浅谈齿轮副法向侧隙的控制
齿轮副法向齿侧间隙的计算与检测
齿轮副法向齿侧间隙的计算与检测齿轮副法向齿侧间隙是指两个啮合齿轮侧面之间的空隙大小。
在齿轮副中,由于加工误差、装配精度及磨损等因素的影响,齿轮之间会产生一定的间隙,这就是法向齿侧间隙。
法向齿侧间隙的大小直接影响到齿轮副的运动精度和传动性能。
计算法向齿侧间隙的方法可以使用几何法或相似三角法。
其中,几何法是通过几何尺寸和设计参数来计算间隙值,而相似三角法是利用齿轮轴线上的等值相似比来推算齿侧间隙。
两种方法各有优劣,具体选择要根据实际情况而定。
下面是计算法向齿侧间隙的步骤:1.确定几何参数:-模数(m):齿轮副的模数是一个重要的参数,它决定了齿轮齿数和齿宽的大小。
-压力角(α):齿轮啮合时,齿轮齿面与齿轮轴线之间的夹角称为压力角。
-齿轮头圆直径(d1)和齿轮母线圆直径(d):根据齿轮类型和模数可以计算得到。
2.确定间隙系数:-正齿轮(轮齿与轮齿垂直):间隙系数一般取0.05-0.15之间。
-斜齿轮(轮齿与轴线倾斜):间隙系数一般取0.125-0.225之间。
3.计算法向齿侧间隙:-正齿轮:间隙值=(0.167-0.33*W)*m- 斜齿轮:间隙值 = (0.167 - 0.33 * W * sin(α)) * m其中,W为间隙系数。
在实际应用中,还需要通过检测方法来验证计算的间隙值是否符合要求。
常用的检测方法包括以下几种:1.游标测量法:-使用游标卡尺等工具对齿轮侧面进行测量,测量方法可以采用直接测量或间接测量两种方式。
-需要注意测量时的测量位置和角度,以及测量时使用的测量工具的精度。
2.哥仑卡片法:-将哥仑卡片插入齿轮侧面与齿轮轴线的交接处,通过空隙的大小来判断间隙的大小。
-需要根据实际情况选择合适的哥仑卡片厚度。
3.摆线尺测量法:-利用摆线尺的刃尖与齿轮侧面接触,通过尺尖的移动距离来测量间隙的大小。
-需要保证摆线尺的刃尖与齿轮侧面的接触稳定,并注意测量时的摆线尺的刻度精度。
4.视觉检测法:-利用光学仪器或高精度显微镜等观察齿轮侧面,通过目测或图像处理等方法来判断间隙的大小。
新开式齿轮副安装间隙的控制及经验公式(精选)
新开式齿轮副安装间隙的控制及经验公式(精选)第一篇:新开式齿轮副安装间隙的控制及经验公式(精选)开式齿轮副安装间隙的控制及经验公式球磨机、回转窑等设备多数采用两半联接的开式大齿圈与小齿轮传动,无论整台安装还是局部检修调整,校验大小齿轮的间隙是必不可少的一项工作。
按照JCJ03-90标准,边缘传动球磨机开式大小齿轮副控制齿侧间隙,大齿轮对中空轴轴颈或滚圈外圆的径向圆跳动公差不大于节圆直径的0.25/1000;回转窑和单筒冷却机大齿圈和小齿轮控制齿顶间隙,其顶间隙一般规定为0.25mn+(2~3mm)范围内,大齿圈的径向圆跳动偏差不得大于1.5mm。
但磨机在实际安装及调校时,按标准控制齿侧间隙一般采用塞尺直接塞入两啮合齿侧面之间,分别量出齿的工作接触面一侧和非工作面一侧的间隙,两侧间隙量相加即可得到齿侧间隙量。
但测量必须在大小齿轮两啮合齿的节圆相对重合处,如果测量的位置不同,获得的结果也不相同,另外齿廓加工公差和使用磨损对测量结果也有影响。
球磨机大小齿轮在工作齿面磨损,侧间隙增大,设备震动、噪音增大后,往往对两半联接的开式大小齿轮采用调换工作齿面的方法来获得良好的设备运转状况。
对于调换工作面的大小齿轮的间隙调校,因换面齿轮的齿廓面磨损千差万别,若采用侧间隙的调校方法就更无法则可依了。
由于大小齿轮顶间隙测量比较容易,所以我厂对磨机开式大小齿轮的调校仍采用顶间隙的调校方法。
现介绍一个开式大小齿轮顶间隙的经验计算公式,供同行们参考。
