原子吸收光谱基本原理
原子吸收光谱,红外光谱之间异同点
原子吸收光谱和红外光谱是化学分析领域中常见的分析方法,它们在原子和分子结构的解析和鉴定中具有重要作用。
虽然二者都是用于分析样品成分和结构的光谱技术,但它们在原理和应用上有着明显的异同点。
一、原子吸收光谱1.原子吸收光谱的基本原理原子吸收光谱是利用原子对特定波长的光进行吸收而产生的,通过分析光的衰减程度来测定样品中不同元素的含量。
当原子吸收特定波长的光后,电子从基态跃迁至激发态,从而产生吸收峰。
这一原理被广泛应用于分析金属元素和其他原子的定量测定。
2.原子吸收光谱与光谱仪的关系原子吸收光谱仪是用于测定原子吸收光谱的分析仪器,它包括光源、样品室、光路等部分。
通过光源发出特定波长的光线,样品中的原子吸收部分光线,剩余的光线经光路到达检测器,从而实现对样品中不同元素含量的测定。
3.原子吸收光谱的应用原子吸收光谱在环境监测、食品安全和医药等领域都有着广泛的应用。
利用原子吸收光谱可以对水体中的重金属离子进行快速测定,保障水质安全;在医药领域,原子吸收光谱可以用于药品成分的分析和检测。
二、红外光谱1.红外光谱的基本原理红外光谱是利用物质吸收、透射和反射红外光的特性来分析物质结构的一种技术。
物质中的分子在吸收红外光后会发生振动和转动,产生特征的红外光谱图谱。
通过分析这些谱图可以确定物质的结构和成分。
2.红外光谱仪的组成及原理红外光谱仪包括光源、样品室、光路和检测器等组成部分。
当红外光穿过样品时,被吸收的波长和强度会发生改变,检测器可以通过测量这些改变来分析样品的成分和结构。
3.红外光谱的应用红外光谱在化学、材料和生物领域都有着广泛的应用。
红外光谱可以用于药品成分的鉴定和质量控制;在材料领域,红外光谱可以帮助分析材料的组成和结构。
对比原子吸收光谱和红外光谱,可以发现它们在分析原子和分子结构上有着明显的异同点。
原子吸收光谱主要用于分析元素的含量和测定,对于金属元素和其他原子有着较广泛的应用;而红外光谱主要用于分析化合物的结构和成分,可以辅助分析有机化合物和聚合物的结构。
原子吸收光谱的原理及应用
原子吸收光谱的原理及应用原理介绍原子吸收光谱是一种常用的分析技术,通过测量原子吸收光的强度来确定样品中特定元素的浓度。
其原理基于原子在特定波长的光照射下,原子能级发生跃迁的现象。
1.原子能级跃迁原子中的电子存在不同能级,当原子吸收外部能量时,电子从低能级跃迁到高能级。
这种跃迁过程可以通过吸收特定波长的光实现。
2.光谱特征各种元素的原子都有独特的能级结构和跃迁特性,因此它们对特定波长的光具有特定的吸收能力。
通过测量并分析吸收光的特征可以确定样品中的元素浓度。
3.原子的光学吸收特性原子的吸收光谱通常呈现为锐利而离散的吸收线,称为谱线。
每条谱线对应于原子能级间的一个跃迁过程,其位置和强度可用于确定元素浓度。
应用领域原子吸收光谱在许多领域具有广泛的应用,下面列举了几个主要领域:1.环境监测原子吸收光谱可以用于测量大气、水体和土壤中的污染物浓度。
例如,通过分析大气中的重金属含量,可以评估工业排放对环境的影响程度。
2.食品安全原子吸收光谱在食品安全监测中发挥着重要作用。
它可以检测食品中的微量元素,如铅、汞和镉等,确保食品的安全性和质量。
3.药物分析在药物开发和制造过程中,原子吸收光谱可用于确定药物中的活性成分和杂质。
这有助于确保药物的质量和纯度。
4.冶金行业原子吸收光谱在冶金行业的合金分析和金属中杂质检测方面具有重要作用。
它可以快速、准确地测定合金中各种元素的含量。
5.地质勘探在地质勘探中,原子吸收光谱可以用于分析岩石和土壤样品中的元素含量。
这对于矿产资源勘探和环境地质研究非常重要。
原子吸收光谱的优势和局限性优势:•高灵敏度:原子吸收光谱可以检测到极低的元素浓度,通常在微克/升至毫克/升的范围内。
•广泛适用性:该技术可以应用于多种样品类型,包括溶液、气体和固体。
•准确性和精确性:原子吸收光谱具有较高的准确性和精确性,可以提供可靠的结果。
局限性:•单元素分析:每次只能测量样品中的一个元素,因此需要进行多次测量,不适用于多元素同时分析。
原子吸收光谱仪的原理、构成、操作及应用领域详解
原子吸收光谱仪的原理、构成、操作及应用领域详解一、原子吸收光谱仪原理原子吸收光谱仪的原理是根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。
