恒定律可知,重物P 减少的重力势能等于ab 棒、重物P 增加的动能、ab 棒增加的重力势能与ab 、cd 棒产生的焦耳热之和,D 错误.答案:ABC练2 解析:用水平恒力F 向右拉动金属框,bc 边切割磁感线产生感应电动势,回路中有感应电流i ,bc 边受到水平向左的安培力作用,设金属框的质量为M ,加速度为a 1,由牛顿第二定律有F -BiL =Ma 1;导体棒MN 受到向右的安培力,向右做加速运动,设导体棒的质量为m ,加速度为a 2,由牛顿第二定律有BiL =ma 2.设金属框bc 边的速度为v 时,导体棒的速度为v ′,则回路中产生的感应电动势为E =BL(v -v ′),由闭合电路欧姆定律i =E R =BL (v -v ′)R,F 安=BiL ,可得金属框bc 边所受安培力和导体棒MN 所受的安培力均为F 安=B 2L 2(v -v ′)R ,二者加速度之差Δa =a 1-a 2=F -F 安M -F 安m =F M -F 安⎝ ⎛⎭⎪⎫1M +1m ,随着所受安培力的增大,二者加速度之差Δa 减小,当Δa 减小到零时,F M =B 2L 2(v -v ′)R ·⎝ ⎛⎭⎪⎫1M +1m ,之后金属框和导体棒的速度之差Δv =v -v ′=FRmB 2L 2(m +M ),保持不变.由此可知,金属框的速度逐渐增大,金属框所受安培力趋于恒定值,金属框的加速度大小趋于恒定值,导体棒所受的安培力F 安=B 2L 2(v -v ′)R 趋于恒定值,选项A 错误,BC 正确;导体棒到金属框bc 边的距离x =⎠⎛0t (v -v ′)dt ,随时间的增大而增大,选项D 错误.答案:BC练3 解析:cd 切割磁感线产生感应电动势为E =BLv 0,根据闭合电路欧姆定律得I =E 2R =BLv 02R ,故A 项错误.对于ab 棒:根据牛顿第二定律得mg -F f =ma ,又F f =μF N ,F N =BIL ,联立解得,加速度大小为a =g -μB 2L 2v 02mR ,故B 项正确.对于cd 棒,由公式q =ΔΦR 总得q =BLs 2R ,则得,s =2Rq BL,故C 项正确.设导体棒cd 在水平恒力撤去后产生的焦耳热为Q ,由于ab 的电阻与cd 相同,两者串联,则ab 产生的焦耳热也为Q.根据能量守恒得2Q +μmgs =12mv 20,又s =2Rq BL ,解得Q =14mv 20-μmgRqBL ,故D 项正确.综上所述,应选择A.答案:A例2 解析:(1)由牛顿第二定律a =F -mgsin θm =12 m/s 2进入磁场时的速度v =2as =2.4 m/s. (2)感应电动势E =Blv 感应电流I =BlvR安培力F A =IBl代入得F A =(Bl )2vR =48 N.(3)健身者做功W =F(s +d)=64 J 由牛顿第二定律F -mgsin θ-F A =0 CD 棒在磁场区域做匀速运动 在磁场中运动的时间t =dv焦耳热Q =I 2Rt =26.88 J.答案:(1)2.4 m/s (2)48 N (3)64 J 26.88 J例3 解析:(1)金属线圈向下匀速进入磁场时,有mgsin θ=μmgcos θ+F 安 其中F 安=BId ,I =ER,E =Bdv解得v =(mgsin θ-μmgcos θ)RB 2d2=2 m/s. (2)设最高点离bb ′的距离为x ,线圈从最高点到开始进入磁场过程做匀加速直线运动,有v 2=2ax ,mgsin θ-μmgcos θ=ma 线圈从向上离开磁场到向下进入磁场的过程,根据动能定理有E k1-E k =μmgcos θ·2x ,其中E k =12mv 2得E k1=12mv 2+v 2μmgcos θgsin θ-μgcos θ=0.1 J.(3)线圈向下匀速通过磁场区域过程中, 有mgsin θ·2d -μmgcos θ·2d +W 安=0 Q =-W 安解得Q =2mgd(sin θ-μcos θ)=0.004 J. 答案:(1)2 m/s (2)0.1 J (3)0.004 J例4 解析:(1)由图乙得ab 棒刚开始运动瞬间a =2.5 m/s 2, 则F -F f =ma , 解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F -F f -F 安=0.F 安=BIL =BL Blv R =B 2L 2vR .联立可得R =B 2L 2vF -F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J练4 解析:(1)线圈刚进入磁场时有:E =BLv 0 根据闭合电路欧姆定律:I =ER所以安培力F =B 2L 2v 0R根据牛顿第二定律:F -μmg =ma. a =B 2L 2v 0mR -μg ,方向向左(2)根据动量定理,对线圈: μmgt -I 安=0. 其中安培力的冲量:I 安=F 安t ′=B I -L ·t ′=BLq q =ΔΦR =BL 2R .综上解得t =B 2L 3μmgR.(3)自线圈进入磁场到线圈右侧边到达PQ 过程中,对于单个线圈,根据动能定理得 μmgd -W 安=0,所以克服安培力做功W 安=μmgd单个线圈离开磁场的运动情况和进入磁场相同,W ′安=W 安=μmgd , 所以对于n 个线圈有Q =2n μmgd答案:(1)B 2L 2v 0mR -μg (2)B 2L3μmgR(3)2n μmgd练5 解析:(1)设金属杆的最大速度为v m ,安培力与重力平衡,则有:F 安=mg 又F 安=BIL ,I =ER +r,E =BLv m 联立得:F 安=B 2L 2v mR +r解得:v m =4 m/s(2)电路中产生的总焦耳热: Q 总=R +r R Q =3+13×0.6 J =0.8 J由能量守恒定律得:mgh =12mv 2m +Q 总解得:h =1.6 m(3)为使ab 杆中不产生感应电流,应使穿过回路平面的磁通量不发生变化, 在该时刻穿过回路平面的磁通量为: Φ1=BLht 时刻的磁通量为: Φ2=B ′L ⎝ ⎛⎭⎪⎫h +v m t +12gt 2 由Φ1=Φ2得:B ′=Bhh +v m t +12gt2代入数据解得:B ′= 1.65t 2+4t +1.6T答案:(1)4 m/s (2)1.6 m (3)B ′= 1.65t 2+4t +1.6T例5 解析:本题考查电磁感应中的电荷量、能量等物理量的计算.棒a 向右运动,回路面积减小,根据楞次定律可知,俯视时感应电流方向为逆时针,A 错误;在棒a 的速度由v 0减小到0.8v 0的过程中,棒a 减速,棒b 加速,对棒a ,由动量定理可得B I -·Lt =BqL =mv 0-0.8mv 0,对棒b ,由动量定理可得B I -·2Lt =mv ,联立可得v =0.4v 0,q =mv 05BL ,B 正确,D 错误;根据能量守恒定律可得Q =12mv 20-12m(0.8v 0)2+12m(0.4v 0)2=0.1mv 20,C 正确.答案:BC例6 解析:由楞次定律可知ab 棒做减速运动,cd 棒做加速运动,即v 1减小,v 2增加.回路中的感应电动势E =BL(v 1-v 2),回路中的电流I =E R =BL (v 1-v 2)R ,回路中的导体棒ab 、cd 的加速度大小均为a =F m =BIL m =B 2L 2(v 1-v 2)mR ,由于v 1-v 2减小,可知a 减小,所以ab 与cd 的v t 图线斜率减小,I 也非线性减小,所以A 、C 正确,B 、D 错误.答案:AC练6 解析:本题从动量和能量两个角度考查双棒问题.当cd 受到的安培力最大时,cd 在导轨上的加速度最大,即ab 刚进入磁场时,cd 在导轨上的加速度最大,设此时ab 的速度为v ,根据机械能守恒定律可得12mv 2=mgh ,解得v =2gh ,此时回路中的感应电流I =BLv 2r ,cd 在导轨上的最大加速度a =BIL m =B 2L 22gh2mr,故A 正确,B 错误; 设cd 离开导轨时的速度为v 1,根据平抛运动规律可知,下落时间t =2h g ,则v 1=h t=gh2,设cd 离开导轨时ab 的速度为v ′,根据动量守恒定律可得mv =mv ′+mv 1,解得v ′=v 1=gh2,所以ab 的落地点也在ef 处,故C 错误;电路中产生的热量Q =mgh -12mv ′2-12mv 21=12mgh ,故D 正确.答案:AD练7 解析:(1)设杆a 刚滑到水平轨道时,杆b 的速度为v b ,杆a 在弧形轨道上运动的时间与杆b 从开始滑动到杆a 刚滑到水平轨道时所用时间相等,对杆b 应用动量定理有Bd I -t 1=m b v b -m b v 0其中v 0=-5 m/s ,v b =-2 m/s 解得t 1=5 s.(2)设杆a 下滑到水平轨道时的速度为v a ,由杆a 下滑的过程中机械能守恒有 m a gh =12m a v 2a解得v a =5 m/s设两杆最后共同的速度为v ,两杆在水平轨道上运动过程中动量守恒,有 m a v a +m b v b =(m a +m b )v 解得v =83m/s对杆a 在水平轨道上运动过程应用动量定理有 -Bd I -t 2=m a v -m a v a 又q =I -t 2解得q =73C.(3)由能量守恒定律得,两杆产生的总焦耳热Q 总=m a gh +12m b v 20-12(m a +m b )v 2=1616 J杆a 、b 串联,电流相等,则相同时间内产生的焦耳热与电阻成正比 故杆b 上产生的焦耳热Q =R b R a +R b Q 总=1156J. 答案:(1)5 s (2)73 C (3)1156 J。
专题10 磁场(解析版)
![专题10 磁场(解析版)](https://img.taocdn.com/s3/m/462808166294dd88d1d26bfd.png)
专题10 磁场(解析版)1.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场﹑磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0),沿纸面以大小为v 的速度从OM 上的某点向左上方射入磁场,速度方向与OM 成30°角,已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场,不计重力。
则粒子离开磁场时的出射点到两平面交线O 的距离为( )A .2mv qB B .3mvqBC .2mvqB D .4mv qB【答案】D 【详解】因为该粒子在磁场中的运动轨迹与ON 只有一个交点,所以其轨迹与ON 相切,如图所示;根据牛顿第二定律得2v qvB m R =,由三角形得2sin 30OP R x =︒,解得4OP mv x qB = 故选D 。
2.如图,距离为d 的两平行金属板P 、Q 之间有一匀强磁场,磁感应强度大小为1B ,一束速度大小为v 的等离子体垂直于磁场喷入板间,相距为L 的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为2B ,导轨平面与水平面夹角为θ,两导轨分别与P 、Q 相连,质量为m 、电阻为R 的金属棒ab 垂直导轨放置,恰好静止,重力加速度为g ,不计导轨电阻、板间电阻和等离子体中的粒子重力,下列说法正确的是( )A .导轨处磁场的方向垂直导轨平面向上,12sin mgR vB B Ldθ=B .导轨处磁场的方向垂直导轨平面向下,12sin mgR v B B Ld θ=C .导轨处磁场的方向垂直导轨平面向上,12tan mgR v B B Ld θ=D .导轨处磁场的方向垂直导轨平面向下,12tan mgR v B B Ldθ=【答案】B 【详解】等离子体垂直于磁场喷入板间时,根据左手定则可得金属板Q 带正电荷,金属板P 带负电荷,则电流方向由金属棒a 端流向b 端。
高中物理精品试题: 磁场(原卷版)
![高中物理精品试题: 磁场(原卷版)](https://img.taocdn.com/s3/m/fdaaea4edcccda38376baf1ffc4ffe473368fde9.png)