对于两半联接的大齿圈,特别是采用弹簧板联接的大齿圈,由于加工、运输、安装等因素的制约大齿圈很难达到规定的径向圆跳动公差,故笔者以实际的大齿圈径向圆跳公差数值加0.25mn做为大小齿轮的齿顶间隙控制值,即Cn=0.25mn+δmax。
1987年10月,甘肃省永登县建材厂Φ2.5m×40m泾阳型窑安装调试,该窑系北京水泥机械厂制造,齿轮参数为mn=28,Z1=17,Z2=154,该齿圈采用弹簧板与窑体铆接,经安装单位反复调校后,窑大齿圈的最大径向跳动还有2.8mm,我们将大小齿轮顶间隙调为9mm时,空负荷试运转4h,齿轮啮合声音在窑体运转一圈中出现有规律的不正常噪声,用钳形电流表测电机端电流,一圈中也出现有规律的电流波动过大现象,我们将出现问题的齿圈部分在筒体上作了记号,停车拆开齿轮罩检查,从大齿圈齿部的啮合痕迹看,明显有13个齿存在中心距偏小的现象。
齿轮副最大与最小侧隙的计算
Ts1、Ts2—分别为小齿轮、大齿轮的齿厚公差(μm);
Ta—齿轮副的中心距公差(μm);
αn’—齿轮压力角(0)。
≤10
>10-25
>25-60
>60
喷油润滑
10
20
30
30-50
油池润滑
5-10
2.齿轮副最大法向侧隙值的计算
计算齿轮副的最大法向侧隙时,主要考虑齿轮的加工精度。其计算公式如下
Jnmax=Jmin+【(Ts12+Ts22)Xcos2αn+(TaX2Xsinαn)】(1/2)
式中 Jnmax—最大法向侧隙(μm);
式中Jnmin—最小法向侧隙(μm);
a—齿轮副中心距(μm);
α1
△t1、△t2—分别为齿轮、箱体温度与标准温度(200C)之差(0C);
αn’—齿轮副法向啮合角(0);
δ—润滑状况系数(检附表);
mn—齿轮模数。
δ表值
润滑方式
齿轮节圆圆周速度v(m/s)
齿轮副侧隙探讨
一、由最小侧隙推导大小齿轮齿厚上偏差:
二、齿轮副最大侧隙计算
齿轮副最小和最大法向侧隙值计算
2010-04-28 12:16
1.齿轮副最小法向侧隙值的计算
计算齿轮副的最小法向侧隙时,主要考虑齿轮副的热变形和润滑状况的工作条件。其计算公式如下:
Jnmin=2a·(α1△t1-α2△t2)sinαn’+δmn
锥齿轮副啮合侧隙的控制
锥齿轮副啮合侧隙的控制——《ANSI/AGMA 2005-B88锥齿轮设计手册》的学习应用赵世纯李灿摘要:锥齿轮副的啮合侧隙是锥齿轮设计、制造和安装的重要参数之一。
如何确定、控制和检验锥齿轮副的侧隙并保证在安装时达到设计规定的侧隙要求,美国国家标准《ANSI/AGMA2005-B88锥齿轮设计手册》给锥齿轮设计制造和安装人员提供了相关资料。
本文作者就标准的应用谈了一些自己的看法和体会。
关键词:侧隙最小法向许用侧隙法向侧隙圆周侧隙轴向侧隙侧隙变动量安装距修正量前言在制造和安装锥齿轮副时应当保留一定的侧隙,其大小依齿轮的周节大小和工作条件而不同。
侧隙对于齿轮安全运转是必需的。
如果齿轮啮合太紧,运转时噪音会增大,磨损也会加剧,还可能出现齿面擦伤甚至断齿。
如何确定锥齿轮副侧隙的大小?如何控制、检测和在安装使用锥齿轮副时达到设计规定的侧隙要求?这是我们设计制造和使用锥齿轮副的人员应该知道并严格遵照的。
1 锥齿轮副侧隙的确定《ANSI/AGMA 2005-B88锥齿轮设计手册》中对锥齿轮侧隙的确定比《GB11365锥齿轮和准双曲面齿轮精度》中侧隙的确定方法要简约、直观。
1.1 最小法向许用侧隙在“手册”第6节6.11大端法向许用侧隙中有如下描述:侧隙的确定原则很复杂;为了补偿装配公差,必须要有侧隙;只有当一对齿轮啮合才存在侧隙;在齿轮齿厚的计算中要用到最小许用侧隙这个数据。
“手册”用表格给出了最小法向许用侧隙的推荐用值(在大端测量)。
侧隙许用值与径节成反比(与模数成正比)。
表1中给出两种精度范围的数值,一种是AGMA 4~9级,相当于GB11365 7级(不含7级)以下的精度;另一种是AGMA 10~13级,相当于GB11365 7级(含7级)以上的精度。
