高层建筑风振研究
(完整版)高层建筑在风荷载作用下的相关研究
高层建筑在强风作用下由于脉动风的影响将产生振动,这种振动有可能使在高层建筑内生活或工作的人在心理上产生不舒适的感觉,从而影响建筑物的正常使用”由于风是一种经常性的荷载作用,因此有必要将风引起的高层建筑的振动限制在人体舒适的感觉范围之内”重现期的选择也最大风速样本的取法影响着平均风速的数值”如果以口最大风速为样本,则一年有365个样本,平时低风速的口子的风速值占有很大的权,而最大风速那一天的风速只占1/365的权,因而最大风速重要性大大降低了,统计出的平均风速必将大大偏低"如果采用月最大风速,则每年最大风速在整个数列中也只占1/12的权,也降低了最大风速所起的重要性,所得结果也是偏低的"对十工程结构应该能承受一年中任何口子的极大风速,因此取年最大风速为样本”最大风速有它的自然周期,每年季节性地重复一次,因而采用年最大风速作为一个样本,较为合适”世界各国基本上是取年最大风速作为统计样本的”平均风的时距平均风速的数值与时距的取值有很大的关系”如果时距取得很短,例如3秒钟,则必定将记录中最大值附近的较大数据都突出反映在计算中,较低风速在平均风速中的作用难以得到反映,因而平均风速值很高”如果取得很长,例如1天,则必定将1天中大量的小风平均进去,较高风速在该长时距中起不到显著作用,其值一般偏低”一般来说,时距愈短,平均风速愈大,时距愈长,平均风速也就愈小"风速记录表明,阵风的卓越周期约为1min,通常认为10min(约10个周期)至1小时(约60个周期,由于阵风有较长的持续性,衰减较慢)其平均值基本上是一个稳定值,因而我国规范规定以10分钟作为取值标准”一般我们所研究的对象不会出现异常风的气候,称为良态气候"对十这种气候,我们可以认为年最大风速的每一个数据都对极值的概率特性起作用,因此,世界上许多国家把年最大风速作为概率统计的样本,由重现期和风速的概率分布获得该地区的设计最大风速,或者称为基本风速"我国规定基本风速采用极值I型概率分布函数进行统计分析"对于多层建筑和高层建筑的风致响应问题,连续体系,采用随机振动理论进行分析。
高层隔震建筑风振响应研究
s ltd b h rga o f b,ad te wn od w ih i s ltd i p to ecrep n onso p c nt lme tmo e f i ae ytepo rm Ma a mu f l n id la hc s i ae s u n t orsod jit fsaef i ee n dl o h mu h i e s
soyl n—s lt n h v e a aey e n sa ls e tr i ioai a e s p rtl b e etb ih d. S c n l b s d n h meh d f DI F o o e o d y, a e o te to o T—
W AW S, te r s o d p e o u s i h e p n s d f p le s e
快 速 离散 傅 立 叶变 换 的谐 波 叠 加 法 , 用 M tb 程 语 言 模 拟 出高 层 建 筑 空 间 相 关 脉 动 风 速 , 所 模 拟 出 的 风 荷 载 施 加 到 隔 使 aa 编 l 把
震 与 非 隔震 三 维 空 间有 限元 模 型 的相 应 节 点 上 , 比分 析 隔 震 和 非 隔 震 建 筑 风 荷 载 响 应 特 点 , 建 议 了 高层 隔 震 建 筑 抵 抗 风 对 并
Ab t a t I hsp p r,te wid idu e ep n ftl soy ioain a alsoy no —s lto r n y e n o a e sr c :n ti a e h n —n c d rs o d o al tr s lt nd tl—tr n ioain a ea a z d a d c mp rd,a h n — — o l nd tewi d
超高层建筑结构风效应的关键技术研究及其应用
超高层建筑结构风效应的关键技术研究及其应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着中国城市化进程的加速,超高层建筑的兴建已成为现代城市发展的重要特征。
超高层建筑结构风振响应分析与抑制技术研究
超高层建筑结构风振响应分析与抑制技术研究超高层建筑是现代城市的标志性建筑之一,然而,随着建筑高度的增加,其在强风环境下存在严重的风振问题。
风振现象不仅会导致超高层建筑剧烈的摇摆,甚至可能引发结构破坏和安全隐患。
因此,研究超高层建筑结构风振响应分析与抑制技术具有重要的工程应用价值。
首先,针对超高层建筑结构风振问题的研究,需要进行风洞试验和数值模拟分析。
风洞试验可以通过模拟真实的风场环境,获取结构在风力作用下的响应。
通过风洞试验可以确定结构的风荷载分布及其对结构的力学性能的影响。
同时,数值模拟分析也是研究超高层建筑结构风振响应的重要手段。
基于ANSYS等有限元软件,可以对超高层建筑进行模拟,预测结构的风振响应。
其次,为了减小超高层建筑的风振响应,需采取有效的抑制技术。
目前,常用的抑制技术主要包括被动控制、主动控制和半主动控制。
被动控制技术是通过优化结构的刚度和阻尼特性,减小结构对风荷载的响应。
常见的被动控制技术包括质量调节、增加剪力墙等。
主动控制技术则是通过使用传感器和执行器,对结构进行实时监测和调节,以抑制结构的振动。
而半主动控制技术则是被动和主动控制的结合,兼具两者的优点。
在具体研究超高层建筑结构风振响应分析与抑制技术的过程中,需要考虑多方面的因素。