5年高考1年模拟全国III卷物理试题分项解析专题11 磁场一、全国III卷:(2020年和2021年使用III卷的省份没有发生变化)2020届高考:云南、广西、贵州、四川、西藏2021届高考:云南、贵州、四川、广西、西藏二、2016-2020年全国III卷分布情况概况:考点年份题号题型分数磁场2020 18 选择题6分2019 18 选择题6分2018 24 计算题12分2017 18/24 选择题6分/12分2016 18 选择题6分三、2016-2020年全国III卷试题赏析:1、(2020·全国III卷·T18)真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。
一速率为v的电子从圆心沿半径方向进入磁场。
已知电子质量为m,电荷量为e,忽略重力。
为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为()ŒA. 32mvaeB.mvaeC.34mvaeD.35mvae2、(2019·全国III 卷·T18).如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为A. 5π6m qBB. 7π6m qBC. 11π6m qBD.13π6mqB3、(2017·全国III 卷·T18)如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l 。
在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零。
如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为A .0B .033B C .0233B D .2B 0 4、(2016·全国III 卷·T18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。
专题 磁场(解析版)
![专题 磁场(解析版)](https://img.taocdn.com/s3/m/b3cbf1500a4c2e3f5727a5e9856a561253d3216b.png)
专题磁场一、安培定则、左手定则、右手定则的应用(左力右电)。
二、几种常见的磁感线分布:直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强,且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两侧是N极和S极,且离圆环中心越远,磁场越弱安培定则立体图横截面图1.特高压直流输电是国家重点工程,部分输电线路简化图如图所示。
高压输电线上使用“abcd正方形间隔棒“支撑导线L1、L2、L3、L4,其目的是固定各导线间距,防止导线互相碰撞,图中导线L1、L2、L3、L4水平且恰好处在正四棱柱的四条棱上,并与“abcd正方形间隔棒”所在平面垂直,abcd的几何中心为O点,O点到四根导线的距离相等并远小于导线的长度,忽略地磁场影响,当四根导线通有等大、同向的电流时,下列说法正确的是()A.O点的磁感应强度沿ac连线方向B.O点的磁感应强度沿bd连线方向C.L1所受安培力沿正方形的对角线ac方向D.L1所受安培力沿正方形的对角线bd方向【解答】解:AB.四条导线的电流相等,且O点到四条导线距离相等,根据右手定则和对称,L1在O点的磁感应强度与L3在O点的磁感应强度等大反向,L2在O点的磁感应强度与L4在O点的磁感应强度等大反向,根据磁感应强度叠加原理,四条导线在O点的磁感应强度等于零,故AB错误;CD.其余三条导线对L1都是吸引力,结合对称性可知,L1所受安培力的方向沿正方形的对角线ac方向,故C正确,D错误。
故选:C。
2.两根通电细长直导线紧靠着同样长的塑料圆柱体,图甲是圆柱体和导线1的截面,导线2固定不动(图中未画出)。
导线1绕圆柱体在平面内第一与第二象限从θ=0缓慢移动到π,测量圆柱体中心O处磁感应强度,获得沿x方向的磁感应强度B x随θ的图像(如图乙)和沿y方向的磁感应强度B y随θ的图像(如图丙)。
下列说法正确的是()A.导线1电流方向垂直纸面向里B.导线2在第三象限角平分线位置C.随着θ的增大,中心O处的磁感应强度先变大后变小D.当θ=0.25π时,中心O处的磁感应强度方向沿第四象限角平分线向外【解答】解:B、当导线1转动0.5π时,根据安培定则(或右手螺旋定则)可知,导线1此时只产生了x轴方向的磁场,又因为此时O点只有沿x轴正方向的磁场,可知导线2在竖直方向上没有分量,所以导线2不可能位于第三象限的角平分线上,只能是在y轴上,故B错误;A、根据丙图可知,导线1在初始状态在O点产生的磁场沿y轴负方向。
高考物理专题电磁学知识点之磁场全集汇编含答案解析
![高考物理专题电磁学知识点之磁场全集汇编含答案解析](https://img.taocdn.com/s3/m/e42651b114791711cc7917d9.png)
高考物理专题电磁学知识点之磁场全集汇编含答案解析一、选择题1.如图所示,空间中存在在相互垂直的匀强电场和匀强磁场,有一带电液滴在竖直面内做半径为R的匀速圆周运动,已知电场强度为E,磁感应强度为B,重力加速度为g,则液滴环绕速度大小及方向分别为()A.EB,顺时针B.EB,逆时针C.BgRE,顺时针D.BgRE,逆时针2.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。
如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。
分别加速氘核和氦核,下列说法正确的是()A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能3.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。
质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。
若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是()A.该束粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D.在B2磁场中运动半径越大的粒子,比荷qm越小4.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。
线圈中a、b两条导线长度均为l,未通电流时,a、b处于图乙所示位置,两条导线所在处的磁感应强度大小均为B。
通电后,a导线中电流方向垂直纸面向外,大小为I,则()A.该磁场是匀强磁场B.线圈平面总与磁场方向垂直C.线圈将逆时针转动D.a导线受到的安培力大小始终为BI l5.对磁感应强度的理解,下列说法错误的是()A.磁感应强度与磁场力F成正比,与检验电流元IL成反比B.磁感应强度的方向也就是该处磁感线的切线方向C.磁场中各点磁感应强度的大小和方向是一定的,与检验电流I无关D.磁感线越密,磁感应强度越大6.有关洛伦兹力和安培力的描述,正确的是()A.通电直导线在匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛伦兹力的宏观表现C.带电粒子在匀强磁场中运动受到的洛伦兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行7.教师在课堂上做了两个小实验,让小明同学印象深刻。
(重庆版)2014届高考物理(第02期)名校试题解析分项汇编 专题11 电磁感应(含解析)
![(重庆版)2014届高考物理(第02期)名校试题解析分项汇编 专题11 电磁感应(含解析)](https://img.taocdn.com/s3/m/d5bb42f304a1b0717fd5dd61.png)
专题11 电磁感应(解析版)重庆理综卷物理部分有其特定的题命模板,无论是命题题型、考点分布、模型情景等,还是命题思路和发展趋向方面都不同于其他省市的地方卷。
为了给重庆考区广大师生提供一套专属自己的复习备考资料,物理解析团队的名校名师们精心编写了本系列资料。
本资料以重庆考区的最新名校试题为主,借鉴并吸收了其他省市最新模拟题中对重庆考区具有借鉴价值的典型题,优化组合,合理编排,极限命制。
一、单项选择题1.【2014•重庆市杨家坪中学高三(上)入学考试】如图所示,矩形闭合线圈放置在水平薄板上,薄板左下方有一条形磁铁,当磁铁匀速自左向右通过线圈下方时,线圈始终保持静止,那么线圈中产生感应电流的方向(从上向下看) 和线圈受到薄板的摩擦力方向分别是( )A.感应电流的方向先逆时针方向,后顺时针方向 B.感应电流的方向先顺时针方向,后逆时针方向C.摩擦力方向先向左、后向右 D.摩擦力方向先向右、后向左2.【2014•重庆市杨家坪中学高三(上)入学考试】如图甲所示,直角三角形ABC是由同种金属材料制成的线框,线框位于跟有界匀强磁场垂直的平面内。
现用外力将线框ABC匀速向右拉进磁场,至AB边进入磁场前,设线框中产生的感应电动势为E、AB两点间的电势差为U、线框受安培力的合力为F、回路中消耗的电功率为P,如图乙所示中画出了上述各物理量与图示位移x的关系图象,则与这一过程相符合的图象是()3.【2013·重庆市铜梁中学高三(下)三月考试】在右图所示的电路中,电键S断开之前与断开之后的瞬间,通过灯A的电流方向是( ).A.一直是由a到b B.先是由a到b,后无电流C.先是由a到b,后是由b到a D.无法判断【答案】C【解析】试题分析: 开关S断开之前,通过灯A的电流方向为a到b;当开关断开后,A灯中原来的电流消失,通过线圈的电流要减小,穿过线圈的磁通量减小,产生自感电动势,根据楞次定律可知,线圈右端相当于电源的正极,左端相当于电源的负极,则通过灯A的电流方向由b 到a,选项A、B、D均错误.故选C。
2020人教版高中物理选修3-1专题11 磁场的性质、叠加及磁场对电流的作用力(解析版)
![2020人教版高中物理选修3-1专题11 磁场的性质、叠加及磁场对电流的作用力(解析版)](https://img.taocdn.com/s3/m/f68b683d48d7c1c709a1454e.png)
2021年高二期中期末考试试题汇编(选修3-1)专题11 磁场的性质、叠加及磁场对电流的作用力1.(多选)(2019-2020学年·青岛高二检测)将一小段通电直导线垂直磁场方向放入一匀强磁场中,下列图象能正确反映各量间关系的是()【答案】BC【解析】:磁感应强度B与F、I、L无关,是由磁场本身的性质决定的,故B正确,D错误;由F=BIL可知,在B一定时,F与IL成正比,故A错误,C正确.2.(2019-2020学年·河北省邯郸市高二上学期期末)相隔一定距离的电荷或磁体间的相互作用是怎样发生的?这是一个曾经使人感到困惑、引起猜想且有过长期争论的科学问题.19世纪以前,不少物理学家支持超距作用的观点.英国的迈克尔·法拉第于1837年提出了电场和磁场的概念,解释了电荷之间以及磁体之间相互作用的传递方式,打破了超距作用的传统观念.1838年,他用电力线(即电场线)和磁力线(即磁感线)形象地描述电场和磁场,并解释电和磁的各种现象.下列对电场和磁场的认识,正确的是()A.法拉第提出的磁场和电场以及电力线和磁力线都是客观存在的B.在电场中由静止释放的带正电粒子,一定会沿着电场线运动C.磁感线上某点的切线方向跟放在该点的通电导线的受力方向一致D.通电导体与通电导体之间的相互作用是通过磁场发生的【答案】D【解析】:电场和磁场均是客观存在的特殊物质;电场线和磁感线是人类为了形象地描述电场和磁场而引入的虚拟的线,实际中并不存在,故A错误;电荷的运动取决于初速度和力的方向,故电场线不是电荷在场中的轨迹.只有在点电荷的电场和匀强电场中由静止释放的带正电粒子,一定会沿着电场线运动,故B错误;磁感线上某点的切线方向是磁场的方向,通电导线的受力方向不是磁场的方向,故C错误;根据磁场的性质可知,通电导体与通电导体之间的相互作用是通过磁场发生的,故D正确.3.(多选)(2019-2020学年·贵州贵阳六中高二下学期月考)物理学中,通过引入检验电流了解磁场力的特性,对检验电流的要求是()A.将检验电流放入磁场,测量其所受的磁场力F、导线长度L和通电电流I,应用公式B=FIL,即可测得磁感应强度BB.检验电流不宜过大C.公式B=FIL只能应用于匀强磁场D .