AGMA 精度序号越大,精度越高;GB精度序号越高,精度越低。
用户在采用AGMA 10~13级精度齿轮副时,希望更大些的侧隙,可以专门确定。
但是采用4~9级精度齿轮副时却不宜减小表1中的数值,这是由于齿轮径向跳动和齿形误差较大的原因。
论齿轮传动中的齿轮副侧隙调整
论齿轮传动中的齿轮副侧隙调整作者:胡兆东来源:《商品与质量·学术观察》2012年第10期摘要:实践证明,提高齿轮的制造精度会大大增加制造成本。
本文提出了几种在不提高齿轮制造精度的前提下通过结构设计来调整齿侧间隙的方法,以供交流参考。
关键词:齿轮传动齿轮副侧隙调整正在齿轮传动机构中,齿轮副中常留有一定的侧隙。
但在某些精密传动或精密分度的齿轮传动机构中,则要求消除侧隙,以免在来回转动或往复运动中造成传动或分度误差。
1、齿轮副侧隙及其影响1.1定义齿轮副侧隙是指一对齿轮啮合时,非工作齿面间的间隙。
适当的侧隙是齿轮副工作的必要条件,它可以补偿轮齿因受力变形和摩擦发热而膨胀所引起的挤压,补偿制造和装配的误差,便于齿廓润滑等。
1.2影响在一般的齿轮传动中,齿侧间隙通常是由制造公差保证。
但在要求传动精度较高的精密齿轮传动中(如伺服系统中),齿侧间隙会造成传动死区(失动量),若该死区是在闭环系统中,则可能造成系统不稳定,所以,应该采用齿侧间隙较小、精度较高的齿轮传动副,以提高传动精度和系统的稳定性。
2、齿轮副侧隙的调整方法2.1刚性消隙法刚性消隙法包括偏心套(轴)调整法、轴向垫片调整法及斜齿轮法等。
2.1.1偏心套(轴)调整法如图1所示,将相互啮合的1对齿轮中的1个齿轮4装在电机输出轴上,并将电动机2安装在偏心套1(或偏心轴)上,通过转动偏心套(偏心轴)的转角,就可调节2个啮合齿轮的中心距,从而消除圆柱齿轮正、反转时的齿侧间隙。
这种调整方法的特点是结构简单,但侧隙不能自动补偿。
2.1.2轴向垫片调整法如图2所示,齿轮1和2相啮合,其分度圆弧齿厚沿轴线方向略有锥度,这样就可以用轴向垫片3使齿轮2沿轴向移动,从而消除2个齿轮的齿侧间隙。
装配时轴向垫片3的厚度应既能使得齿轮1和2之间齿侧间隙小,又能保证运转灵活。
这种调整方法的特点是结构简单,但侧隙不能自动补偿。
此法不如偏心套调整法方便。
2.1.3斜齿轮传动消除斜齿轮传动齿侧隙的方法是用2个薄齿轮与l个宽齿轮啮合,只在2个薄斜齿轮的中间隔开一小段距离,使其螺旋线错开。
精密齿轮传动中齿轮副侧隙的调整方法
精密齿轮传动中齿轮副侧隙的调整方法标题:精密齿轮传动中齿轮副侧隙的调整方法在精密齿轮传动系统中,齿轮副的侧隙对于确保传动精度和平稳性至关重要。
合理的侧隙调整可以降低齿轮运行时的噪音,减少磨损,并提高系统的整体性能。
本文将详细介绍在精密齿轮传动中调整齿轮副侧隙的具体方法。
一、齿轮副侧隙的重要性齿轮副侧隙,即齿轮在非接触状态下的间隙,对于齿轮传动系统的性能有着直接影响。
适当的侧隙可以保证齿轮在运行过程中有足够的空间进行热膨胀,以及补偿制造和安装过程中的误差。
过大的侧隙会导致传动不稳定,产生冲击和噪声,而侧隙过小则可能导致齿轮卡死,增加磨损。
二、齿轮副侧隙的调整方法1.齿轮副的选配在齿轮副制造过程中,首先应通过精确的加工和测量,确保齿轮的基体尺寸和齿形精度。
在装配前,应根据实际应用需求,选择合适的侧隙范围,然后进行齿轮副的选配。
选配时可以通过以下方法:a.根据齿轮的实际尺寸和公差,选择相应的齿轮副进行匹配。
b.使用塞尺或千分尺等量具,测量齿轮副的侧隙,确保其在规定范围内。
2.调整齿轮副侧隙的方法a.调整齿轮位置:通过移动齿轮的位置,改变齿轮副的侧隙。
如采用调整垫片、调整螺钉等方式。
b.修磨齿轮齿面:在齿轮齿面进行微量修磨,以改变齿轮副的侧隙。