首先,要充分地了解超高层建筑的结构特点和风动力学特性。
超高层建筑的结构比较复杂,一般由钢结构和混凝土结构组成。
其风动力学特性则受到结构形态和风洞效应的影响。
因此,在进行风振响应分析时,需要综合考虑这些因素,并建立准确的数学模型。
此外,对于超高层建筑的风振响应抑制技术研究,还需考虑经济性和可行性。
抑制技术的实施会增加工程的投资成本,因此,需要权衡抑制效果与成本。
同时,超高层建筑已经建成,抑制技术的实施需要考虑施工的可行性和结构的可操作性。
因此,在研究过程中还需要充分考虑这些实际问题,并提出合理的解决方案。
总结而言,超高层建筑结构风振响应分析与抑制技术研究是一个复杂且具有挑战性的课题。
超高层建筑的风振与地震响应分析
超高层建筑的风振与地震响应分析随着城市化进程的不断加速,超高层建筑的兴起成为现代城市的一道亮丽风景线。
然而,由于其高度和结构特点,超高层建筑在面临风振和地震的时候存在一定的风险。
因此,进行针对性的风振与地震响应分析显得十分必要。
一、风振分析1.风振现象超高层建筑受到风力作用时,会产生风振现象。
当风通过建筑物引起周围气流幅度的波动时,会导致建筑物产生共振,进而引起建筑物的摇晃现象。
2.风振原因风振是由于风对建筑物的作用力引起的。
一方面是由于风对建筑物的外表面产生的压力差,另一方面则是由于建筑物自身的气动力引起的。
3.风振测量为了对超高层建筑的风振进行分析,一种常用的方法是通过安装风力测量仪器进行实时监测。
风力测量仪器可以记录下风的方向、风速和风力周期等数据,有助于建筑师了解到风对建筑物的影响。
4.风振抑制为了减少超高层建筑的风振,可以采取一系列的措施,如增加建筑物的整体刚度、合理设计建筑物外形,或者采用风洞试验等方法。
二、地震响应分析1.地震现象地震是地壳发生剧烈震动的自然现象。
当地震发生时,超高层建筑会受到地震波的作用,并产生相应的响应。
2.地震原因地震是由地壳运动引起的,可以分为板块运动引起的地震和火山地震两种。
超高层建筑所在地的地壳活动程度,决定了其面临地震风险的大小。
3.地震分析方法为了对超高层建筑的地震响应进行分析,可以采用有限元方法。
该方法可以把建筑物分为很多小块,通过计算每个小块的振动特性,并将其耦合起来,从而得到整个建筑物的地震响应。
4.地震设计超高层建筑在设计的时候,需要考虑到地震的影响,因此需要进行地震设计。
地震设计包括选择合适的地震烈度、确定地震力的作用方向和大小、设计合理的抗震结构等等。
结语超高层建筑的风振与地震响应分析是对其结构稳定性和安全性进行评估的重要手段。
通过对风振和地震的分析,可以发现并解决存在的问题,确保超高层建筑在面对自然灾害时能够安全稳定。
因此,在超高层建筑的规划和设计过程中,应该重视风振与地震响应分析的重要性,并采取相应的措施保障建筑物的安全。
高层建筑的风振控制研究
高层建筑的风振控制研究摘要:高层建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。
文中分析了高层建筑的外部风环境、内部风环,以及风振控制中的被动控制、主动控制和混合控制系统,这一研究对于高层建筑安全设计具有一定意义。
关键词:风振控制;建筑风环境;控制系统0 引言高层建筑和高耸结构正向着日益增高和高强轻质的方向发展,使得结构的刚度和阻尼不断下降,直接影响了高层建筑和高耸结构的正常使用。
建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。
本文基于人员不舒适感分析了高层建筑风振控制,这一研究对于高层建筑安全设计具有一定意义。
1 高层建筑的风环境1.1 外部风环境根据高层建筑物的外形,相互布局情况及风的相对方向,有可能测得的建筑物外部环境的不舒适参数Ψ值,在风振舒适感控制中都是基于下述效应为基础。
(1)压力连通效应:当风垂直吹向错开排列的高层建筑物时,若建筑物间的距离小于建筑物的高度,则有部分压力较高的风流向背面压力较低的区域,形成街道风,在街道上形成不舒适区域。
(2)间隙效应:如图2所示,当风吹过突然变窄的剖面时(如底层拱廊),在该处形成不舒适区域。
图2 间隙效应(3)拐角效应:如图3所示,当风垂直吹向建筑物时,在拐角处由于迎面风的正压与背面风的负压连通形成一个不舒适的拐角区域;有时,当两幢并排建筑物的间距L≤2d(d为建筑物沿风向的长度)时,两幢间也形成不舒适区域。
图3 拐角效应(4)尾流效应:如图4所示,在高层建筑物尾流区里,自气流分离点的下游处,形成不舒适的涡流区。
图4 尾流效应(5)下洗涡流效应:如图5所示,当风吹向高层建筑物时,自驻点向下冲向地面形成涡流。
图5下洗涡流效应2.2内部风环境高层建筑的内部风环境是指,由于风荷载的作用,高层建筑受到脉动风影响而发生振动现象,这种振动会给生活或者工作在高层建筑内部人带来不舒适感,对高层建筑物的正常使用造成影响。
高层装配式建筑施工中的风振响应分析方法
高层装配式建筑施工中的风振响应分析方法随着城市化进程不断加速,高层建筑在城市中得到越来越广泛的应用。
然而,由于其在施工过程中的特殊性质,风振问题成为需要解决的重要难题。
本文将介绍高层装配式建筑施工中风振响应分析的方法,并且讨论其应对风振问题的可行性。
一、高层装配式建筑风振响应分析方法在进行高层装配式建筑施工中的风振响应分析时,主要采用以下几种方法:1. 地面试验法地面试验法通常通过模拟真实场景下的气候条件和风力,利用大型模型进行试验观测。
这种方法可以帮助研究人员更好地理解和预测建筑物在不同条件下的风振响应情况。
通过不同参数调整和变化等手段,进一步优化设计方案以降低风振问题。
2. 数值模拟法数值模拟法是一种常用且有效的方法。