1、原子吸收光谱的产生任何元素的原子都是由原子核和核外电子组成。
原子核是原子的中心体,核正电,电子荷负电,总的负电荷与原子核的正电荷数相等。
电子沿核外的圆形或椭圆形轨道围绕着原子核运动,同时又有自旋运动。
电子的运动状态由波函数0描述。
求解描述电子运动状态的薛定愕方程,可以得到表征原子内电子运动状态的量子数n、L、m,分别称为主量子数、角量子数和磁量子数。
原子核外的电子按其能量的高低分层分布而形成不同的能级,因此一个原子核可以具有多种能级状态。
能量最低的能级状态称为基态能级(Eo),其余能级称为激发态能级,而能量最低的激发态则称为第一激发态。
一般情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。
如果将一定外界能量如光能提供给该基态原子,当外界光能量恰好等于该基态原子中基态和某一较高能级之间的能级差△E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态而产生原子吸收光谱。
2、原子吸收光谱仪基本原理仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。
3、原子吸收光谱仪方法原理原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。
当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原原子吸收光谱仪子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。
基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。
已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。
检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。
原子吸收光谱工作原理
原子吸收光谱工作原理原子吸收光谱法的原理:蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。
当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。
原子吸收光谱是由于电子在原子基态和第一激发态之间跃迁产生的。
每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。
因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。
原子吸收光谱检测方法:1、氢化物发生法氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。
这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。
如土壤监测中运用流动注射氢化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。
这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。
2、石墨炉原子吸收光谱法石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。
横向加热石墨炉解决了温度分布不均匀的问题。
石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。
3、火焰原子吸收光谱法目前,火焰原子吸收光谱法还是应用最为广泛的方法。
因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。
原子吸收光谱仪原理及注意事项
原子吸收光谱仪原理、结构、作用及注意事项1.原子吸收光谱的理论基础原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。
1 原子吸收光谱的理论基础1.1 原子吸收光谱的产生在原子中,电子按一定的轨道绕原子核旋转,各个电子的运动状态是由4个量子数来描述。