只要满足长度L 很短、电流很小、将其垂直放入磁场的条件,公式B =F IL对任何磁场都适用 【答案】BD【解析】:检验电流的方向要垂直于磁场的方向放置,故A 错误;用检验电流来了解磁场,要求检验电流对原来磁场的影响很小,可以忽略,所以导体长度L 应很短,电流应很小,垂直磁场方向放置,只要满足上述条件,磁感应强度的定义式B =F IL适用于所有磁场,故C 错误,B 、D 正确. 3.(2019-2020学年·浙江省温州九校高二上学期期末联考)关于磁感应强度,下列说法正确的是( )A .由真空中点电荷的电场强度公式E =k Q r 2可知,当r →0时,E →无穷大B .由B =F IL可知,某处的磁感应强度大小与放入该处的通电导线所受磁场力F 成正比,与导线的IL 成反比 C .小磁针N 极所受磁场力的方向就是该处磁感应强度的方向D .一小段通电导体在磁场中某处不受磁场力作用,则该处磁感应强度一定为零【答案】C【解析】:点电荷的电场强度公式E =k Q r 2适用于真空中、点电荷,当r →0时不满足点电荷的条件,所以不能直接使用,故A 错误;磁感应强度是描述磁场强弱和方向的物理量,是磁场本身性质的反映,其大小由磁场以及磁场中的位置决定,与F 、I 、L 都没有关系,B =F IL只是磁感应强度的定义式,故B 错误;根据磁场方向的规定可知,磁感应强度的方向就是该处小磁针N 极所受磁场力的方向,故C 正确;一小段通电导体在磁场中某处不受磁场力作用,可能是由于导线的方向与磁场的方向平行,该处磁感应强度不一定为零,故D 错误.4.(2019-2020学年·河南省中原名校(即豫南九校)高二下学期第一次联考)对磁现象的研究中有一种“磁荷观点”,人们假定,在N 极上聚集着正磁荷,在S 极上聚集着负磁荷,由此可以将磁现象与电现象类比,引入相似的概念,得出一系列相似的定律,例如磁的库仑定律,磁场强度等.在磁荷观点中磁场强度定义为:磁场强度的大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同,若用H 表示磁场强度,F 表示点磁荷所受磁场力,q m 表示磁荷量,则磁场强度可以表示为H =F q m.以下公式所采取的定义方法与磁场强度不相同的是 ( ) A .E =F q B .B =F IL C .C =Q U D .E =U d【答案】D【解析】:分析题意可知,磁场强度的定义方法为比值定义法,电场强度E =F q ,磁感应强度B =F IL,电容C =Q U ,均用到了比值定义来定义物理量,A 、B 、C 选项正确;匀强电场场强与电势差关系为U =Ed ,E =U d 不属于比值定义法,D 选项错误.5.(多选)(2019-2020学年·山东潍坊一中高二下学期检测)磁场中某区域的磁感线如图所示,下列说法中正确的是 ( )A .a 、b 两处的磁感应强度大小B a <B bB .a 、b 两处的磁感应强度大小B a >B bC .一通电直导线分别放在a 、b 两处,所受的安培力大小一定有F a <F bD .一通电直导线分别放在a 、b 两处,所受的安培力大小可能有F a >F b【答案】AD【解析】在磁场中,磁感线的疏密表示磁感应强度的强弱,分析可知,B a <B b ,A 选项正确,B 选项错误;一通电导线所受安培力的大小与导线的放置方向有关,故安培力的大小关系可能有F a <F b ,F a =F b ,也可能F a >F b ,C 选项错误,D 选项正确.6.(2019-2020学年·湖南师范大学附属中学高二上学期期末)两个完全相同的长导线,用其中一根绕成如图甲所示的螺线管,当该螺线管中通以电流强度为I 的电流时,测得螺线管内中部的磁感应强度大小为B ,若将另一根长导线对折后绕成如图乙所示的螺线管,并通以电流强度也为I 的电流时,则在螺线管中部的磁感应强度的大小为 ( )A .0B .0.5BC .BD .2B【答案】A【解析】:用双线绕成的螺线管,双线中的电流刚好相反,其在周围空间产生的磁场相互抵消.所以,螺线管内部磁感应强度为零,A 正确.7.(多选)(2019-2020学年·宁夏石嘴山第三中学高二上学期期末)如图所示,框架面积为S ,框架平面与磁感应强度为B 的匀强磁场方向垂直,则穿过平面的磁通量的情况是( )A .如图位置时等于BSB .若使框架绕OO ′转过60°角,磁通量为12BS C .若从初始位置转过90°角,磁通量变化量为零 D .若从初始位置转过180°角,磁通量变化量为零【答案】 AB【解析】如题图位置时,磁感线与框架平面垂直,Φ=BS ,A 正确;当框架绕OO ′轴转过60°时可以将原图改画成从上面向下看的俯视图,如图所示,所以Φ=BS ⊥=BS ·cos 60°=12BS ,B 正确;转过90°时,框架由与磁感线垂直穿过变为平行,穿过框架的磁通量变化了BS ,C 错误;框架转过180°时,磁感线仍然垂直穿过框架,只不过穿过方向改变了,因而Φ1=BS ,Φ2=-BS ,ΔΦ=|Φ2-Φ1|=2BS ,D 错误.8.(2019-2020学年·黑龙江大庆铁人中学高二下学期检测)关于磁通量的概念,以下说法中正确的是( )A .磁感应强度越大,穿过闭合回路的磁通量也越大B .穿过线圈的磁通量为零,但磁感应强度不一定为零C .磁通量发生变化,一定是磁场发生变化引起的D .磁感应强度越大,线圈面积越大,则磁通量也越大【答案】B【解析】:当回路与磁场平行时,没有磁感线穿过回路,则回路的磁通量Φ为零,这时磁感应强度越大,穿过闭合回路的磁通量不一定越大,故A 错误;磁通量Φ为零时,可能回路与磁场平行,则磁感应强度不一定为零,故B 正确;根据磁通量Φ=BS sin α,磁通量的变化可能由B 、S 、α的变化引起,故C 错误;磁感应强度越大,线圈面积越大,磁通量不一定越大,还与回路与磁场方向的夹角有关,故D 错误.9.(2019-2020学年·湖南省株洲市第一中学高二下学期月考)如图所示,四根完全相同的垂直于纸面放置的长直导线,其横截面分别位于正方形abcd 的四个顶点上,直导线分别通有方向垂直于纸面向外、大小分别为I a =I 0,I b =2I 0,I c =3I 0,I d =4I 0的恒定电流,已知通电长直导线周围距离导线为r 处磁场的磁感应强度大小为B =k I r,式中常量k >0,I 为电流大小,忽略电流间的相互作用,若电流I a 在正方形的中心O 点产生的磁感应强度大小为B ,则O 点处实际的磁感应强度大小及方向为( )A .10B ,方向垂直于纸面向里 B .10B ,方向垂直于纸面向外C .22B ,方向由O 点指向bc 中点D .22B ,方向由O 点指向ad 中点【答案】C【解析】:电流I a 在正方形的几何中心O 点处产生的磁感应强度大小为B ,根据B =k I r可知,电流I b 、I c 、I d 在O 点产生的磁感应强度大小分别为2B 、3B 、4B ,根据安培定则可知,电流I b 在中心O 点产生的磁感应强度方向由c 到a ,电流I c 在中心O 点产生的磁感应强度方向由d 到b ,电流I d 在中心O 点产生的磁感应强度方向由a 到c ,根据矢量的合成法则可知O 点处实际的磁感应强度大小为22B ,方向由O 点指向bc中点,C 选项正确.10.(2019-2020学年·西南交通大学附中高二下学期期中)已知长直线电流产生的磁场中某点的磁感应强度满足B =K I r(其中K 为比例系数,I 为电流强度,r 为该点到直导线的距离),如图所示,同一平面内有两根互相平行的长直导线甲和乙,通有大小均为I 且方向相反的电流,a 、O 两点与两导线共面,且a 点到甲的距离、甲到O 点的距离及O 点到乙的距离均相等.现测得O 点磁感应强度的大小为B 0=3 T ,则a 点的磁感应强度大小为( )A .1 TB.43 TC.32 T D .2 T【答案】A【解析】:O 点的合磁感应强度B 0=3 T ,导线甲、乙在O 点产生的磁感应强度大小相等,方向相同,均为1.5 T ,根据对称性,导线甲在a 点产生的磁感应强度为1.5 T ,方向垂直纸面向外,导线乙距a 点距离为距O 点距离的3倍,故产生的磁感应强度为0.5 T ,方向垂直纸面向里,则a 点的磁感应强度大小为1 T ,方向垂直纸面向外,A 选项正确.11.(2019-2020学年·云南省玉溪市元江一中高二下学期月考) 如图所示,两根相互平行的长直导线过纸面上的M 、N 两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a 、O 、b 在M 、N 的连线上,O 为MN 的中点,c 、d 位于MN 的中垂线上,且a 、b 、c 、d 到O 点的距离均相等.关于以上几点处的磁场,下列说法正确的是( )A .O 点处的磁感应强度为零B .a 、b 两点处的磁感应强度大小、相等、方向相反C .c 、d 两点处的磁感应强度大小、相等、方向相同D .a 、c 两点处的磁感应强度的方向不同【答案】C【解析】:由图可知.两导线在O 点的磁场方向相同,因此O 点磁感应强度不为零,故A 项错误;由图可知,a 、b 两点处磁感应强度大小、方向都相同,故B 项错误;由图可知,c 、d 两点处磁感应强度大小、方向都相同,故C 项正确;由图可知,O 、a 、b 、c 、d 五点处磁感应强度方向都相同,竖直向下,故D 项错误.12.(多选)(2019-2020学年·山东省潍坊市七中高二下学期检测)通电矩形导线框abcd 与无限长通电直导线MN 在同一平面内,电流方向如图所示,ab 边与MN 平行.关于MN 的磁场对线框的作用,下列叙述正确的是( )A .线框有两条边所受的安培力方向相同B .线框有两条边所受的安培力大小相同C .线框所受安培力的合力向左D .线框将绕MN 转动【答案】BC【解析】通电矩形线框abcd 在无限长直通电导线形成的磁场中,受到磁场力的作用,对于ad 边和bc 边,所在的磁场相同,但电流方向相反,所以ad 边、bc 边受磁场力(安培力)大小相同,方向相反,即ad 边和bc 边受合力为零.而对于ab 和cd 两条边,由于在磁场中,离长直导线的位置不同,ab 边近而且由左手定则判断受力向左,cd 边远而且由左手定则判断受力向右,所以ab 边、cd 边受合力方向向左,故B 、C 选项正确.13.(2019-2020学年·烟台二中期中)如图所示,在匀强磁场中,AB 为长度为L 、粗细均匀的金属丝,输出电压恒定的电源接A 、B 两端时,金属丝受到的安培力为F ;若将金属丝截取一半再弯成一个半圆形,仍然接在刚才的电源两端,则金属丝受到的安培力为( )A.F 4B.F 2C.2πFD.π2F 【答案】C【解析】由已知F =BIL ,弯成一个半圆形后,半圆的直径为d =2×L 2π=L π,即金属丝的有效长度为L ′=L π由分析知电流增大为2倍I ′=2I ,则F ′=BI ′L ′=2BI L π=2πBIL =2πF 故选C. 14.(2019-2020学年·重庆十八中期中)长度为L 、通有电流为I 的直导线放入一匀强磁场中,电流方向与磁场方向如图所示,已知磁感应强度为B ,对于下列各图中,导线所受安培力的大小计算正确的是( )【答案】A【解析】:A图中,导线不和磁场垂直,故将导线投影到垂直磁场方向上,故F=BIL cos θ,A正确;B图中,导线和磁场方向垂直,故F=BIL,B错误;C图中导线和磁场方向垂直,故F=BIL,C错误;D图中导线和磁场方向垂直,故F=BIL,D错误.15.(多选)(2019-2020学年·广东珠海一中期中)图甲是磁电式电流表的结构示意图,蹄形磁铁和铁芯间的磁场是辐向分布的,线圈中a、b两条导线的长均为L,通有方向如图乙所示的电流I,两条导线所在处的磁感应强度大小均为B.则()A.该磁场是匀强磁场B.线圈平面总与磁场方向垂直C.线圈将沿顺时针方向转动D.a、b导线受到的安培力的大小总为ILB【答案】CD【解析】:磁场是均匀地辐向分布,越接近转轴,磁场越强.磁感线始终与线圈平面平行,即始终与线圈边垂直,A、B错误;根据安培力公式知a、b导线受到的安培力的大小总为ILB,D正确;图示位置,a、b 导线受到的安培力的方向分别向上和向下,故线圈将沿顺时针方向转动,C正确.16.(2019-2020学年·泰安高二期中)如图所示,在天花板下用细线悬挂一半径为R的金属圆环,圆环处于静止状态,圆环一部分处在垂直于环面的磁感应强度大小为B的水平匀强磁场中,环与磁场边界交点A、B与圆心O连线的夹角为120°,此时悬线的张力为F.