通过利用计算机软件对高层装配式建筑施工中的风振响应进行数值模拟,可以准确地预测建筑物在不同风速下的振动状况。
这种方法可以根据具体情况对建筑结构参数、材料特性和环境条件等进行细致分析,为设计和施工提供科学依据。
3. 桥梁测试法桥梁测试法是一种借鉴桥梁工程领域常用的方法。
通过在高层装配式建筑上安装传感器,实时监测和记录风力引起的振动数据。
这样可以获得真实而准确的风振响应结果,并及时采取相应措施来降低振动影响。
二、高层装配式建筑施工中的风振问题及其影响高层装配式建筑因其自身结构与施工方式的特殊性,容易受到外部风力作用而产生较大幅度的振动。
风振问题主要表现为以下几个方面:1. 结构安全隐患风力引起的振动可能会导致高层装配式建筑结构疲劳甚至损坏。
这种情况对于已经施工完毕的建筑物来说,可能会带来严重的安全隐患。
2. 使用舒适性下降高层装配式建筑中的风振问题也会对居住者的使用舒适性产生影响。
长期以来,人们一直在追求高楼大厦的景观和环境优势,但是由于风振问题带来的不稳定性,使得建筑物内部产生明显晃动感,降低了使用者的舒适程度。
3. 破坏周边环境风振引起的噪音和震动还有可能对周围环境造成一定影响。
高层建筑结构的风致振动控制
高层建筑结构的风致振动控制在高层建筑结构设计和建造过程中,风致振动是一个重要的问题。
高楼居住者经常会感受到建筑物在强风中的晃动,这不仅影响住户的生活质量,还可能对建筑的结构稳定性产生负面影响。
因此,高层建筑结构的风致振动控制成为了研究的热点之一。
一、引言在引言中,我们将介绍高层建筑结构的风致振动控制的重要性,并提出本文研究的目的和意义。
二、背景这一部分将介绍高层建筑结构的基本特点和存在的挑战,特别是在面对大风时的振动问题。
我们还将简要讨论目前已有的研究成果和现有的风振控制方法。
三、风致振动现象的原理在这一部分,我们将解释高层建筑结构在风力作用下发生振动的原理。
这涉及到风荷载的作用机制以及结构的固有频率等基础知识。
四、风振控制方法本部分将介绍目前常用的风振控制方法,包括质量阻尼、刚度控制和主动控制等。
针对每种方法,我们将详细说明其工作原理和应用范围,并给出实例进行说明。
五、质量阻尼方法质量阻尼是一种被广泛应用于高层建筑结构的振动控制方法。
我们将介绍质量阻尼器的工作原理和种类,并分析其在不同情况下的有效性和适用性。
六、刚度控制方法刚度控制作为另一种常见的风振控制方法,可以通过调整结构的刚度来减小振动幅值。
我们将介绍刚度调整的原理和方法,并探讨其在实际工程中的应用情况。
七、主动控制方法相较于质量阻尼和刚度控制,主动控制是一种更加先进和灵活的振动控制方法。
我们将介绍主动控制方法的原理和实现方式,并分析其在高层建筑结构中的潜在应用前景。
八、结论在本文的结尾,我们将总结不同风振控制方法的优缺点,并对未来的研究方向进行展望。
我们还将强调高层建筑结构的风致振动控制对于建筑的安全性和居住者的舒适性的重要意义。
通过以上的分节论述,我们全面而系统地介绍了高层建筑结构的风致振动控制方法。
这些方法旨在减小建筑物在强风作用下的振动幅值,提高建筑物的稳定性和居住者的生活质量。
随着技术的不断进步和研究的深入,我们相信未来会有更多创新的方法和技术用于风振控制。
高层建筑的风振响应分析
高层建筑的风振响应分析随着城市化进程的加速,高层建筑的数量不断增长,人们的居住和工作条件得到了大幅提升。
然而,高层建筑面对的风险问题也日益凸显。
其中,风振问题是高层建筑中最为普遍和重要的问题之一。
风振产生的噪音、震动和摆动会影响到建筑物结构安全和使用舒适性。
因此,需要对高层建筑的风振响应进行分析和预测,以保证建筑物的安全性、稳定性和舒适性。
一、风场特征高层建筑风振响应的特征与气象、地形和建筑物本身特征有关。
首先,气象因素会对风场的形式和能量分布产生影响。
气象因素可以分为静态和动态两类。
静态气象因素包括气温、湿度、气压等,这些因素对风场的形式和大小影响有限。
动态气象因素主要包括风速、风向、风向频率分布等。
由于风速和风向动态变化,导致风场的空间分布和大小变化,对高层建筑风振响应产生影响。
其次,地形的高度、坡度等地形特点对风场的形态和空间分布产生影响。
由于地形的起伏和坡度,使得风场的大小、速度和方向有所变化。
在城市建设中,建筑物的密集和高度差异也会对风场的形态产生影响。
建筑物之间的流场介于平稳和紊流之间,具有局部涡旋形成的特点,使得风场的大小和方向变化更为复杂。
最后,建筑物本身的特性会对风场产生反射、折射、扭曲和干涉等影响,从而使得风场的大小和方向发生改变。
随着建筑物高度的增加,建筑物本身的增大、缩小、侵入和曲线等特性越发明显,对风场的影响越来越重要。
二、风振响应特征所谓的风振响应是指建筑物在风作用下所发生的振动现象。
一般来说,建筑物在风作用下的振幅会随建筑物高度增加而增加,振动频率也会随建筑物高度增加而升高。
此外,建筑物的诸如刚度、质量等特性与风场的结构、强度等因素也会对建筑物的振动响应特性产生影响。
振幅和频率是评价建筑物风振响应影响的重要指标。
建筑物在风作用下的振幅主要指建筑物振动的物理数量,是建筑物振动的量值;频率是指建筑物振动发生的速率,衡量振动的快慢。
因此,振幅和频率大小的评估可以直接影响到建筑物的结构安全和使用舒适性。
高层建筑风振监测
高层建筑风振监测在现代城市的天际线中,高层建筑如林立的巨人般拔地而起。
然而,这些高耸入云的建筑在面对风的力量时,并非坚如磐石。
风振现象,就像是隐藏在风中的“敌人”,可能对高层建筑的结构安全和使用舒适性构成威胁。
为了保障高层建筑的安全稳定,风振监测成为了一项至关重要的工作。