不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。
原子处于完全游离状态时,具有最低的能量,称为基态(E0)。
在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。
激发态原子(Eq)很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。
其辐射能量大小,用下列公式示示:由于不同元素的原子结构不同,所以一种元素的原子只能发射由其E0与Eq决定的特定频率的光。
这样,每一种元素都有其特征的光谱线。
即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。
原子吸收光谱是原子发射光谱的逆过程。
基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。
因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。
原子的电子从基态激发到最接近于基态的激发态,称为共振激发。
当电子从共振激发态跃迁回基态时,称为共振跃迁。
这种跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。
元素的共振吸收线一般有好多条,其测定灵敏度也不同。
在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线。
1.2 吸收强度与分析物质浓度的关系原子蒸气对不同频率的光具有不同的吸收率,因此,原子蒸气对光的吸收是频率的函数。
原子吸收光谱工作原理
原子吸收光谱工作原理
原子吸收光谱是一种用于分析样品中存在的特定元素的方法。
它是基于原子在吸收特定波长的光时发生能级跃迁的原理。
在原子吸收光谱实验中,首先需要将待测样品转化为气态原子或离子状态,通过加热或其他方法,使原子脱离其化学结构,以便研究其特性。
然后,通过将一个高能的、特定波长的光源传到样品中,观察是否发生光的吸收。
当特定波长的光通过样品时,会有原子吸收该波长的光的可能性。
这是因为原子的电子在不同能级之间跃迁时,需要吸收特定能量的光子。
这个跃迁过程是唯一的,不同元素有不同的电子能级结构,因此会吸收不同波长的光。
在实验中,通过使用一个光谱仪器来测量光的吸收程度。
光源发出的光被传输到样品中,未被吸收的光被传输到光谱仪中。
光谱仪会测量传入和传出的光的强度差异,并将结果以光谱图形式展示出来。
通过比较样品中的光谱图与已知元素的光谱图,可以确定样品中是否存在某个元素。
当样品中的元素浓度增加时,吸收光强度也会增加,这为定量分析提供了一种方法。
总之,原子吸收光谱是一种基于元素特定跃迁能级和波长的光吸收原理的分析方法。
它可以用于确定样品中的元素类型和浓度。
原子吸收光谱法基本原理
原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。
测定对象:金属元素及少数非金属元素。
二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。
原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。
分光法:分子或离子的吸收为带状吸收。
原子法:基态原子为线状吸收。
三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。
共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。
分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。
(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。
原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。
νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。
发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。