若圆环通电,使悬线的张力刚好为零,则环中电流大小和方向是()A.电流大小为3F3BR,电流方向沿顺时针方向B.电流大小为3F3BR,电流方向沿逆时针方向C.电流大小为3FBR,电流方向沿顺时针方向D.电流大小为3FBR,电流方向沿逆时针方向【答案】A【解析】:要使悬线拉力为零,则圆环通电后受到的安培力方向向上,根据左手定则可以判断,电流方向应沿顺时针方向,根据力的平衡F=BI·3R,求得I=3F3BR,故A正确,B、C、D错误.17.(2019-2020学年·湖南省娄底市娄星区高二下学期期中)如图所示为电流天平,可用来测定磁感应强度.天平的右臂上挂有一匝数为N 的矩形线圈,线圈下端在匀强磁场中,磁场方向垂直纸面向里.当线圈中通有电流I (方向如图)时,发现天平的右端低左端高,下列哪些调节方案可以使天平水平平衡( )A .仅减小电流大小B .仅增大线框的宽度lC .仅减轻左盘砝码的质量D .仅增加线圈的匝数【答案】A【解析】:天平左端高右端低,说明左端轻右端重,要使天平平衡,可以增加左盘砝码质量,也可以减小右盘砝码质量,选项C 错误;根据左手定则判断可知,线圈在磁场中受到竖直向下的安培力F =NBIl ,故也可以减小安培力,等效于减小右盘砝码质量,减小安培力可以采取减小电流大小,减小线框的宽度l 或者减少线圈的匝数,选项A 正确,B 、D 错误.18.(2019-2020学年·河南省洛阳市高二下学检测)如图所示,质量m =0.5 kg 、长L =1 m 的通电导体棒在安培力作用下静止在倾角为37°的光滑绝缘框架上,磁场方向垂直于框架向下(磁场范围足够大),右侧回路电源电动势E =8 V ,内电阻r =1 Ω,额定功率为8 W 、额定电压为4 V 的电动机正常工作(g =10 m/s 2),则( )A .回路总电流为2 AB .电动机的额定电流为4 AC .流经导体棒的电流为4 AD .磁感应强度的大小为1.5 T【答案】D【解析】:电动机的正常工作时,有P M =UI M 代入数据解得I M =2 A 通过电源的电流为I 总=E -U r =8-41A =4 A ,故A 、B 错误;导体棒静止在导轨上,由共点力的平衡可知,安培力的大小等于重力沿斜面向下的分力,即F =mg sin 37°=0.5×10×0.6 N =3 N 流过导体棒的电流I 为I =I 总-I M =4 -2 A =2 A .故C 错误; 由安培力的公式F =BIL 解得B =1.5 T ,故D 正确.19.(2019-2020学年·石家庄市高二上学期期末)质量为m =0.05 kg 的导电细杆ab 置于倾角为30°的平行放置的光滑导轨上,导轨宽为L =0.5 m ,杆ab 与导轨垂直,如图所示,匀强磁场垂直导轨平面且方向向下,磁感应强度为B =0.1 T .已知电源电动势E =15 V ,内阻r =1 Ω,导轨和细杆的电阻均忽略不计,g 取10 m/s 2.求:(1)当电阻R 取值为多少时,释放细杆后杆ab 保持静止不动;(2)当R =1 Ω时,释放细杆瞬间杆ab 的加速度是多大?【答案】 (1)2 Ω (2)2.5 m/s 2【解析】(1)ab 棒中的电流为I =E R +r. 根据共点力平衡可知mg sin θ=BIL .联立解得R =2 Ω.(2)ab 棒中的电流为I =E R +r=7.5 A. 根据牛顿第二定律得,BIL -mg sin θ=ma .联立解得a =2.5 m/s 2.20.(2019-2020学年·山东省潍坊一中高二下学期检测)如图所示,两根平行放置的导电轨道,间距为L ,倾角为θ,轨道间接有电动势为E (内阻不计)的电源,现将一根质量为m 、电阻为R 的金属杆ab 水平且与轨道垂直放置在轨道上,金属杆与轨道接触摩擦和电阻均不计,整个装置处在匀强磁场(磁场垂直于金属杆)中且ab 杆静止在轨道上,重力加速度为g .求:(1)若磁场竖直向上,则磁感应强度B 1是多少?(2)如果金属杆对轨道无压力,求匀强磁场的磁感应强度B 2.【答案】:(1)mgR tan θEL (2)mgR EL,方向水平向左 【解析】:(1)金属杆静止在导轨上,受到重力、支持力和安培力三个力作用,侧视图如图所示.由平衡条件得F =mg tan θ又F =B 1IL根据闭合电路欧姆定律I =E R以上各式联立解得E RLB 1=mg tan θ, 即B 1=mgR tan θEL. (2)金属杆ab 静止在斜面上且对斜面压力为零,则安培力F ′与重力G 构成一对平衡力,侧视图如图所示.因F ′=mg又F ′=B 2IL根据闭合电路欧姆定律I =E R以上各式联立解得E RLB 2=mg , 整理得B 2=mgR EL由左手定则知,匀强磁场的磁感应强度B 2的方向水平向左.。
2012高考专题11 带电粒子在磁场及复合场中的运动 【物理真题 分类汇编 精校版】
![2012高考专题11 带电粒子在磁场及复合场中的运动 【物理真题 分类汇编 精校版】](https://img.taocdn.com/s3/m/691dfb627e21af45b307a860.png)
N专题十一 带电粒子在磁场及复合场中的运动2012年高考题组1.(2012 全国)如图,两根互相平行的长直导线过纸面上的M 、N 两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。
a 、o 、b 在M 、N 的连线上,o 为MN 的中点,c 、d 位于MN 的中垂线上,且a 、b 、c 、d 到o 点的距离均相等。
关于以上几点处的磁场,下列说法正确的是( )A .o 点处的磁感应强度为零B .a 、b 两点处的磁感应强度大小相等,方向相反C .c 、d 两点处的磁感应强度大小相等,方向相同D .a 、c 两点处磁感应强度的方向不同2.(2012 天津)如图所示,金属棒MN 两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ,如果仅改变下列某一个条件,θ角的相应变化情况是( )A .棒中的电流变大,θ角变大B .两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D .磁感应强度变大,θ角变小3.(2012 海南)图中装置可演示磁场对通电导线的作用。
电磁铁上下两磁极之间某一水平面内固定两条平行金属导轨,L 是置于导轨上并与导轨垂直的金属杆。
当电磁铁线圈两端a 、b ,导轨两端e 、f ,分别接到两个不同的直流电源上时,L 便在导轨上滑动。
下列说法正确的是( )A .若a 接正极,b 接负极,e 接正极,f 接负极,则L 向右滑动B .若a 接正极,b 接负极,e 接负极,f 接正极,则L 向右滑动C .若a 接负极,b 接正极,e 接正极,f 接负极,则L 向左滑动D .若a 接负极,b 接正极,e 接负极,f 接正极,则L 向左滑动B4.(2012 北京)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圈周运动。
将该粒子的运动等效为环形电流,那么此电流值( )A .与粒子电荷量成正比B .与粒子速率成正比C .与粒子质量成正比D .与磁感应强度成正比 5.(2012 海南)如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里。
中考物理专题复习11:电磁感应(磁生电)
![中考物理专题复习11:电磁感应(磁生电)](https://img.taocdn.com/s3/m/2ab9803a366baf1ffc4ffe4733687e21af45ff29.png)
中考物理专题复习11:电磁感应(磁生电)20XX年中考物理专题复习11:电磁感应(磁生电)专题11 电磁感应(磁生电)典例1 电动机是一种高效、低污染的动力设备,广泛地应用研究在日常生活和生产实践中。
下列家用电器中应用到电动机的是()A.电热水器B.电饭锅C.洗衣机D.电热毯解析:电动机的工作特点是通电以后,电动机的转子会发生转动.所以要判断哪个用电器应用了电动机,就看哪个用电器通电以后,会发生转动。
洗衣机通电时,滚筒会发生转动,表明洗衣机内部有电动机,所以洗衣机应用了电动机;电热水器、电饭锅、电热毯通电时,电能转化为内能,它们是利用了电流的热效应。
本题答案为C.点评:电动机工作时的能量转化是电能转化为机械能,电热器工作时的能量转化是电能转化为热能,它们的能量转化截然不同,比较容易辨别。
典例2 微风吊扇通电后扇叶转动,此过程中能转化为动能.拔下插头,在插头处接发光二极管,用手旋转叶片,发光二极管发光,这是生电的现象,人们利用这一原理制成了(发电机/电动机).解析:吊扇工作时消耗电能,将电能转化为动能;用手旋转叶片时,线圈在磁场中做切割磁感线运动,产生了感应电流;感应电流通过发光二极管时,使发光二极管发光,此时的吊扇就是一个发电机。
20XX年中考物理专题复习11:电磁感应(磁生电)答案:电;磁;发电机点评:发电机主要是由线圈和磁体组成的,电动机的主要组成部分也是线圈和磁体,它们的工作原理不同,工作时的能量转换不同。
典例3 科学家经过长期研究,发现了电和磁有密切关系,其中最重要的两项研究如图所示,下列判断中不正确的是()A.左图是电动机的原理图B.右图是发电机的原理图C.在左图中,接通电源,导体ab上下运动D.在右图中,电路闭合,导体ab左右运动,电路中有感应电流解析:理解清楚教材中关于通电导体在磁场中受力和电磁感应的演示实验的装置图即可得到答案。
在左图中,闭合开关,电路中有电流,通电直导线在磁场中受力而运动;在右图中,没有电源,当导体在磁场中做切割磁感线运动时,通过电流表的指针是否偏转,来体现电路中是否产生感应电流,这是用来演示电磁感应现象的实验装置。
(完整word版)物理电磁场专题—磁场
![(完整word版)物理电磁场专题—磁场](https://img.taocdn.com/s3/m/6b42e57876c66137ef06192d.png)
磁场一、磁场对电流的作用1.一段长0.2 m ,通过2.5 A 电流的直导线,关于其在磁感应强度为B 的匀强磁场中所受安培力F 的情况,正确的是( )A .如果B =2 T ,F 一定是1 N B .如果F =0,B 也一定为零C .如果B =4 T ,F 有可能是1 ND .如果F 有最大值,则通电导线一定与B 平行 1.C2.有a 、b 、c 、d 四个小磁针,分别放置在通电螺线管的附近和内部,如图所示.其中小磁针的指向正确的是( ) A .aB .bC .cD .d2.D3.如图所示,一束带电粒子沿着水平方向平行地飞过小磁针的正上方时,磁针的S 极向纸内偏转,这一束带电粒子可能是 ( ) A .向右飞行的负离子 B .向左飞行的负离子 C .向右飞行的正离子D .向左飞行的正离子3.AD4.一条形磁铁放在水平桌面上,它的上方靠S 极一侧吊挂一根与它垂直的导电棒,图中只画出此棒的截面图,并标出此棒中的电流是流向纸内的,在通电的一瞬间可能产生的情况是( )A .磁铁对桌面的压力减小B .磁铁对桌面的压力增大C .磁铁受到向右的摩擦力D .磁铁受到向左的摩擦力 4.AD5.如图所示,金属棒MN 两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改变下列某一个条件,θ角的相应变化情况是( )A .棒中的电流变大,θ角变大B .两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D .磁感应强度变大,θ角变小5.A.6.如图所示,水平面上有电阻不计的U 形导轨NMPQ ,它们之间的宽度为L ,M 和P 之间接入电动势为E 的电源(不计内阻).现垂直于导轨搁一根质量为m ,电阻为R 的金属棒ab ,并加一个范围较大的匀强磁场,磁感应强度大小为B ,方向与水平面夹角为θ且指向右斜上方, ab 棒处于静止状态,求ab 棒受到的支持力和摩擦力各为多少?二、磁场对运动电荷的作用1.关于质子、α粒子、氘核等三种粒子的运动,下列判断正确的是( ) A .以相同速度垂直射入同一匀强磁场中时,做圆周运动的半径都相同。
磁场精选题目(含答案、解析)
![磁场精选题目(含答案、解析)](https://img.taocdn.com/s3/m/a8748618b42acfc789eb172ded630b1c59ee9b9a.png)