风振,简单来说,就是风对高层建筑产生的振动效应。
当强风来袭,高层建筑会受到风的冲击和绕流作用,从而产生各种振动。
这些振动可能表现为水平方向的晃动、扭转振动,甚至是竖向的振动。
如果风振过于强烈,可能会导致建筑结构的疲劳损伤、构件连接的松动、甚至是整体结构的破坏。
同时,过大的振动也会让居住或工作在其中的人们感到不适,影响正常的生活和工作。
那么,如何进行高层建筑的风振监测呢?这可不是一件简单的事情,需要一系列先进的技术和设备的支持。
首先,监测系统的核心是传感器。
常见的传感器包括加速度传感器、位移传感器和风速风向传感器等。
加速度传感器可以测量建筑在不同方向上的振动加速度,通过对加速度数据的积分和处理,可以得到振动的速度和位移信息。
位移传感器则直接测量建筑结构的位移变化,能够更直观地反映建筑的变形情况。
风速风向传感器则用于获取风的相关信息,帮助分析风振的原因和规律。
这些传感器通常会被安装在建筑的关键部位,比如顶部、中部和底部等。
安装位置的选择需要经过精心的设计和计算,以确保能够准确捕捉到建筑的振动特征。
而且,传感器的安装必须牢固可靠,避免在监测过程中出现松动或失效的情况。
传感器采集到的数据需要通过数据采集设备进行收集和传输。
这些数据采集设备通常具有高精度、高采样率和大容量存储的特点,能够在恶劣的环境下稳定工作。
采集到的数据会通过有线或无线的方式传输到数据处理中心。
在数据处理中心,接收到的数据会经过一系列的处理和分析。
这包括数据的滤波、去噪、特征提取和模式识别等。
通过这些处理,可以去除掉无用的噪声和干扰信息,提取出反映风振特性的关键数据。
然后,利用专业的分析软件和算法,对风振数据进行深入的分析和评估。
高层建筑顺风向风振系数研究分析
法 计算 的风振系数均略大于按规范计算的结果。 图 6给出建筑各楼层峰值位移 。阵风荷载 因子法 、 惯性风荷
敏感 , 高层建筑设 计 中 , 风 荷载 通常起 到控 制性 作用 。 目前 现行
本风压取 5 0年重现期 的风压 0 . 4 5 k N / m。 , 结 构第一 自振周 期为
2 . 4 1 s , 结构 阻尼 比取 0 . 0 5 ; 脉动 风模拟 时 间为 2 0 4 S , 时 间间 隔
0 . 1 s , 每层均设为 加载层。使用美 国 C S I 公司编制 的大型结构分
析与设计软件有限元程序 E T A B S 建立三维有 限元模 型, 分别 采用
的《 建筑结构荷 载规 范》 中采用 简化风振 系数来 计算高 层建筑 顺 风 向的风荷载影 响 , 仅考 虑线 弹性结 构第 一振 型 , 忽略结 构高
建 筑结构荷 载规 范》 方法计 算 的结果 与结构 ( 2 ) 法计算 的结 果与按《 的第一阶振型变化规 律相 似 , 且 下小 上大 , 二者 均考虑 振 型系数 惯性 风荷载法是按随机振动理论得 到一 阶广 义位 移响应 , 使
结构 产生该位移的惯性力 , 可 得 到 高 度 处 的 风 振 系 数 公 式 为 :
峰值 因子 。
^ — — — —
图 1 顺风向脉 动风压 时程与 目标 自功率谱对比结果( 建筑 3层 )
阵风荷载因子法的风振系数 即“ 阵风因子” , 可 表示 为 :
G=R ( z ) / R( z )=1 g R ( ) / R ( z )
图 5给出了建筑 各楼 层风 振系数 , 可 以看 出 , 按惯 性风 荷载
度处 自相关 函数对 比结果 , 可 以看 出脉 动风速的空 间相关特 性较
高层建筑结构设计中的风振问题
高层建筑结构设计中的风振问题近年来,随着城市化进程的加快和城市人口的不断增加,高层建筑的兴起成为了城市发展的标志之一。
然而,高层建筑较矮小建筑物更容易受到风力的影响,因此,高层建筑结构的稳定性成为了一个亟需解决的问题。
本文将讨论高层建筑结构设计中的风振问题,并探讨几种应对风振问题的方法。
一、风振问题的原因高层建筑的风振问题主要是由于风的作用力引起的。
当风吹过高层建筑物时,会产生气动力,这种力会使建筑物发生振动。
风振问题会导致建筑物的不稳定,甚至可能造成结构破坏。
因此,在高层建筑的结构设计中,必须考虑和解决风振问题。
二、风振问题的影响风振问题对高层建筑的影响可分为两方面:一是对建筑物自身的影响,二是对周围环境的影响。
在建筑物自身方面,风振问题会导致建筑结构的疲劳,增加结构元件的应力,从而降低建筑物的使用寿命。
同时,风振问题还会降低建筑物的抗震性能。
在周围环境方面,高层建筑的风振问题可能会引起观感问题,对周围居民的生活和工作带来不便。
此外,风振问题还可能对周围其他建筑物产生影响,甚至对城市基础设施造成损坏,对城市安全产生隐患。
三、解决风振问题的方法为了解决高层建筑结构设计中的风振问题,工程师们采取了一系列的方法和措施。
首先,在高层建筑的设计过程中,需要引入风洞试验。
通过风洞试验可以模拟真实的风场环境,获得建筑物在不同风速下的响应情况,从而优化建筑结构的设计。
其次,采用结构控制技术是解决风振问题的重要手段之一。
结构控制技术包括主动控制和被动控制两种方式。
主动控制是通过悬挂质量阻尼器、调整质量分布等方法,主动减小结构的振动。
被动控制则是通过增加结构的阻尼来抑制振动。
此外,合理的结构设计也是减轻风振问题的重要因素。
在设计过程中,应考虑到建筑物形状、重量分布等因素,以减小风对建筑物的作用力。
同时,使用抗风材料和采取合理的结构布局也能有效降低风振问题。
最后,对于已经建造的高层建筑,定期维护和检查是必不可少的。
结构动力学中的风振问题研究
结构动力学中的风振问题研究1.引言结构工程中,风振问题是非常重要的,特别是对于高层建筑或者桥梁这种大型工程。