原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。
中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。
吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。
原子吸收光谱基本原理
原子吸收光谱基本原理原子吸收光谱(Atomic Absorption Spectroscopy,AAS)是一种重要的分析技术,具有高精度、高灵敏度和高选择性等优点,广泛应用于环境、医药、化工、食品等领域的分析和检测。
本文将介绍原子吸收光谱的基本原理。
原子吸收光谱的基本过程在原子吸收光谱中,样品中的原子吸收特定波长的光,使得原子的电子从基态跃迁到激发态,发生吸收现象。
通常,样品中激发原子的能量来源于外部的热能或能量传递。
当原子发生跃迁后,发射出的光子的能量与波长与吸收的光子的能量和波长一致。
因此,通过测量被吸收的光的强度,就可以确定样品中原子的浓度。
原子吸收光谱的基本过程可以概括为:1.光源发出特定波长的光,经过光学系统后进入火焰或其他样品中;2.样品中的原子吸收特定波长的光,从低能级跃迁到高能级;3.吸收光的强度与原子的浓度成正比;4.测量被吸收的光的强度,通过标准曲线计算出原子的浓度。
原子吸收光谱的仪器原子吸收光谱最常用的仪器是电热炉式原子吸收光谱仪(Graphite Furnace Atomic Absorption Spectroscopy,GFAAS)和火焰式原子吸收光谱仪(Flame Atomic Absorption Spectroscopy,FAAS)。
电热炉式原子吸收光谱仪电热炉式原子吸收光谱仪是用于分析固体、液体和气体样品中元素的浓度的仪器。
其基本部分是由一个样品舱和一个电热炉组成,电热炉具有高升温速率和高升温温度的特点。
在电热炉中进行吸收光谱分析时,样品被直接加热到高温状态,从而形成了一系列的化学反应,这些反应有利于形成较稳定的原子态,从而提高了分析灵敏度。
火焰式原子吸收光谱仪火焰式原子吸收光谱仪是一种基于火焰对样品进行分析的仪器。
火焰是将样品转化为气态的最常用方法。
样品进入火焰时被氧化和分解,原子或分子被释放出来,从而形成原子云。
光源主要是由钨丝电极产生的,一般有氢气火焰、丙烷火焰等多种火焰源,可用于对不同元素进行分析。
原子吸收光谱的基本原理
原子吸收光谱的基本原理
原子吸收光谱是由单个原子吸收紫外光进行谱线分析计量测定所采用的一种光谱技术。
它的基本原理是原子吸收既定量的紫外光,在激发几何条件下,利用光谱仪测量紫外光,可判断物质中元素的含量。
吸收光谱分析定量的原理是物质会吸收一定波长的外界光,吸收程度与物质中原子含量成比例,将原子含量与原子峰位置或峰高度联系起来,从而实现定量分析。
原子的激发原理是基于电子前进理论的结果。
电子前进理论认为,电磁波通过空气或其它物质时,在特定波长处会激发原子的电子,使其从低能级的原子态升至高能级的离子态,且所用的电磁波的波长和原子每次跃迁所需的能量相一致,于是就出现了原子吸收谱线,即原子吸收光谱。
由原子激发衍生出来的原子吸收光谱可以用来定量和定性分析.在样品中,原子被激发为高能状态,之后电子崩溃跃迁以较低的能级,而这些外部紫外光可在具体波长处激发这些原子,当激发发生时,原子将失去其能级并吸收一定的能量。
因此,根据激发进步理论和原子结构理论,原子将排列一系列的激发电子态,每一级的激发态和原子中的电子能级有关,只有特定的电磁波可以激发电子,消耗的能量作为原子的半宽或原子的谱线能量。
原子吸收光谱分析也受到单色外界激发而引发的同源谱线干扰的影响。
在实际应用中,应尽量减少激发强度,提高谱线能量信号和测定精度,从而避免此类可能的干扰现象。
总之,原子吸收光谱是一种基于电子前进理论的光谱技术,可以通过原子吸收的紫外光进行谱线的分析计量测定,从而实现物质中元素定量的测定。
原子吸收光谱是线状光谱
原子吸收光谱是线状光谱
原子吸收光谱是以原子为研究对象的一种光谱技术,其特点是所观察
到的光谱是线状的。
以下是对原子吸收光谱的解释和应用的详细说明:
1. 原理与特点
原子吸收光谱的基本原理是利用原子在光的作用下进行跃迁,从而产
生吸收和发射光谱。
其特点是所观察到的光谱是线状的,不像分子吸
收光谱一样是带状的。
2. 色谱分析
原子吸收光谱常常被用于色谱分析,尤其是金属离子的分析。