1.在如图所示的匀强电场和匀强磁场共存的区域内.在如图所示的匀强电场和匀强磁场共存的区域内((不计重力不计重力)),电子可能沿水平方向向右做直线运动的是,电子可能沿水平方向向右做直线运动的是( ( )解析:若电子水平向右运动,在A 图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B 图中,电场力水平向左,洛伦兹力为零,故电子可能水平向右做匀减速直线运动;在C 图中电场力竖直向下,洛伦兹力竖直向下,电子不可能向右做匀速直线运动;在D 图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B 正确.正确.答案:答案:B B2.2.如图所示,在长方形如图所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2/2==L ,一带电粒子,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将点射出;若撤去电场,则粒子将((重力不计重力不计)( )( )A .从b 点射出点射出B .从b 、P 间某点射出间某点射出C .从a 点射出点射出D .从a 、b 间某点射出间某点射出解析:由粒子做直线运动可知qv 0B =qE ;撤去磁场粒子从c 点射出可知qE =ma ,at =2v 0,v 0t =L ,所以撤除电场后粒子运动的半径r =mv 0qB =L 2. 3.如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁.如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r 相同,则它们一定具有相同的同,则它们一定具有相同的( ( ) A .动量.动量 B B.质量.质量.质量C .电荷量.电荷量D D D.比荷.比荷.比荷解析:离子流在区域Ⅰ中不偏转,一定是qE =qvB ,v =E B .进入区域Ⅱ后,做匀速圆周运动的半径相同,由r =mv qB知,因v 、B 相同,所以只能是比荷相同,故D 正确,正确,A A 、B 、C 错误.错误.4.(2012年合肥模拟年合肥模拟))两块金属板a 、b 平行放置,板间存在与匀强电场正交的匀强磁场,假设电场、磁场只存在于两板间的空间区域.一束电子以一定的初速度v 0从两极板中间,沿垂直于电场、磁场的方向射入场中,无偏转地通过场区,如图所示.已知板长l =10 cm 10 cm,两板间距,两板间距d =3.0 cm 3.0 cm,两板间电势差,两板间电势差U =150 V 150 V,,v 0=2.0×107 m/s. m/s.求:求:求:(1)(1)磁感应强度磁感应强度B 的大小;的大小;(2)(2)若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?((电子所带电荷量的大小与其质量之比e m =1.76×1011C/kg)解析:(1)(1)电子进入正交的电磁场不发生偏转,则满足电子进入正交的电磁场不发生偏转,则满足电子进入正交的电磁场不发生偏转,则满足Bev 0=e U dB =U v 0d=2.5×10-4T.(2)(2)设电子通过场区偏转的距离为设电子通过场区偏转的距离为y l =v 0t ,a =eU mdy =12at 2=12×eU md·(l v 0)2=1.1×10-2m. ΔE k =eEy =e U dy =8.8×10-18J =55 eV. [例1] 在平面直角坐标xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为磁感应强度为 B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半 轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求:轴射出磁场,如图所示.不计粒子重力,求:(1)M 、N 两点间的电势差UMN ;(2)(2)粒子在磁场中运动的轨道半径粒子在磁场中运动的轨道半径r ;(3)(3)粒子从粒子从M 点运动到P 点的总时间t .[思路点拨思路点拨] ] 根据粒子在不同区域内的运动特点和受力特根据粒子在不同区域内的运动特点和受力特点画出轨迹,分别利用类平抛和圆周运动的分析方法列方程求解.点画出轨迹,分别利用类平抛和圆周运动的分析方法列方程求解.[自主解答] (1)(1)设粒子过设粒子过N 点时的速度大小为点时的速度大小为 v ,有v 0v=cos θ,v =2v 0粒子从M 点运动到N 点的过程,有qu MN =12mv 2-12mv 20,U MN =3mv 202q . (2)(2)粒子在磁场中以粒子在磁场中以O ′为圆心做匀速运动,半径为O ′N ,有qvB =mv 22r ,r =2mv 0qB . (3)(3)由几何关系得由几何关系得ON =r sin θ设粒子在电场中运动的时间为t 1,有ON =v 0t 1t 1=3mqB粒子在磁场中做匀速圆周运动的周期T =2πm qB设粒子在磁场中运动的时间为t 2,有,有t 2=π-θ2πT ,故t 2=2πm 3qBt =t 1+t 2,t =33+2πm 3qB .1.如图所示.如图所示 ,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为d ,电场方向在纸平面内竖直向下,而磁场方向垂直于纸面向里,一带正电的粒子从O 点以速度v 0沿垂直电场方向进入电场,从A 点射出电场进入磁场,离开电场点时的速度方向一致,已知d 、v 0(带电粒子重力不计带电粒子重力不计)),求:,求:(1)(1)(1)粒子从粒子从C 点穿出磁场时的速度大小v ;(2)(2)电场强度电场强度E 和磁感应强度B 的比值E B .解析:(1)(1)粒子在电场中偏转时做类平抛运动,则粒子在电场中偏转时做类平抛运动,则粒子在电场中偏转时做类平抛运动,则垂直电场方向d =v 0t ,平行电场方向d 2=v y2t 得v y =v 0,到A 点速度大小为v =2v 0在磁场中速度大小不变,所以从C 点出磁场时速度大小仍为2v 0.(2)(2)在电场中偏转时,出在电场中偏转时,出A 点时速度与水平方向成45°45° v y =qE m t =qEd mv 0,并且v y =v 0得E =mv 20qd在磁场中做匀速圆周运动,如图所示在磁场中做匀速圆周运动,如图所示由几何关系得R =2d又qvB =mv 22R ,且v =2v 0 得B =mv 0qd 解得E B =v 0.[例2] 如右图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO ′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α.一质量为m 、带电荷量为+q 的圆环A 套在OO 圆′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α.现让圆环A 由静止开始下滑,试问圆环在下滑过程中:由静止开始下滑,试问圆环在下滑过程中:(1)(1)圆环圆环A 的最大加速度为多大?获得最大加速度时的速度为多大?的最大加速度为多大?获得最大加速度时的速度为多大?(2)(2)圆环圆环A 能够达到的最大速度为多大?能够达到的最大速度为多大?[思路点拨][自主解答] (1)(1)由于由于μ<tanα,所以环将由静止开始沿棒下滑.环A 沿棒运动的速度为v 1时,受到重力mg 、洛伦兹力qv 1B 、杆的弹力F N1和摩擦力F f 1=μF N1.根据牛顿第二定律,对圆环A 沿棒的方向:沿棒的方向:mg sin α-F f 1=ma垂直棒的方向:F N1+qv 1B =mg cos α所以当F f 1=0(0(即即F N1=0)0)时,时,a 有最大值a m ,且a m =g sin α此时qv 1B =mg cos α解得:v 1=mg cos αqB. (2)(2)设当环设当环A 的速度达到最大值v m 时,环受杆的弹力为F N2,摩擦力为F f 2=μF N2.此时应有a =0,即mg sin α=F f 2在垂直杆方向上:F N2+mg cos α=qv m B解得:v m =mg sin α+μcos αμqB. 2.如图所示,套在很长的绝缘直棒上的小球,质量为 1.0×10-4 kg ,带 4.0×10-4 C 正电荷,小 球在棒上可以滑动,将此棒竖直放置在沿水平方向的匀强电场和球在棒上可以滑动,将此棒竖直放置在沿水平方向的匀强电场和匀强磁场中.匀强电场的电场强度E =10 N/C 10 N/C,方向水平向右,,方向水平向右,,方向水平向右,匀强磁场的磁感应强度B =0.5 T 0.5 T,方向为垂直纸面向里,小球与棒,方向为垂直纸面向里,小球与棒,方向为垂直纸面向里,小球与棒间动摩擦因数为μ=0.20.2,求小球由静止沿棒竖直下落的最大加速度,求小球由静止沿棒竖直下落的最大加速度,求小球由静止沿棒竖直下落的最大加速度和最大速度.和最大速度.((设小球在运动过程中所带电荷量保持不变,g 取10 m/s2)解析:带电小球沿绝缘棒下滑过程中,受竖直向下的重力,竖直向上的摩擦力,水平方向弹力和洛伦兹力及电场力作用.当小球静止时,弹力等于电场力,小球在竖直方向所受摩擦力最小,小球加速度最大,小球运动过程中,弹力等于电场力与洛伦兹力之和,随着小球运动速度的增大,小球所受洛伦兹力增大,小球在竖直方向的摩擦力也随之增大,小球加速度减小,速度增大,当球的加速度为零时,速度达最大.小球刚开始下落时,加速度最大,设为a m ,这时竖直方向有mg -F f =ma ①在水平方向上有qE -F N =0②又F f =μF N ③由①②③解得a m =mg -μqE m,代入数据得a m =2 m/s 2. 小球沿棒竖直下滑,当速度最大时,加速度a =0在竖直方向上mg -F ′f =0④在水平方向上qv m B +qE -F N ′=′=00⑤又F ′f =μF N ′⑥′⑥ 由④⑤⑥解得v m =mg -μqE μqB, 代入数据得v m =5 m/s.[例3] 如图所示 ,在磁感应强度为B 的匀强磁场中,有一与磁感线垂直且水平放置的、长为L 的摆线,拴一质量为m 、带有+q 电荷量的摆球,若摆球始终能在竖直平面内做圆弧运动.试求 摆球通过最低位置时绳上的拉力F 的大小.的大小.[思路点拨思路点拨] ] 解答此题应把握以下两点:解答此题应把握以下两点:(1)(1)弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.(2)(2)在最低点应用牛顿第二定律求解.在最低点应用牛顿第二定律求解.在最低点应用牛顿第二定律求解.[自主解答] 以摆球为研究对象.以摆球为研究对象.根据机械能守恒定律得:mgL =12mv 2m , 当向左摆动,到最低点速度向左时F 洛的方向向下.的方向向下.由牛顿第二定律得:F -mg -F 洛=mv 2m /L ,且:F 洛=qv m B ,联立以上各式解得:F =3mg +qB 2gL .当向右摆动,到最低点的速度向右时,F 洛的方向则向上.的方向则向上.由牛顿第二定律得:F +F 洛-mg =mv 2m /L ,联立解得:F =3mg -qB 2gL .3.在竖直平面内半圆形光滑绝缘管处在如图所示的匀强磁场中,B =1.1 T ,半径R =0.8 m ,其直径AOB 在竖直线上.圆环平面与磁场方向垂直,在管口A 处以2 m/s 水平速度射入一个直径略小于管内径的带电小球,其电荷量为+10-4 C ,问:(1)小球滑到B 处的速度为多少?(2)若小球从B 处滑出的瞬间,管子对它的弹力恰好为零,小球质量为多少?(g =10 m/s2)解析:(1)(1)小球从小球从A 到B ,利用动能定理得,利用动能定理得mg 2R =12mv 2B -12mv 2A得v B =v 2A +4gR =22+4×10×0.8+4×10×0.8 m/s m/s m/s==6 m/s. (2)(2)在在B 点,小球受到的洛伦兹力方向指向圆心,由于小球做圆周运动,所以有qv B B -mg =mv 22B R 即:即:1010-4×6×1.1-×6×1.1-1010m =36m 0.8得m =1.2×10--55 kg.2.