风振问题的研究可以帮助工程师了解建筑或桥梁在面对风力的时候的情况,以及如何设计更优秀的结构来减轻风力带来的影响。
2.风对结构的影响风是一种自然力量,对于建筑或桥梁结构来说,风所带来的负面影响主要有三个方面:振动、压力和风应力。
2.1 振动风力会引起建筑或桥梁结构的振动,而低频率的振动则是因为风的颤动所引起的。
对于高层建筑或桥梁,振动所引起的危害可能会非常严重,例如会影响人的安全和舒适度,同时也会影响结构的稳定性和使用寿命。
2.2 压力风力所带来的气流会产生压力,而这种压力所带来的负面影响主要是会使得建筑或桥梁产生扭曲变形,这也是一种危险情况,因为这种变形可能会使得结构变得不稳定。
2.3 风应力风应力是风对建筑或桥梁结构表面所产生的力量,在高强度风的作用下,风应力可能会对结构产生毁坏性影响。
例如,风应力过大可能会导致钢结构变形、疲劳断裂或者腐蚀。
3.风振问题的研究方法3.1 计算机模拟在计算机模拟方面,有两种常见的方法:CFD计算和结构动力学模拟。
CFD(Computational Fluid Dynamics)计算是通过计算风场中气体流动的物理参数,来模拟风对于建筑或桥梁的影响。
而结构动力学模拟则是基于结构动力学原理,模拟风对结构在振动、压力和力学特性等方面的影响。
3.2 实验测试实验测试主要是通过在实验室或者工地上进行模型试验,来研究风对结构的影响。
这种方法主要是通过测量结构发生的振动、压力和力等参数,来对风振问题进行研究。
4.结构动力学模拟中的风振问题在结构动力学模拟中,风振问题主要包括以下几个方面:风荷载计算、结构响应分析、风振响应分析和减振措施设计。
4.1 风荷载计算风荷载是指风作用于结构体表面所产生的压力和风速。
风荷载计算主要是通过风洞试验或CFD计算的方法来获取计算所需的参数,然后进一步算出风荷载。
建筑结构中的风振响应研究
建筑结构中的风振响应研究近年来,建筑工程的安全问题越来越引起人们的关注。
其中,风振响应研究成为了一个热门话题。
此次文章将对建筑结构中的风振响应研究进行探讨。
一、风振响应的概念风振响应是指建筑物在风力作用下所发生的振动。
建筑物所受风荷载的变化将引起结构振动,可能产生结构共振。
随着建筑结构的发展,越来越多的结构形式出现,这些形式的特点会影响结构的风振响应。
二、影响风振响应的因素1. 建筑结构特征:建筑结构的刚度、坚固程度和柔韧性等特征是影响建筑物风振响应的最主要因素之一。
例如,高层建筑的高度和重量是影响风振响应的重要因素。
2. 风荷载的特征:建筑物所受风荷载的变化也会影响风振响应。
例如,风速的大小、风向的变化等都会对建筑物的风振响应产生影响。
3. 地面条件:建筑物所处的地面条件也会影响风振响应。
地形、土壤的属性、地面的起伏程度等都会对结构的振动产生影响。
三、风振响应的研究手段1. 数值分析法:通过有限元分析等数值模拟方法,可以得出建筑物在不同风荷载情况下的振动,从而评估风振响应情况。
2. 实验研究法:通过建造模型、进行风洞试验等实验手段,可以模拟不同风荷载情况下建筑结构的振动,从而获取风振响应的相关数据。
3. 结构优化方法:通过对建筑结构的设计进行优化,可以达到降低风振响应的效果。
四、风振响应的对策1. 提高建筑物的刚度和抗风能力:通过提高建筑物的刚度和抗风能力,可以有效减少风振响应的产生。
2. 选择合适的结构形式:合理选择建筑物的结构形式,可以有效避免结构的风振响应。
3. 采用适当的结构优化方法:通过对建筑物的结构进行优化,可以有效降低风振响应。
总之,对于建筑结构中的风振响应研究,需要考虑多方面的因素,包括建筑结构的特征、风荷载的特征和地面条件等。
研究风振响应的手段也应包括数值分析法、实验研究法和结构优化方法等。
对建筑物进行适当的加强和优化可以有效降低风振响应,确保建筑物的安全性。
结构设计知识:高层建筑的风振效应分析
结构设计知识:高层建筑的风振效应分析近年来,随着城市化进程的加速推进,高层建筑越来越多地出现在我们的生活中。
然而,高层建筑不仅需要考虑到其美观和功能性,还需要针对其特定的风振效应进行结构设计,确保其安全性和稳定性。
因此,本文将从高层建筑风振效应的分析入手,介绍其相关的知识点和设计方法。
一、高层建筑风振效应的定义和影响因素高层建筑风振效应是指当风吹过高层建筑时,其所造成的风压引起结构产生振动的现象。
这种振动会对高层建筑的稳定性和安全性产生重要影响。
高层建筑风振效应受到多种因素影响,主要包括以下几个方面:1.风力因素:风力大小和方向决定了风压的大小和方向,从而影响结构的振动。
2.结构自身因素:包括结构的刚度、质量、阻尼等,这些因素决定了结构的天然振动特性。
3.建筑形态因素:包括建筑高度、横截面形状、表面粗糙度等,这些因素会影响结构受到风力时所受到的风压分布。
二、高层建筑风振效应的表现形式高层建筑风振效应的表现形式有很多种。
常见的表现形式主要包括以下几点:1.结构整体振动:这种振动在整个结构内部传递,可能导致结构的疲劳损伤等现象。
2.局部振动:这种振动通常出现在结构的特定部位,比如建筑的角部或突出部位。
3.振动共振:当风振频率和结构的天然频率相等时,振动加剧,可能导致结构的破坏,因此共振频率的控制是风振效应设计中一个很重要的问题。
三、高层建筑风振效应的分析方法高层建筑风振效应的分析可以采用多种方法,根据实际情况选择适合的方法进行分析。
1.解析法:采用解析法可以对高层建筑进行简化的理论分析,计算得出其振动模态及频率等参数,有助于确定结构的共振频率,同时也是验证其他方法的有效性和正确性。
2.数值模拟法:采用数值模拟法可以对于高层建筑受风压及其所产生的振动进行复杂的数值计算和模拟,有助于得到更加准确的结果。