该方法
的原理是将待测样品通过柱层分离技术分离出目标离子,再利用原子
吸收光谱分析检测其浓度。
该方法具有检测精度高,检测速度快等优点。
3. 土壤和水体分析
原子吸收光谱也被广泛用于土壤和水体分析。
这种方法通常使用火焰
或石墨炉等基本仪器对样品进行处理,以减少干扰。
使用原子吸收光
谱测量土壤和水体中的金属成分浓度,对环境保护和资源管理等方面
具有重要的应用价值。
4. 金属质量检测
利用原子吸收光谱技术,可以对金属制品进行质量检测。
这主要是借
助其对金属成分种类和含量的灵敏检测能力,辨别金属的性质和瑕疵。
5. 生命科学研究
生命科学领域也利用原子吸收光谱技术进行研究。
例如,通过原子吸
收光谱分析生物体内的金属元素,可以研究其代谢过程和生命活动的
基本规律。
总之,原子吸收光谱是一种重要的光谱技术,在各领域都有广泛的应用。
随着科技的不断进步,原子吸收光谱的应用也将呈现出更加广泛
和深入的趋势。
原子吸收光谱分析基本原理
原子吸收光谱分析基本原理原子吸收光谱分析(Atomic Absorption Spectroscopy,AAS)是一种常用于定量分析的分析方法。
其基本原理是利用原子或离子对特定波长的光进行选择性吸收,从而得到样品中特定元素的浓度信息。
以下是AAS 基本原理的详细解释。
1.原子吸收谱线:当样品中的原子或离子处于基态时,它们会吸收特定波长的光,产生具有特征波长和强度的吸收峰。
这些吸收峰是由原子或离子的电子从基态跃迁至激发态,然后再跃迁至基态时所产生的。
每种元素具有不同的、特定的吸收谱线,因此可以通过测量特定波长的光的强度来确定样品中特定元素的浓度。
2.选择性吸收:AAS是一种选择性吸收分析方法,它只测量特定波长光的吸收情况。
这是通过使用特定波长的光源和窄缝光栅来实现的。
光源产生特定波长的光束,经过光栅的分离和选择,只允许特定波长的光通过,最终到达检测器。
这样就确保只有与特定元素吸收谱线相对应的光被测量。
3.原子化和气体吸收池:在AAS中,样品首先必须被转化为气相的原子或离子。
这是通过将样品以高温原子化炉或火焰中的火花器实现的。
在原子化过程中,样品中的化合物、离子或者分子被转化为气体态的原子或离子。
然后,这些气体原子或离子会进入一个气体吸收池中,该池设有特定波长的光源。
4.吸收测量和浓度计算:进入气体吸收池的原子或离子会吸收特定波长的光。
吸收的光强度与样品中特定元素的浓度成正比,这是AAS用于定量分析的基础。
检测器记录吸收的光强度,通常使用光电倍增管或光电二极管。
校准曲线或标准加入法可以用于根据测得的吸收强度反推样品中特定元素的浓度。
总结起来,原子吸收光谱分析基于原子或离子对特定波长的光的选择性吸收,通过测量吸收光的强度来计算样品中特定元素的浓度。
该分析方法需要对样品进行原子化和选择性吸收实验装置中的气体吸收池中完成。
原子吸收光谱法原理
原子吸收光谱法原理原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是一种广泛应用于化学分析领域的分光光度法。
它利用原子对特定波长的光的吸收来分析样品中的金属元素含量。
原子吸收光谱法具有灵敏度高、选择性好、准确度高等优点,因此在环境监测、食品安全、药品检测等领域得到了广泛应用。
原子吸收光谱法的原理基于原子的能级结构和光谱学的基本原理。
当原子处于基态时,它们吸收特定波长的光能量,使得电子跃迁到激发态。
而原子在激发态的寿命非常短暂,因此在光源关闭后,原子会迅速退回到基态,释放出与吸收时相同波长的光。
原子吸收光谱法利用这一原理来分析样品中的金属元素含量。
在原子吸收光谱法中,首先需要将样品转化为原子状态。
这一过程通常包括溶解、挥发、电离等步骤,以使得金属元素以原子形式存在。
接下来,样品原子被导入火焰或炉内,使得原子吸收特定波长的光。
通过测量样品吸收光的强度,可以推断出样品中金属元素的含量。
原子吸收光谱法的灵敏度主要取决于光源的选择和样品原子的浓度。
常用的光源包括空心阴极灯和电热原子化炉,它们能够提供高能量的特定波长光。
而样品中金属元素的浓度越高,吸收光的强度也越大,因此原子吸收光谱法对于微量金属元素的分析具有很高的灵敏度。
此外,原子吸收光谱法还具有很好的选择性。
由于每种金属元素都有特定的吸收波长,因此可以通过选择合适的光源波长来分析特定的金属元素。