(2012年淮北模拟年淮北模拟))如图所示,空间存在正交的匀强电场和匀强磁场,匀强电场方向竖直向上,匀强磁场的方向垂直纸面向里.有一内壁光滑、底部有带正电小球的试管.在水平拉力F 作用下,试管向右匀速运动,带电小球能从试管口处飞出.口处飞出.已知小球质量为已知小球质量为m ,带电量为q ,场强大小为E =mg q.关于带电小球及其在离开试管前的运动,关于带电小球及其在离开试管前的运动,下列说法中不下列说法中不正确的是正确的是( ( )A .洛伦兹力对小球不做功.洛伦兹力对小球不做功B .洛伦兹力对小球做正功.洛伦兹力对小球做正功C .小球的运动轨迹是一条抛物线.小球的运动轨迹是一条抛物线D .维持试管匀速运动的拉力F 应逐渐增大应逐渐增大解析:洛伦兹力方向始终与小球运动速度方向垂直,不做功,故A 正确、正确、B B 错误;小球在竖直方向受向上的电场力与向下的重力,二者大小相等,试管向右匀速运动,小球的水平速度保持不变,则竖直向上的洛伦兹力分量大小不变,小球竖直向上做匀加速运动,即小球做类平抛运动,故C 正确;小球竖直分速度增大,受水平向左的洛伦兹力分量增大,为维持试管匀速运动拉力F 应逐渐增大,应逐渐增大,D D 正确.正确.答案:答案:B B3.(2012年铜陵模拟年铜陵模拟))如图所示的装置,左半部分为速度选择器,右半部分为匀强的偏转电场.一束同位素离子流从狭缝S 1射入速度选择器,能够沿直线通过速度选择器并从狭缝S 2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E 的偏转电场,最后打在照相底片D 上.已知同位素离子的电荷量为q (q >0)>0),速度选择器内部存在着相互垂,速度选择器内部存在着相互垂直的场强大小为E 0的匀强电场和磁感应强度大小为B 0的匀强磁场,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.忽略重力的影响.(1)(1)求从狭缝求从狭缝S 2射出的离子速度v 0的大小;(2)(2)若打在照相底片上的离子在偏转电场中沿速度若打在照相底片上的离子在偏转电场中沿速度v 0方向飞行的距离为x ,求出x 与离子质量m 之间的关系式之间的关系式((用E 0、B 0、E 、q 、m 、L 表示表示)).解析:(1)(1)能从速度选择器射出的离子满足能从速度选择器射出的离子满足能从速度选择器射出的离子满足qE 0=qv 0B 0①故v 0=E 0B 0② (2)(2)离子进入匀强偏转电场离子进入匀强偏转电场E 后做类平抛运动,则后做类平抛运动,则x =v 0t ③L =12at 22④ 由牛顿第二定律得qE =ma ⑤由②③④⑤解得x =E 0B 0 2mL qE4.(2010年高考课标全国卷年高考课标全国卷))如图所示,在0≤x ≤a 、0≤y ≤a2范围内垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0~90°范围内.已知粒子在磁场中做圆周运动的半径介于a /2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的磁场的粒子从粒子源射出时的(1)(1)速度的大小;速度的大小;速度的大小;(2)(2)速度方向与速度方向与y 轴正方向夹角的正弦.轴正方向夹角的正弦.解析:(1)(1)设粒子的发射速度大小为设粒子的发射速度大小为v ,粒子做圆周运动的轨道,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦兹力公式得:,由牛顿第二定律和洛伦兹力公式得: qvB =mv 2R① 由①式得R =mv qB ②当a 2<R <a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的上边界相切,如图所示.的圆弧,圆弧与磁场的上边界相切,如图所示. 设该粒子在磁场中运动的时间为t ,依题意t =T 4,得,得 ∠OCA =π2③设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得,由几何关系得R sin α=R -a 2④ R sin α=a -R cos α⑤又sin 2α+cos 2α=1⑥由④⑤⑥式得R =(2(2--62)a ⑦ 由②⑦式得v =(2(2--62)aqB m(2)(2)由④⑦式得:由④⑦式得:由④⑦式得:sin sin α=6-610. [例1] 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m =108C/kg C/kg,不计粒子重,不计粒子重力.(1)(1)求粒子在磁场中做匀速圆周运动的半径;求粒子在磁场中做匀速圆周运动的半径;(2)(2)若要使粒子飞离磁场时有最大偏转角,若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.及粒子的最大偏转角.[解析] (1)(1)粒子射入磁场后,由于不计重力粒子射入磁场后,由于不计重力粒子射入磁场后,由于不计重力,,所以洛伦兹力提供圆周运动需要的向心力,根据牛顿第二定律有:qv 0B =m v 220R , R =mv 0qB =5×10-2m. (2)(2)粒子在圆形磁场区域运动轨迹为一段半径粒子在圆形磁场区域运动轨迹为一段半径R =5 cm 的圆弧,要使偏转角最大,就要求这段圆弧对应的弦最长,即为圆形区域的直径,粒子运动轨迹的圆心O ′在ab 弦中垂线上,如上图所示.由几何关系可知:知:sin θ=r R =0.60.6,,θ=37°=37°最大偏转角β=2θ=74°.=74°.[例2] 如图所示,半径为r =0.1 m 的圆形匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感应强度B = 0.332 T 方,方向向垂直纸向面向里里.在O 有处有一一射放射源源,可沿纸向面向各各方个方向向射出速率均为v =3.2×106 m/s 的α粒子.已知α粒子质量m =6.646.64××1010--27kg 27kg,电荷量,电荷量q =3.23.2××1010--19C 19C,不计,不计α粒子的重力.求α粒子在磁场中运动的最长时间.动的最长时间.m v R 得=mv =粒子在磁场中运动的圆弧所对应的弦长最长,从右图可以看出,粒子在磁场中运动的时间最长.粒子在磁场中运动的时间最长.=2πm qB ,运动时间=2θ2π·=r R =y 轴上的a 点射入右图中第可在适当的地方加一个垂直于的匀强磁场,若此磁场分布在一个圆形区域内,试求这个圆形磁场区域的最小面积.的匀强磁场,若此磁场分布在一个圆形区域内,试求这个圆形磁场区域的最小面积.[解析] 质点在磁场中做半径为=mv 0qB 的圆周运动,根据题意,质点在磁场区域中的轨道为半径等于的圆上的的圆上的113圆周,这段圆弧应与入射方向的速度,出射方向的速度相切,如右图所示.则到入射方向所在直线和出射方向所在直线相距为R 的O ′点就是圆周的圆心.质点在磁场区域中的轨道就是以和f 点应在所求圆形磁场区域的边界上,在通过即得圆形磁场区域的最小半径sin 60°=3mv 02qB=34π(mv 0qB )。
磁场-磁感应强度-磁感线知识点讲解(含答案)
![磁场-磁感应强度-磁感线知识点讲解(含答案)](https://img.taocdn.com/s3/m/1cc0d862842458fb770bf78a6529647d27283411.png)
磁场 磁感应强度 磁感线知识点讲解(教师)一、磁场1.定义:是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质。
2.基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。
3.方向:小磁针N 极所受磁场力的方向,即小磁针静止时N 极的指向就是那一点磁场的方向。
4.安培分子电流假说(1)内容:在原子、分子等物质微粒的内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。
(2)该假说能够解释磁化、去磁等现象。
(3)分子电流的实质是原子内部带电粒子在不停地运动。
磁场的电本质:一切磁现象都是起源于电荷的运动。
【题1】(多选)指南针是我国古代四大发明之一.关于指南针,下列说法正确的是 A .指南针可以仅具有一个磁极B .指南针能够指向南北,说明地球具有磁场C .指南针的指向会受到附近铁块的干扰D .在指针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏转 【答案】AC【解析】指南针有N 、S 两个磁极,受到地磁场的作用静止时N 极指向北方,选项A 错误,B 正确。
指南针有磁性,可以与铁块相互吸引,选项C 正确。
由奥斯特实验可知,小磁针在通电导线放置位置合适的情况下,会发生偏转,选项D 错误。
二、磁感应强度1.磁感应强度(1)物理意义:表示磁场强弱的物理量。
是反映磁场性质的物理量,由磁场本身决定,是用比值法定义的(2)定义:在磁场中垂直磁场方向的通电导线,受到的安培力跟电流强度和导线长度乘积比值。
(3)定义式:ILFB(通电导线垂直于磁场)。
(4)矢量性:方向为该点的磁场方向,即通过该点的磁感线的切线方向。
小磁针的N 极所受磁场力的方向,即小磁针静止时N 极的指向就是那一点磁场的方向。
【题2】如图,一束电子沿某坐标轴运动,在x 轴上的A 点处产生的磁场方向沿z 轴正方向,则该束电子的运动方向A .z 轴正方向B .z 轴负方向C .y 轴正方向D .y 轴负方向 【答案】C(6)单位:特斯拉T 1 T =1 N/(A·m )=1 kg/(A·s 2) 2.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场。
专题11线框在磁场中的运动问题
![专题11线框在磁场中的运动问题](https://img.taocdn.com/s3/m/80244d2c4693daef5ff73d68.png)
专题十一、线框在磁场中的运动问题问题分析线框在磁场中的运动问题是电磁感应泄律的具体应用问题,是历年髙考考査的重点和难点,具有很强的综合性,线框进出磁场过程可以分为三个阶段:“进磁场”阶段、“在磁场中平动”阶段、'‘出磁场”阶段.不同的阶段,线框的运动规律不同,分析问题时需要区別对待,当然,这里的线框可以是矩形的,可以是圆形的,也可以是扇形或三角形的,还可以是其他形状的.线框在磁场中的运动问题,需要考虑两方面:一方而是电磁学的有关规律,即法拉第电磁感应左律、楞次泄律、左手定则、右手立则、安培力的计算公式等;另一方面是电磁学与力学的综合,线框在磁场中的运动透视的解题思路如下:⑴分析线框的运动情况,判断闭合回路中电磁感应情况,根据相关规律求岀电源电动势和电源内阻:(2)分析电路结构,求岀电路的息电阻和相关的电阻,再求出电路中的电流和安培力:(3)分析线框中切割磁感线的边的受力情况,求岀合力:(4)结合电磁学与力学的相关规律,判断出线框的具体运动规律:(5)根据能量守恒与转化的关系,分析题目所要求的相关问题.透视1考查线框在饌场中的摆动问题线框系在细线的一端,细线的另一端固定在某一点,线框由于某种原因在磁场中来回摆动,在摆动的过程中,线框切割磁感线,线框中有感应电动势和感应电流产生.这类试题一般需要考生判断感应电动势的大小、感应电流的大小和方向、安培力的大小和方向等.可以利用楞次泄律和右手左则判断感应电流的方向,利用左手左则判断安培力的方向,在运用楞次圮律时,一左要注意该立律中"阻碍”的含义.【题1]如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为加、阻值为R的闭合矩形金属线框用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位宜静I上开始释放,在摆动到左侧最髙点的过程中,细杆和金属线框平面始终处于同一平而,且垂直纸面.则线框中感应电流的方向是 ()A. a — bfCfd — aB・dfc — bfa — dC・先是d — c〜b — a — d , 后是d〜b — c — d —Q2D.先是 d 后是〃 — cfb — d — 〃【解析】在闭合线框从右端摆动到最低点这一过程中,穿过线框的磁感线逐渐减少,根据楞 次泄律可知,线框中产生感应电流以阻碍原磁场的减少,故线框中感应电流的方向为d-C m :在闭合线框从最低点摆动到茨左端这一过程中,穿过线框的磁感线逐渐增多, 根据楞次定律可知,线框中产生感应电流以阻碍原磁场的增多,故线框中感应电流的方向为 d — e — bfa — d,由以上分析可知,线框中感应电流的方向为d f c — b — Q f (I , B 正 确,A 、C> D 错误.透视2考查线框在蹑场中的旋转问题线框绕某一点在磁场中做圆周运动,即绕某点旋转,线框会切割磁感线,产生感应电流, 这与交流电的产生原理有点相似.这类问题,可以与交变电流的相关知识结合,考查考生对 知识的整合能力,【题2】如图所示的区域内有垂直于纸面的匀强磁场,磁感应强度为〃.电阻为人、半径为 L 、圆心角为45。