3.风洞试验法:采用风洞试验法可以真实地模拟出高层建筑在风力作用下的振动情况,通过实验数据分析和结构变形测试,确定结构的抗风性能,是一种经济和实用的方法。
高层建筑的风振分析与控制
高层建筑的风振分析与控制在现代城市的天际线中,高层建筑如林立的巨人般引人注目。
然而,这些高耸的建筑在面对自然界的风力作用时,面临着严峻的挑战。
风振现象可能导致结构的损坏、使用者的不适,甚至威胁到建筑的安全性。
因此,对高层建筑进行风振分析与控制是至关重要的。
风对于高层建筑的影响是多方面的。
首先,风会在建筑表面产生压力分布的不均匀,从而导致水平方向的力和扭矩。
这种水平力可能引起建筑的整体晃动,尤其是在强风条件下。
其次,风的脉动特性会激发建筑的振动,类似于风吹过琴弦产生的振动。
如果这种振动的频率与建筑的固有频率接近,就会发生共振现象,使振动幅度急剧增大。
为了准确分析高层建筑的风振特性,工程师们采用了多种方法和技术。
风洞试验是其中一种常用且有效的手段。
在风洞中,可以模拟不同风速和风向条件下的风场,将缩小比例的建筑模型放置其中,通过测量模型表面的压力和模型的响应来获取风振相关的数据。
计算流体动力学(CFD)也是一种重要的分析方法,它通过数值模拟来计算风场和建筑表面的相互作用。
此外,基于结构动力学的理论分析方法,可以建立建筑的数学模型,计算其固有频率、振型和响应等。
在风振分析中,建筑的外形和结构形式对风振特性有着显著的影响。
流线型的建筑外形通常能够减少风的阻力和压力差,从而降低风振响应。
例如,一些现代化的高层建筑采用了逐渐收分的外形或者带有弧形边缘的设计。
结构的刚度和质量分布也会影响固有频率和振型,从而改变风振的响应特性。
增加结构的刚度,如使用更强大的梁柱体系或增加剪力墙,可以提高建筑抵抗风振的能力。
当分析出高层建筑可能存在较大的风振风险时,就需要采取相应的控制措施。
一种常见的方法是增加结构的阻尼。
阻尼可以消耗振动能量,减小振动的幅度。
通过在结构中安装阻尼器,如粘滞阻尼器、调谐质量阻尼器(TMD)或调谐液体阻尼器(TLD)等,可以有效地控制风振响应。
以 TMD 为例,它通常由质量块、弹簧和阻尼器组成,其固有频率被调整到接近建筑的主要振动频率,当建筑发生振动时,TMD 产生相反的力来抵消振动。
超高层建筑结构设计中的风振效应分析
超高层建筑结构设计中的风振效应分析随着城市化进程的加速,越来越多的超高层建筑在各大城市拔地而起,成为城市风貌的一道亮丽风景线。
然而超高层建筑的建设过程中存在的一些问题和挑战也不容忽视。
其中之一便是超高层建筑结构设计中的风振效应分析。
本文将讨论这一话题,并探究其相关的技术和方案。
一、风振效应是什么?风振效应简单地说,就是指风对建筑结构的影响所形成的振动效应。
它在超高层建筑结构设计中的作用十分重要,因为超高层建筑一般都有较高的高度和较大的体积,结构非常复杂,而且受到风的影响非常大。
风振效应会对建筑物的安全性、舒适性和美观性产生很大的影响,因此必须加以充分考虑和控制。
二、风振效应的影响因素风振效应的产生并不是单一原因,而是由多种因素的综合影响所导致的。
其中主要包括如下几点:1. 风速及其方向:风振效应的大小和方向直接取决于风速和风向,风速越大、方向越垂直于建筑物立面,风振效应就越明显。
2. 建筑物结构:建筑物结构的特点、尺寸、高度和材料等都会影响风振效应。
比如说,塔形结构比矩形结构更易受到风的影响。
3. 地形:地形的高低起伏、周边环境等也都会影响风振效应。
比如说,环境中是否有高耸的建筑物、山岳地形等都会造成风场的扰动,增大风振效应。
三、风振效应的分析方法为了控制和减小超高层建筑结构的风振效应,必须对其进行分析和设计。
而在风振效应的分析中,目前比较常见的方法有如下几种:1. 加载系数法:即通过设定某些特定的载荷系数,来确定建筑物在不同风速和风向下的风荷载大小。
这种方法适用性广,但计算较为复杂,不太适合大规模的工程设计。
2. 数值模拟法:即利用计算机模拟风场的过程,来预测风振效应。
这种方法可以比较客观、直观地反映风场的情况,但需要进行大量的计算和实验研究,成本较高。
3. 物理模拟法:即通过模拟真实的风场环境,对建筑物进行实际的测试和验证,检测其在不同风速下的振动情况。
相比于数值模拟法,这种方法更加准确,但同时也需占用大量的实验场地和测试设备。
高层建筑风振
高层建筑风振在现代城市的天际线上,高层建筑如林立的巨人,展现着人类建筑技术的辉煌成就。
然而,这些高耸入云的建筑在面对大自然的力量时,也面临着诸多挑战,其中风振就是一个不容忽视的问题。
风,这个看似无形却有力的自然元素,当它与高层建筑相遇时,会产生一系列复杂的物理现象。
风振,简单来说,就是风作用在高层建筑上引起的结构振动。
这种振动可能会给建筑带来多种不利影响,从居住者的舒适度下降到结构的安全性受到威胁。
想象一下,当强风呼啸而过,高层建筑就像一把巨大的竖琴,风的力量拨动着它的“琴弦”,使其产生振动。
如果这种振动过于强烈或持续时间过长,首先会让身处其中的人们感到不适。
比如,会出现头晕、恶心的感觉,影响工作和生活的质量。
对于一些对振动较为敏感的人群,如老人、儿童或者身体不适的人,这种影响可能会更加严重。
而从结构安全的角度来看,风振可能导致建筑结构的疲劳损伤。
就像一根铁丝,反复弯曲多次后会断裂一样,建筑结构在长期的风振作用下,其关键部位可能会出现裂纹、甚至破坏。
这不仅会缩短建筑的使用寿命,更可能在极端情况下引发严重的安全事故,造成不可挽回的损失。
那么,为什么高层建筑更容易受到风振的影响呢?这主要是由于它们的高度和独特的形状。