这使得原子吸收光谱法能够对不同金属元素进行准确的定量分析。
总的来说,原子吸收光谱法是一种成熟、可靠的分析方法,它在化学分析领域发挥着重要作用。
通过深入理解原子的能级结构和光谱学原理,我们可以更好地理解原子吸收光谱法的工作原理,从而更好地应用于实际分析中。
希望本文的介绍能够帮助大家更好地理解原子吸收光谱法的原理,为相关领域的研究和实践提供一定的参考。
原子吸收光谱仪的基本原理
原子吸收光谱仪的基本原理
原子吸收光谱仪是一种用于分析物质中元素含量和结构的仪器。
其基本原理是利用原子的特定能级结构和光的相互作用。
原子吸收光谱仪的基本原理可以分为以下几个步骤:
1. 光源产生特定的波长光线。
光源可以是白炽灯、气体放电灯或者激光器。
不同波长的光线可以激发不同元素的原子。
2. 光线通过样品。
样品中的元素原子吸收特定波长的光线。
该波长通常与元素的原子能级结构相关。
3. 光线通过吸收室。
吸收室中包含一个窄缝,用于选择特定波长的光线通过。
吸收室还包含一个火焰或者炉子,用于将样品中的元素转化为原子态。
4. 光线通过检测器。
检测器测量吸收室中通过的光线强度,产生一个相应的电信号。
5. 电信号处理。
电信号经过放大、滤波、积分等处理,得到一个与吸收室中光线吸收强度成正比的信号。
6. 信号分析和结果显示。
信号经过进一步处理和分析,得到样品中元素的含量或者结构信息,并在显示器上显示出来。
总的来说,原子吸收光谱仪利用原子的特定能级结构和光的相
互作用,通过测量样品中特定波长的光线被元素原子吸收的程度,来分析样品中元素的含量和结构。
7.1 原子吸收光谱法基本原理
数mJ,也即:统计权重为:g = 2 J + 1 3P 轨道: J = 1/2、3/2
gi
=
2×
3 2
+1+
2×
1 2
+1=
6
3S轨道:J=1/2
浙
江 师 范
∴
g0
=
2×
1 2
+1 =
2
大
学 仪 器 分
− 3 .37 ×10 − 12
∴ N = 6 × e i
1 , 38 ×10 − 16 × 2500
江 中专院校都配备有不同型号的原子吸收
师 范
分光光度计。你只要经过短时间的培训、
大 学
熟悉,即可进行操作、分析。
仪
器 分 析
局限性:
1、不能进行多元素分析
原吸法测定一个元素得换一个空心阴极灯 作为锐线光源,虽然,目前已研制成新的光源— —多元素灯,但多元素灯的稳定性、光源强度 受到一定的限制,应用不是很广。
浙
2、不能作结构分析
江
师
和原子发射一样它只能作组份分析,不能
范
作结构分析。
大
学
那么,到底原子吸收分光光度法基于哪些
仪
理论?即:它理论基础的是什么?
器
分
析
三、原子吸收分光光度法的基本原理
¾ 原子吸收分光光度法是基于从光源辐射出具
有待测元素特征波长的光通过试样原子蒸气时,
被蒸气中被测元素的基态原子所吸收,我们利
¾ 所以,在这种情况下Ni的数目可忽略,即:具
师
有吸光作用的基态原子可看成是原子总数,那
范 大
么,测得的N0即可代表待测元素的浓度。
原子吸收光谱基本原理
原子吸收光谱基本原理
原子吸收光谱是一种用于研究原子结构和元素组成的分析方法。
其基本原理是利用原子在特定波长的光辐射下吸收能量,并将其转化为原子内部的激发态,进而观察和测量吸收光的强度变化。
以下是原子吸收光谱的基本原理:
1. 激发态和基态:原子具有不同能级的状态,其中最低能级称为基态,而高于基态的能级称为激发态。
当给原子提供足够能量时,电子会从基态跃迁到激发态。
2. 能级跃迁:原子的能级之间存在一定的能量差,而这些能级之间的跃迁需要特定的能量。
当原子吸收特定波长的光时,光子的能量与能级之间的能量差相匹配,电子便会从低能级跃迁到高能级。
3. 波长选择性:每个元素都有其特定的电子结构和能级布局,因此它们对不同波长的光吸收具有选择性。
这些特定的吸收波长称为吸收线或谱线,可以用来识别和定量分析元素。
4. 实验测量:在实验中,通常将待测样品中的原子蒸发成烟雾或气体,并通过传输窗口引入光束。
然后,使用单色仪或光谱仪将白光分散成不同波长的光,其中包括待测元素谱线的特定波长。
当这些光通过样品时,被吸收的光会产生吸收谱线,其强度与待测元素的浓度成正比。
5. 谱线分析:测量吸收谱线的强度可以用来定量分析样品中待测元素的含量。
通过比较待测样品与已知浓度标准溶液的吸收
强度,可以绘制标准曲线或校准曲线,从而确定待测样品中元素的浓度。