专题11 质谱仪(解析版)
![专题11 质谱仪(解析版)](https://img.taocdn.com/s3/m/bb4b511ef90f76c660371a8e.png)
专题十一质谱仪基本知识点质谱仪是一种精密仪器,是测量带电粒子的质量和分析同位素的重要工具:一个质量为m、电荷量为q的粒子,从容器A下方的小孔S1飘入电势差为U的加速电场,其初速度几乎为零,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上(如图).则粒子进入磁场时的速率为v=2qUm,在磁场中运动的轨道半径为r=1B 2mUq.例题分析一、质谱仪的工作原理例1质谱仪原理如图所示,a为粒子加速器,电压为U1;b为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;c为偏转分离器,磁感应强度为B2.今有一质量为m、电荷量为e的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动.求:(1)粒子的速度v为多少?(2)速度选择器的电压U2为多少?(3)粒子在B2磁场中做匀速圆周运动的半径R为多大?(对应训练一)如图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场的磁感应强度和匀强电场的场强分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( )A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于E BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小(对应训练二)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示,离子源S 产生的各种不同正离子束(速度可看为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S 1的距离为x ,可以判断( )A .若离子束是同位素,则x 越大,离子质量越大B .若离子束是同位素,则x 越大,离子质量越小C .只要x 相同,则离子质量一定相同D .只要x 相同,则离子的比荷一定相同二、质谱仪的应用例2 如图所示为质谱仪的原理图,M 为粒子加速器,电压为U 1=5000V ;N 为速度选择器,磁场与电场正交,磁感应强度为B 1=0.2T ,板间距离为d =0.06m ;P 为一个边长为l的正方形abcd的磁场区,磁感应强度为B2=0.1T,方向垂直纸面向外,其中dc的中点S开有小孔,外侧紧贴dc放置一块荧光屏.今有一比荷为qm=108C/kg的正离子从静止开始经加速后,恰好通过速度选择器,从a孔以平行于ab方向进入abcd磁场区,正离子刚好经过小孔S打在荧光屏上.求:(1)粒子离开加速器时的速度v;(2)速度选择器的电压U2;(3)正方形abcd边长l.(对应训练一)质谱仪是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力)经同一电场加速后垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子的质量.其工作原理如图所示,虚线为某粒子的运动轨迹,由图可知()A.此粒子带负电B.下极板S2比上极板S1电势高C.若只增大加速电压U,则半径r变大D.若只增大入射粒子的质量,则半径r变小(对应训练二)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为()A.11 B.12 C.121 D.144专题训练1.如图所示,粒子源P会发出电荷量相等的带电粒子。
专题11 电磁感应定律及其应用【测】解析版-2021年高考物理二轮复习讲练测
![专题11 电磁感应定律及其应用【测】解析版-2021年高考物理二轮复习讲练测](https://img.taocdn.com/s3/m/dc6a78e131126edb6e1a1030.png)
第四部分电磁感应与电路专题11电磁感应定律及其应用(测)(满分:100分建议用时:60分钟)姓名:_______________________班级:______________________得分:_____________________一.选择题:本题共12小题,每小题6分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.(2021·云南保山模拟)如图甲所示,在光滑水平面上,一个正方形闭合线框abcd 在水平外力的作用下,从静止开始沿垂直磁场边界方向直线穿过匀强磁场.线框中产生的感应电流i 和运动时间t 的变化关系如图乙中的实线所示,则线框边长与磁场宽度(两边界之间的距离)的比值为()A .1∶2B .1∶3C .3∶5D .3∶8【答案】D.【解析】:由法拉第电磁感应定律和闭合电路欧姆定律有I =BLv R,则题给图象可知,线框的运动为初速度为零的匀加速直线运动,设其加速度a ,则线框刚进入磁场时的速度为2a ,然后以该速度切割磁感线产生感应电流,若设线框边长为L ,磁场宽度为d ,则图象中有电流的时间,即线框的右边刚进入磁场到线框全部进入磁场的过程中有L =2a +4a 2×2,从线框全部进入磁场到线框右边到达磁场右边界的过程,没有电流产生,有d -L =4a +6a 2×2,以上二式联立解得L d =38,选项D 正确.2.(2020·浙江嘉兴一中测试)如图所示为安检门原理图,左边门框中有一通电线圈,右边门框中有一接收线圈.工作过程中某段时间通电线圈中存在顺时针方向均匀增大的电流,则()A.无金属片通过时,接收线圈中的感应电流方向为顺时针B.无金属片通过时,接收线圈中的感应电流增大C.有金属片通过时,接收线圈中的感应电流方向为顺时针D.有金属片通过时,接收线圈中的感应电流大小发生变化【答案】D.【解析】:当左侧通电线圈中存在顺时针方向均匀增大的电流时,通过右侧线圈的磁通量增大,根据楞次定律可以知道,右侧线圈产生的感应电流方向为逆时针,由于磁场是均匀增大,则产生的感应电流为恒定的,故A、B错误;当有金属片通过时,接收线圈中磁通量仍然增大,故产生的感应电流方向仍然为逆时针,但是由于金属片中也要产生感应电流,所以接收线圈中的感应电流大小发生变化,故C错误,D正确.3.(2020·湖南长沙模拟)自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向,然后是顺时针方向的感应电流B.先是顺时针方向,然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流【答案】C.【解析】:N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针,因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.4.(2020·江苏南京模拟)如图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动【答案】A.【解析】:根据右手螺旋定则可知导线上方的磁场方向垂直于纸面向外,下方的磁场方向垂直于纸面向里,而且越靠近导线磁场越强,所以闭合导线框ABC在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当增大到BC边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,当增大到A点与导线重合时,达到最大,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,所以根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向里,再向外,最后向里,所以导线框中感应电流的方向依次为ACBA→ABCA→ACBA,A正确;当导线框内的磁通量为零时,内部的磁通量仍然在变化,有感应电动势产生,所以感应电流不为零,B错误;根据对楞次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上,不为零,C、D错误.5.(2020·长兴中学高三模拟)1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲).它是利用电磁感应原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C、D分别与转动轴和铜盘的边缘良好接触.使铜盘转动,电阻R中就有电流通过.若所加磁场为匀强磁场,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,CRD平面与铜盘平面垂直,下列说法正确的是()A .电阻R 中没有电流流过B .铜片C 的电势高于铜片D 的电势C .保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生D .保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则CRD 回路中有电流产生【答案】C.【解析】:根据右手定则可知,电流从D 点流出,流向C 点,因此在圆盘中电流方向为从C 向D ,由于圆盘在切割磁感线时相当于电源,所以D 处的电势比C 处高,A 、B 错误;保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则穿过铜盘的磁通量发生变化,故铜盘中有感应电流产生,但是此时不再切割磁感线,所以CD 不能当成电源,故CRD 回路中没有电流产生,C 正确,D 错误.6.(2020·山东济南市3月模拟)在如图甲所示的电路中,螺线管匝数n =1000匝,横截面积S =20cm 2.螺线管导线电阻r =1.0Ω,R 1=4.0Ω,R 2=5.0Ω,C =30μF.在一段时间内,垂直穿过螺线管的磁场的磁感应强度B 的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是()A .螺线管中产生的感应电动势为1.2VB .闭合K ,电路中的电流稳定后,电容器的下极板带负电C .闭合K ,电路中的电流稳定后,电阻R 1的电功率为2.56×10-2WD .闭合K ,电路中的电流稳定后,断开K ,则K 断开后,流经R 2的电荷量为1.8×10-2C 【答案】C 【解析】根据法拉第电磁感应定律:E =n ΔΦΔt =nS ΔB Δt,解得:E =0.8V ,故A 错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端相当于电源的正极,则电容器的下极板带正电,故B 错误;根据闭合电路欧姆定律,有:I =E R 1+R 2+r=0.08A ,根据P =I 2R 1,解得:P =2.56×10-2W ,故C 正确;K 断开后,流经R 2的电荷量即为K 闭合时电容器一个极板上所带的电荷量Q ,电容器两端的电压为:U =IR 2=0.4V ,流经R 2的电荷量为:Q =CU =1.2×10-5C ,故D 错误.7.(2020·山东烟台一模)如图甲所示,间距L =0.2m 的水平金属导轨CD 、EF 固定在水平地面上,一质量m =4×10-3kg 的金属棒GH 垂直地放置导轨上,导轨处于沿水平方向、磁感应强度B 1=0.2T 的匀强磁场中。