随着建筑高度的增加,风速也会随之增大。
而且,高层建筑的外形通常较为复杂,不像低矮建筑那样简单规整。
风在流经这些复杂的表面时,会产生分离、漩涡等现象,从而产生不均匀的压力分布,导致结构振动。
为了应对高层建筑的风振问题,工程师们采取了多种措施。
在设计阶段,他们会通过风洞试验来模拟风对建筑的作用。
风洞就像是一个巨大的吹风机,将模型建筑置于其中,通过测量风作用下模型的受力和振动情况,为实际建筑的设计提供依据。
在结构设计方面,会采用一些特殊的结构形式和加强措施。
比如,增加结构的刚度,使建筑能够更好地抵抗风振的作用。
或者使用阻尼装置,像汽车的减震器一样,消耗风振产生的能量,减小振动的幅度。
此外,建筑材料的选择也至关重要。
高层建筑结构设计中的风振问题及其防护措施
高层建筑结构设计中的风振问题及其防护措施近年来,随着城市化进程的加快,高层建筑在城市中的数量逐渐增多。
然而,高层建筑的设计与施工并非易事,其中一个重要的挑战就是风振问题。
高层建筑容易受到风的影响,导致结构产生振动,给建筑的稳定性和安全性带来威胁。
因此,研究高层建筑结构设计中的风振问题及其防护措施显得尤为重要。
首先,我们需要了解风振问题的成因。
高层建筑在面对风力时,会受到风的作用力。
这种作用力会引起建筑结构的振动,甚至可能发生共振现象。
共振是指建筑结构的固有频率与风力作用频率相吻合,导致振幅不断增大,最终可能引发结构破坏。
因此,准确评估风力对建筑结构的影响,并采取相应的防护措施至关重要。
其次,我们需要了解高层建筑结构设计中的风振防护措施。
一种常见的方法是通过结构设计来减小风对建筑的影响。
例如,在建筑外形设计阶段,可以采用流线型的外形,减小风的阻力,降低风力作用力。
此外,还可以通过增加建筑的刚度和强度来抵抗风力。
在结构设计中,可以采用钢筋混凝土框架结构或钢结构,提高建筑的整体刚度。
同时,在建筑的关键部位,如楼顶和底部,可以增设加强构件,以增加结构的强度。
另一种常见的防护措施是采用风振减震技术。
风振减震技术主要通过引入减震装置来减小结构的振动。
其中,一种常见的减震装置是阻尼器。
阻尼器可以通过消耗结构振动的能量,减小振动幅度。
常见的阻尼器包括液体阻尼器、摩擦阻尼器和粘滞阻尼器等。
此外,还可以采用风振控制系统来监测和调整结构的振动。
这些控制系统可以根据实时的风力情况,调整建筑的结构参数,以减小振动幅度。
除了结构设计和减震技术,还有其他一些风振防护措施也值得关注。
例如,可以采用风洞试验来模拟真实的风力环境,评估建筑结构的风振响应。
风洞试验可以帮助设计师更好地了解风力对建筑的影响,并优化结构设计。
此外,还可以采用风振监测系统来实时监测建筑的振动情况。
通过监测系统,可以及时发现异常振动,并采取相应的措施,保证建筑的安全。
高层住宅钢结构的风振特性与合理模型研究
t he t o r s i o n a l r e s po n s e s c a n n o t b e n e g l i g i b l e . Th e c o mpu t e d r e s p o n s e s b y t h e p r o p o s e d mo d e l a r e mo r e r e a s o n a b l e t ha n t ho s e o f t he s he a r s t o r e y mo de 1 . Ke y wo r d s: h i g h— r i s e b u i l d i ng;s t e e l r e s i d e n t i a l s t r u c t u r e;c o mpu t a t i o n a l mo d e l ;wi n d v i b r a t i o n r e —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅述高层建筑风振
摘要:随着轻质高强新型建筑材料的不断涌现,高层建筑不但建筑形式变化多样,而且结构体型也朝着高大、轻柔的方向发展,因此风对高层建筑的影响越来越大。
本文通过简述风荷载的分类及特征,进一步说明了高层建筑中结构风振响应以及风振控制。
关键词:高层建筑风振
风是从高气压吹向低气压的一种气流。
高层建筑是在特殊地区和时间下,为了满足社会和经济的需求而建造的,其独特性和各自特异的风格,增加了城市景观,吸引了大量的旅游观光者。
而更具有实用意义的是满足了城市日益增长的工作、生活空间的需求,但任何建筑高度的增加必将会增加风荷载的力度。
风荷载是控制高层建筑结构设计的重要侧向荷载,正确考虑风力的作用,关系到结构设计的合理性和经济性。
一、风荷载种类及特点
风对建筑物的作用是一个随机过程,因此,按照风对建筑物作用的方向不同可以分为以下三个方面:1)在建筑物的迎风面上产生的压力(气流流动产生的阻力),包括静压力和动压力;2)在横风向产生横风向干扰力(气体流动产生的涡旋扰力与湍流脉动压力);3)空气流经建筑物后在建筑物的背后产生的涡流干扰力(包括背风向的吸力)。
风荷载是由于工程结构阻塞大气边界层气流的运动而引起,具有以下特点:1)风荷载与空间位置及时间(不确定性)有关,受地形、地貌、周围建筑环境等因素影响;2)风荷载与结构的几何外形相关,结构不同部分对风敏感程度不同;3)对具有显著非线性特征的结构,可能产生流固耦合效应;4)结构尺寸可能在多个方向比较接近,风荷载需要考虑空间相关性;5)脉动风的强度、频率、风向是随机的;6)风荷载具有静力和动力的双重特点,其动力部分即脉动风的作用会引起高层建筑的振动(即风振)。
二、结构风振反应
根据风载作用的不同机理, 风振反应分为顺风向响应、横风向响应、风致扭