总之,原子吸收光谱利用原子吸收光子能量的特性,通过测量吸收谱线的强度变化来分析样品中元素的含量。
这项技术被广泛应用于环境监测、食品安全、矿产资源勘探等领域。
原子吸收光谱仪基本原理
原子吸收光谱仪基本原理1.原子的能级结构:原子中的电子存在不同的能级,与固定的能量相关联。
当原子处于基态时,电子位于最低的能级上。
当吸收能量时,电子会跃迁到更高的能级,该过程称为激发。
激发态是不稳定的,电子会返回到较低的能级并发射出能量,称为发射光。
如果能够控制原子吸收和发射光的能量,就可以测量其中的差异,从而获得有关样品中元素存在的信息。
2.光源:原子吸收光谱仪使用特定波长的光源,通常是一个单色光源。
光源发出的光线通过一个特定的滤光片或光栅,使其只能透过一定波长范围的单色光。
这种单色光会通过样品中的原子或离子产生吸收和发射。
3.样品制备:在进行光谱测量之前,样品通常需要进行制备。
样品可以以固体、液体或气体的形式存在。
对于固体样品,通常需要将其溶解或研磨成液体或粉末。
对于液体样品,可以通过直接测量或进行稀释来处理。
对于气体样品,可以通过进样器引入。
4.原子吸收光谱仪的构成:原子吸收光谱仪通常由光源、光路系统、样品室、检测器和数据处理系统组成。
光路系统用于引导光线,在光源和样品间进行对准调节。
样品室通常是一个封闭的空间,用于放置样品和测量样品的光吸收。
检测器用于测量样品中的光吸收,并将信号转化为电信号。
数据处理系统用于接收、处理和显示或存储测量得到的光谱数据。
5. 光吸收测量原理:样品中的原子或离子会吸收特定波长范围内的光。
通过测量经过样品后透过的光的强度,就可以获得关于样品中原子或离子存在的信息。
将光源从未经过样品的强度定义为Io,经过样品后透过的光的强度定义为I。
样品中的光吸收比例可以通过吸光度(A)定义为A=log(Io/I)来表示。
吸光度与样品的浓度成正比关系,因此可以通过测量吸光度来推断样品中的元素浓度。
综上所述,原子吸收光谱仪通过测量样品中原子或离子对特定波长光的吸收,利用原子能级结构和吸收特性,提供了关于元素存在及其浓度的信息。
这种仪器在许多领域中被广泛应用,例如环境监测、食品检测、药物化学和地球化学分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收光谱基本原理
原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法。
1、原子吸收光谱的产生
众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子可以具有多种能级状态。
能量最低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。
正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。
如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差ΔE时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。
例如图1-1所示的钠原子有高于基态2.2eV和3.6eV的两个激发态(eV为“电子伏特”,表征能量高低)。
图1-1中,当处于基态的钠原子受到2.2eV和3.6eV 能量的激发就会从基态跃迁到较高的I和II能级,而跃迁所要的能量就来自于光。
2.2eV和
3.6eV的能量分别相当于波长589.0nm和330.3nm的光线的能量,而其它波长的光不被吸收。
图1-1 钠原子能级图
电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。
可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。
核外电子从基态跃迁至第一激发态所吸收的谱线称为共振吸收线,简称共振线。
电子从第一激发态返回基态
时所发射的谱线称为第一共振发射线。
由于基态与第一激发态之间的能级差最小,电子跃迁几率最大,故共振吸收线最易产生。
对多数元素来讲,它是所有吸收线中最灵敏的,在原子吸收光谱分析中通常以共振线为吸收线。
2、原子吸收谱线轮廓及变宽