2020-2022年高考物理真题分专题训练 专题11 磁场(学生版)
![2020-2022年高考物理真题分专题训练 专题11 磁场(学生版)](https://img.taocdn.com/s3/m/df7da9a41b37f111f18583d049649b6648d7097e.png)
10、(2022·湖北·T11)如图所示,两平行导轨在同一水平面内。一导体棒垂直放在导轨上,棒与导轨间的动摩擦因数恒定。整个装置置于匀强磁场中,磁感应强度大小恒定,方向与金属棒垂直、与水平向右方向的夹角θ可调。导体棒沿导轨向右运动,现给导体棒通以图示方向的恒定电流,适当调整磁场方向,可以使导体棒沿导轨做匀加速运动或匀减速运动。已知导体棒加速时,加速度的最大值为 g;减速时,加速度的最大值为 g,其中g为重力加速度大小。下列说法正确的是( )
专题11磁场
【2022年高考题组】
1、(2022·湖南卷·T3)如图(a),直导线MN被两等长且平行的绝缘轻绳悬挂于水平轴OO′上,其所在区域存在方向垂直指向OO′的磁场,与OO′距离相等位置的磁感应强度大小相等且不随时间变化,其截面图如图(b)所示。导线通以电流I,静止后,悬线偏离竖直方向的夹角为θ。下列说法正确的是()
A.棒与导轨间的动摩擦因数为
B.棒与导轨间的动摩擦因数为
C.加速阶段加速度大小最大时,磁场方向斜向下,θ=60°
D.减速阶段加速度大小最大时,磁场方向斜向上,θ=150°
11、(2022·浙江1月卷·T22)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11 磁场(1)-高考物理精选考点专项突破题集一、单项选择题:(在每小题给出的四个选项中,只有一项符合题目要求)1、超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术。
磁体悬浮的原理是()①超导体电流的磁场方向与磁体的磁场方向相同②超导体电流的磁场方向与磁体的磁场方向相反③超导体使磁体处于失重状态④超导体对磁体的磁力与磁体的重力相平衡A.①③B.①④C.②③D.②④【答案】D【解析】超导体中产生的是感应电流,根据楞次定律的“增反减同”原理,这个电流的磁场方向与原磁场方向相反,对磁体产生排斥作用力,这个力与磁体的重力达平衡,因此选项D正确。
故本题选D。
【考点】磁场的应用性【难度】中等2、中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。
”进一步研究表明,地球周围地磁场的磁感线分布示意如图。
结合上述材料,下列说法不正确的是()A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用【答案】C【解析】根据题意知地理南北极与地磁场存在一个夹角叫磁偏角,两者不重合,因此选项A正确。
地磁南极在地理的北极附近,地磁北极在地理南极附近,因此选项B正确。
由于地磁场磁场方向沿磁感线切线方向,故只有赤道处才与地面平行,因此选项C错误。
在赤道处磁场方向水平,而射线是带电的粒子,运动方向垂直磁场方向,根据左手定则可得射向赤道的粒子受到洛伦兹力作用,因此选项D正确。
故本题选C。
【考点】地磁场【难度】中等3、如图所示,一根通电直导线垂直放在磁感应强度为1T的匀强磁场中。
在以导线截面的中心为圆心,r为半径的圆周上有a、b、c、d四个点。
已知a点的实际磁感应强度为0,则下列正确的是()A.直导线中的电流方向垂直纸面向外B.b点的实际磁感应强度为 2 T,方向斜向上,与B的夹角为45°C.c点的实际磁感应强度也为0D.d点的实际磁感应强度与b点相同【答案】B【解析】a点的磁感应强度为0,说明通电导线在a点产生的磁场方向水平向左,由安培定则知直导线中的电流方向垂直纸面向里,因此选项A错误。
通电导线在b处的磁场水平向右和竖直向上,合磁场大小 2 T,方向斜向右上方,与B的夹角为45°,因此选项B正确。
c处的合磁场方向水平向右,大小为2T。
因此选项C错误。
d处的合磁场大小是 2 T,方向右下方,b、d两点方向不同,因此选项D错误。
故本题选B。
【考点】磁感应强度的叠加【难度】中等4、如图所示,a为带正电的小物块,b是一不带电的绝缘物块(设a、b间无电荷转移),a、b叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场。
现用水平恒力F拉b物块,使a、b一起无相对滑动地向左加速运动,则在加速运动阶段()A.a对b的压力不变B.a、b一起做匀加速直线运动C.a、b物块间的摩擦力变小D.a、b物块间的摩擦力不变【答案】C【解析】a受的洛伦兹力向下,a对b的压力增大,因此选项AB都错误。
对a、b整体分析当F洛变大时,整体滑动摩擦力变大,整体加速度会减小。
因此选项B错误。
再隔离a分析,水平方向a只受a、b间的静摩擦力,加速度减小,此静摩擦力减小。
因此选项C周期D错误。
故本题选C。
【考点】洛伦兹力,连接体【难度】中等5、如图所示,在竖直虚线MN和M′N′之间区域内存在着相互垂直的匀强电场和匀强磁场。
一带电粒子(不计重力)以初速度v0由A点进入这个区域,带电粒子沿直线运动,并从C点离开场区。
如果撤去磁场,该粒子将从B点离开场区;如果撤去电场,该粒子将从D点离开场区。
则下列判断正确的是()A.该粒子由B、C、D三点离开场区时的动能相同B.该粒子由A点运动到B、C、D三点的时间均不相同C.匀强电场的场强E与匀强磁场的磁感应强度B之比EB=v0D.若该粒子带负电,则电场方向竖直向下,磁场方向垂直于纸面向外【答案】C【解析】根据题意可知,当电磁场同时存在时,电场力与洛伦兹力平衡,粒子做匀速直线运动从C点离开。
当只有磁场时粒子做匀速圆周运动从D点离开,所以粒子由C、D两点离开场区时动能相同。
当只有电场时由B点离开场区,粒子做类平抛运动,水平方向匀速运动,竖直方向匀加速直线,电场力向上且对粒子做正功,动能增加。
因此选项A错误。
粒子由B、C两点离开场区时时间相同,AD弧长大于直线AC导致D点离开场区时时间稍长。
因此选项B错误。
电磁场同时存在时,qv0B=qE,则EB=v0。
因此选项C正确。
若粒子带负电,则电场方向竖直向下,磁场方向垂直于纸面向里,因此选项D错误。
故本题选C。
【考点】磁偏转和电偏转【难度】中等6、关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A、安培力的方向可以不垂直于直导线B、安培力的方向总是垂直于磁场的方向C、安培力的的大小与通电直导线和磁场方向的夹角无关D、只将直导线从中点折成直角,安培力的大小一定变为原来的一半【答案】B【解析】由左手定则知安培力的方向与导线和磁场方向相互垂直,因此选项A 错误B 正确。
安培力的大小四要素 F=BILsinα,α是磁场方向和电流方向的夹角,所以安培力大小与通电导线和磁场方向的夹角有关, 因此选项C 错误。
只将直导线从中点折成直角,安培力的大小变为原来的22倍,因此选项D 错误。
故本题选B 。
【考点】安培力的大小及方向【难度】中等 7、如图所示装置中,当开关S 接通后,细绳悬于0点,可自由转动的通电直导线将怎样运动(从上向下看), 悬线拉力如何变化( )A .导线AB 顺时针转动,悬线拉力不变B .导线AB 逆时针转动,悬线拉力不变C .导线AB 逆时针转动,悬线拉力变小D .导线AB 顺时针转动,悬线拉力变大【答案】D 【解析】当开关S 接通时,据安培定则知电磁铁附近磁感线分布如图,由左手定则知通电直导线此时左部受力指向纸内,右部受力指向纸外,导线将顺时针转动(从上向下看),转到与磁感线垂直时,整个导线受磁场力将竖直向下,可知悬线张力变大,因此线圈顺时针转同时向下运动,因此选项D 正确。
故本题选D 。
【考点】安培力作用下的运动【难度】中等8、设空间存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示。
已知一离子在电场力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 时速度恰为零,C 点是运动轨迹的最低点,不计重力。
以下说法正确的是( )A .离子必带负电荷B .A 点和B 点位于同一高度C .离子经C 点时速度最小D .离子到B 点后,将沿原路返回A 点【答案】B【解析】由轨迹图知板间电场方向竖直向下,电荷先在电场力作用下向下运动,故电荷带正电,因此选项A 错误。
洛伦兹力的作用下轨迹向右弯曲,由于在运动中洛伦兹力不做功,只有电场力做功,能量在动能与电势能之间转化,故A 点和B 点位于同一高度,因此选项B 正确。
粒子到达C 点时,电场力做正功最大,粒子速度最大,因此选项C 错误。
到达B 点后,将重复ACB 的运动,向右运动,不会返回A 点,因此选项D 错误。
故本题选B 。
【考点】叠加场中的曲线运动【难度】中等9、如图所示,用粗细均匀的电阻丝折成平面梯形框架,ab 、cd 边均与ad 边成60°角,ab =bc =cd =L 。
长度为L 的电阻丝电阻为r ,框架与一电动势为E ,内阻为r 的电源相连接,垂直于框架平面有磁感应强度为B 的匀强磁场,则框架受到的安培力的合力大小为( )A .0 B.5BEL 11r C.10BEL 11r D.BEL r【答案】C【解析】根据左手定则知各段受到的安培力如图。
电路abcd 上的电阻为3r ,由几何关系得,ad 段的长度为L+2Lcos60°=2L ,所以ad 上的电阻为2r ,并联部分的总电阻为r 56r 2r 3r 2r 3并=+•=R ,电路中的总电流:r 1155r6r E EI =+= ,路端电压:116r 56r 115并E E IR U =•==,abcd 上的电流:r 112r 31E U I ==,abcd 上各段F 1=F 2=F 3=BI 1L=r 112BEL ,ad 上F 4=BI 2•2L=r1162r 2BEL L U B =••。
F 1和F 3的水平分力抵消,线框受到的合外力F 合=F 1cos60°+F 2+F 3cos60°+F 4=r 1110BEL ,因此选项C 正确。
故本题选C 。
【考点】安培力的合成【难度】较难10、如图所示,两个完全相同且相互绝缘、正交的金属环,可沿轴线OO′自由转动,现通以图示方向电流,沿OO′看去会发现( )A .A 环、B 环均不转动B .A 环将逆时针转动,B 环也逆时针转动,两环相对不动C .A 环将顺时针转动,B 环也顺时针转动,两环相对不动D .A 环将顺时针转动,B 环将逆时针转动,两者吸引靠拢【答案】D【解析】由安培定则可知,A 环产生的磁场的方向向下,B 环产生的磁场的方向向左,两个磁场相互作用后有磁场的方向趋向一致的趋势,即同向电流相互吸引反向电流相互排斥,所以A 环顺时针转动,B 环逆时针转动.二者相互靠拢。
因此选项D 正确。
故本题选D 。
【考点】安培力作用下的运动【难度】中等11、如图所示,在竖直向下的匀强磁场中,有两根竖直放置的平行导轨AB、CD,导轨上放有质量为m的金属棒MN,棒与导轨间的动摩擦因数为μ。
现从t=0时刻起,给棒通以图示方向的电流,且电流强度与时间成正比,即I=kt,其中k为恒量。
若金属棒与导轨始终垂直,则如图所示的导体棒所受的摩擦力随时间变化的四幅图中,正确的是()【答案】C【解析】金属棒MN在水平面上平衡:BIL-F N=0,I=kt,竖直方向上由牛顿第二定律知mg-Ff=ma且Ff=uF N=μkBLt,所以金属棒MN先向下加速运动,重力大于摩擦力;后向下减速运动,重力小于摩擦力,最后静止,重力与摩擦力等大反向,因此选项C正确。
故本题选C。
【考点】叠加场动态分析【难度】较难12、物理学家法拉第在研究电磁学时,亲手做过许多实验。
如图所示就是著名的电磁旋转实验,这种现象是:如果载流导线附近只有磁铁的一个极,磁铁就会围绕导线旋转。
反之,载流导线也会围绕单独的某一磁极旋转。
这一装置实际上就成为最早的电动机。
图中A是可动磁铁,B是固定导线,C是可动导线,D 是固定磁铁。
图中黑色部分表示汞(磁铁和导线的下半部分都浸没在汞中),下部接在电源上。