转响应以及结构的自振动反应。
1、顺风向响应:对建筑结构起主要作用,通过将风分为平均风和脉动风,相应应用结构静力分析和随机振动理论进行分析。
2、横风向响应:主要由尾部漩涡脱落及横风向紊流引起结构横风向振动。
对于非圆形截面的建筑物,特别是窄、高、柔的高层建筑,当处于跨临界范围,特别是漩涡周期脱落的频率与结构自振频率一致时,将产生比静力作用大几十倍的共振效应,超过顺风向响应,必须引起重视。
3、风致扭转响应:对于圆柱形细长结构,风致扭转振动响应很小,通常忽略不计。
对矩形或不规则高层建筑,其风致扭转振动响应相当大。
引起这种响应的原因有:1)结构横截面质心与刚心不重合,因而引起结构顺风向、横风向与扭转响应的耦联;顺风向与横风向的动力风荷载都能引起结构的扭转振动响应;2)结构的质心与空气动力中心不重合,顺风向与横风向动力风荷载都能对截面质心产生扭转振动响应;3)紊流引起的脉动风压在结构周边的不均匀分布形成随机脉动扭转;4)漩涡的随机发放使结构背面和侧面的风压不对称干扰而引起扭转振动响应。
4、自激振动反应:动力风荷载使结构产生振动,结构的振动又反作用于风,这种与结构运动相关的动力风荷载引起的振动称为自激振动。
由于结构截面的形状以及可能产生的攻角,结构产生负阻尼,从而在风速到达某一值后,结构振动不能弹回而愈振愈大,即产生空气动力失稳,常有弯、扭驰振或弯扭耦合的颤振等。
三、高层建筑的风振控制
在一般情况下, 按是否需要外部能源和激励以及结构反应的信号,结构振动控制分为被动控制、主动控制、半主动控制以及混合控制。
1、被动控制:被动控制是一种不需要外部能源的结构控制技术,一般是指在结构的某些部位安装隔振或耗能装置或子结构系统,或对结构自身的某些构件做构造上的处理以改变结构体系的动力特性。
被动控制过程不依赖于结构反应和外界干扰信息,而且具有构造简单、造价低、易于维护且无需外部能源支持等优点;引起了广泛的关注,并成为目前应用开发的热点,许多被动控制技术已日趋成熟,并已在实际工程中得到应用。
1)耗能减振系统
耗能减振系统是把结构物的某些非承重构件设计成消能元件,或在结构物的某些部位设置阻尼器,在风荷载作用时,阻尼器产生较大的阻尼,大量耗散能量,使主体结构的动力反应减小。
耗能减振系统可分为两类:a、耗能构件减振体系,利用结构的非承重构件作为耗能装置,常用的耗能构件包括耗能支撑、耗能剪力墙等;b、阻尼器减振系统,包括粘弹性阻尼器(VED)、金属阻尼器、摩擦阻尼器等。
2)吸振减振系统
吸振减振技术是在主结构中附加子结构,使结构振动发生转移,即使结构的振动能量在主结构与子结构之间重新分配,从而达到减小结构风振反应的目的。
目前,主要的吸振减振装置有调谐质量阻尼器(TMD)、调谐液体阻尼器(TLD)等:TMD是一种发展比较成熟的控制装置,安装在结构的顶层或结构上部某层上,应用动力吸振器原理,将TMD系统的振频率设计成与主体结构要控制的振型频率近似相等,从而得到共振吸能的目的。
高层建筑可以利用顶层的水箱、机房或接近上部的旋转餐厅等作为TMD的惯性质量块,耗能器的种类很多;TLD是一种固定在结构楼层(或楼面)上的具有一定形状的盛水容器。
可以是浅水的,也可以是深水的;可以是大型水箱,也可以是多个小型容器的组合。
当结构在外荷载作用下发生振动时,将带动水箱一起运动,而水箱的运动又会使箱中的液体产生晃动,并引起表面的波浪,这种液体和波浪对箱壁的动压力差,以及液体随结构一起运动引起的惯性力,就构成了建筑物的减振力。
2、主动控制:主动控制是应用现代控制技术,对输入的外部激励和结构反应实现联机实时监测,再按分析计算结果应用伺服加力装置对结构施加控制力,实现自动调节,进而保证结构在外界动力荷载作用下的安全性能。
主动控制需要外部能量输入提供控制力,控制过程依赖于结构反应和外界干扰信息。
主动控制包括主动质量阻尼控制系统,主动变刚度控制系统和主动变阻尼器控制系统。
主动控制算法主要有:经典线性最优控制算法、瞬时最优控制算法、预测实时控制算法、随机最优控制算法、模糊控制算法、界限状态控制、极点配置法、独立模态空间控制法、滑动模态控制理论、神经网络控制等。
目前研究开发的主动控制装置主要有:主动控制调谐质量阻尼器(AMD)、主动空气动力挡风板控制系统、
主动支撑系统、气体脉冲发生器、线性马达控制系统等。
3、混合控制:混合控制是主动、半主动和被动控制的联合应用,使其协调起来共同工作。
混合控制系统充分利用了被动控制和主动控制的优点,既可以通过被动控制系统大量耗散振动能量,又可以利用主动控制系统保证控制效果,比单纯的主动控制节省大量的能量,因此具有良好的工程应用价值。
目前,提出的混合控制系统主要有以下几种:AMD和TMD相结合的控制系统、主动控制与耗能装置相结合的控制系统、主动控制和基础隔震相结合的混合控制系统。
在结构风振控制体系中,控制装置属非承重构件,其功能仅在结构振动过程中发推耗能作用,而不承担结构的竖向承载作用;故风振控制技术不受结构类型,形状、层数高度等条件的限制,一般来说,结构越高,越柔,跨度越大,振动越强,风压强度等级越高,控制效果越显著。
四、结论
随着科技的发展以及建筑技术的提高,建筑物将向着更高的方向发展,风环境研究以及风振控制将成为一门亟待研究和探索的学科,为建筑物尤其是高层建筑的安全提供强有力的保障。
[参考文献]
1. 葛楠.高层建筑风振问题的研究[M] .北京: 清华大学出版社.2004.
2.石立超黄彦坤.高层建筑风振研究[J].产业与科技论坛.2010,9(11):94-99.
3. 蔡志波.高层建筑风荷载及抗风设计[J].中国水运.2007,7(10):78-80.。