理论和实验表明,无论是原子发射线还是原子吸收谱线,并非是一条严格的几何线,都具有一定形状,即谱线强度按频率有一分布值,而且强度随频率的变化是急剧的。
通常是以K-V曲线表示的,即吸收系数K为纵坐标,以频率V为横坐标的曲线图,原子吸收光谱曲线反映了原子对不同频率的光具有选择性吸收的性质。
极大值相对应频率称中心频率,相应的吸收数称中心吸收系数或峰值吸收系数。
K-V曲线又称原子吸收光谱轮廓或吸收线轮廓。
吸收线轮廓的宽度也叫光谱带宽,以半宽度ΔV的大小表示。
原子吸收光谱的变宽的原因有两个方面:一是由原子性所决定如自然宽度;另一方面是由于外界因素影响引起的,如多普勒变宽、劳伦茨变宽等。
1)自然宽度
在无外界影响的情况下,吸收线本身的宽度。
自然宽度的大小与激发态的原子平均寿命有关,激发态原子平均寿命越长,吸收线自然宽度愈窄,对于多数元素的共振线来讲,自然宽度约为10-6 -10-5 nm。
2)多普勒变宽
也叫热变宽,这是由于原子在空间作无规则热运动所引起的一种吸收线变宽现象,多普勒变宽随温度升高而加剧,并随元素种类而异,在一般火焰温度下,多普勒变宽可以使谱线增宽10-3nm,是原子吸收谱线变宽的主要原因。
3)劳伦茨变宽
待测元素的原子与其它元素原子相互碰撞而引起的吸收线变宽称为劳伦茨变宽。
劳伦茨变宽随原子区内原子蒸汽压力增大和温度增高而增大。
在101.325Kpa 以及一般火焰温度下,大多数元素共振线的劳伦茨变宽与多普勒变宽的增宽范围具有相同的数量级,一般为10-3nm。
4)场致变宽和自吸变宽
在外界电场或磁场作用下,也能引起原子能级分裂而使谱线变宽,这种变宽称为场致变宽。
另外,光源辐射共振线,由于周围较冷的同种原子吸收掉部分辐射,使光强减弱。
这种现象叫谱线的自吸收,在实际应用中应选择合适的灯电流来避免自吸展宽效应。
在通常的原子吸收分析实验条件下,吸收线轮廓主要受到多普勒变宽和劳伦茨变宽的影响,而其它元素的粒子浓度很小时,则主要受多普勒变宽的影响。
3、原子吸收光谱分析原理
原子吸收光谱分析的波长区域在近紫外区。
其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律
A= -lg I/I o= -lgT = KCL
式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以
A=KC
该式是原子吸收分析测量的理论依据。
K值是一个与元素浓度无关的常数,实际上是标准曲线的斜率。
只要通过测定标准系列溶液的吸光度,绘制工作曲线,根据同时测得的样品溶液的吸光度,在标准曲线上即可查得样品溶液的浓度。
所以说原子吸收光谱法是相对分析法。
4、原子吸收光谱分析的特点
原子吸收光谱分析能在短短的三十多年中迅速成为分析实验室的有力武器,由于它具有许多分析方法无可比拟的优点。
1)选择性好
由于原子吸收线比原子发射线少得多,因此,谱线重叠的几率小,光谱干扰比发射光谱小得多。
加之采用单元素制成的空芯阴极灯作锐线光源,光源辐射的光
谱较纯,对样品溶液中被测元素的共振线波长处不易产生背景发射干扰。
2)灵敏度高
采用火焰原子化方式,大多元素的灵敏度可达ppm级,少数元素可达ppb级,若用高温石墨炉原子化,其绝对灵敏度可达10-10-10-14g,因此,原子吸收光谱法极适用于痕量金属分析。
3) 精密度高
火焰原子吸收法精密度高,在日常的微量分析中,精密度为0.x~3%。
石墨炉原子吸收法比火焰法的精密度低一些,采用自动进样器技术,一般可以控制在5%之内。
4)操作方便、快速
原子吸收光谱分析与分光光度分析极为类似,其仪器结构、原理也大致相同,因此对于长期从事化学分析的人使用原子吸收仪器极为方便,火焰原子吸收分析的速度也较快。
5)分析范围广
目前应用原子吸收法可测定的元素超过70种。
就含量而言,既可测定低含量和主量元素,又可以测定微量、痕量甚至超痕量元素;就元素性质而言,既可测定金属元素、类金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定固态样品。
因此原子吸收分析技术已普及各个领域。
当然,原子吸收光谱分析也存在一些不足之处,原子吸收光谱法的光源是单元素空芯阴极灯,测定一种元素就必须选用该元素的空芯阴极灯,这一原因造成本法不适用于物质组成的定性分析,对于难熔元素的测定不能令人满意。
另外原子吸收对于共振线处于真空紫外区的元素灵敏度低。