此方法需注意齿面修磨量的控制,避免过度修磨。
c.调整齿轮轴的安装位置:通过调整齿轮轴的安装位置,改变齿轮副的侧隙。
3.侧隙检测与验证在调整齿轮副侧隙后,需进行侧隙检测与验证,确保侧隙在规定范围内。
常用的检测方法有:a.塞尺法:将塞尺插入齿轮副的齿隙中,测量侧隙大小。
b.千分尺法:使用千分尺测量齿轮副的侧隙。
c.涂色法:在齿轮副的齿面涂上颜色,通过齿轮运转后的颜色变化判断侧隙是否均匀。
三、总结在精密齿轮传动中,合理调整齿轮副侧隙对于提高系统的传动性能具有重要意义。
通过精确的齿轮副选配、调整齿轮位置、修磨齿面等方法,可以有效地控制齿轮副的侧隙,确保传动系统的稳定性和可靠性。
机械制造与自动化专业《影响齿轮副侧隙的偏差》
知识点五:影响齿轮副侧隙的偏差
• 2〕公法线长度偏差 • 公法线长度偏差是指齿轮一圈内,实际公法线长度Wa与公称公法线长度W之差。
公法线长度上偏差代号为Ebns,下偏差代号为Ebni。
Pb
Sb
Pb
图6-49 直齿圆柱齿轮公法线长度
• 知识点五: • 影响齿轮副侧隙的差知识点五:影响齿轮副侧隙的偏差
为了保证齿轮副的齿侧间隙,就必须控制轮齿的齿厚,齿轮轮齿的减薄量可由齿 厚偏差和公法线长度偏差来控制。
1〕齿厚偏差 齿厚偏差是指在分度圆柱上,齿厚的实际值与公称值之差〔对于斜齿轮齿厚是指
法向齿厚〕,如图9所示。齿厚上偏差代号为Esns,下偏差代号为Esni。
齿轮传动中的齿轮副侧隙调整
齿轮传动中的齿轮副侧隙调整摘要:在近些年经济高速发展的进程中,数控锥齿轮研齿机,大齿轮与小齿轮进行双面啮合,在双齿侧对滚的过程中,将Z轴方向的综合跳动偏差测量出来,并且借助西门子数控系统中的固定停功能,使小齿轮与大齿轮之间进行间隙啮合作用,同时,将磨合期间的大轮安装方向的坐标值记录下来,经过精确地计算之后,得出最佳的研磨点侧隙值。
借此,为了能够进一步提高数控锥齿轮研齿机实现自动侧隙,本文就数控锥齿轮研齿机自动侧隙的控制方法进行研究和分析。
关键词:数控锥齿轮研齿机;自动;侧隙;控制方法引言数控锥齿轮研齿机实际上指的就是锥齿轮副啮合过程中的产生的滑动速度,在啮合期间加入研磨剂之后进行的齿轮副的齿面啮合,齿轮副的齿面啮合这种操作方式,主要也是为了能够进一步降低齿面的粗糙度,从而提高齿面接触质量,减少噪音,进一步增强齿轮副运行过程中的稳定性和运行的有效性。
一、数控锥齿轮研齿机自动侧隙概念认知啮合的过程并不是独立存在的,而是需要一些附加的运动,使两个齿轮之间发生位置上的移动,使得全部的齿面都能够被研磨到一起。
当数控锥齿轮研齿轮机需要对一对相互啮合的锥齿轮的接触面进行研磨时,不仅要对各个研磨点,即锥齿轮的齿高H、齿长V、侧隙J进行准确的定位,而且还要对该研磨点的齿高方向坐标值,以及研磨点齿长的方向坐标值进行有效的把控,同时,确定其侧隙值也是必要的,一旦齿高H和齿长V发生数据上的变动,那么,其侧隙J的值也会随之发生一定的改变。
另外,调齿轮副的侧隙指的就是齿轮副研磨面进行接触的过程中,与非研磨区域之间形成的最小距离,一旦研齿过程中的侧隙趋向最小,或者是侧隙不存在时,那么,轮齿的两个齿轮会同时进入齿轮的研磨运动,这种研齿运动不仅不符合机械运动原理,而且还会造成机械设备的损伤,产生极大的噪音。
反之,一旦研齿过程中的侧隙趋向最大,那么,齿顶在边缘区域就会产生影响。
所以,侧隙不仅可以起到保证研齿运动研磨剂充分的渗入,而且还能够达到最佳的研磨效果,因此,各个研磨区域研磨点侧隙值的有效把控是至关重要的。
数控锥齿轮研齿机自动侧隙控制方法
数控锥齿轮研齿机自动侧隙控制方法【摘要】在数控研齿机yk2560a上,大齿轮与小齿轮作双面啮合,通过双齿侧对滚过程测量出z轴方向的综合跳动偏差;应用西门子840d数控系统中的固定停功能,使主动锥齿轮(小轮)与从动锥齿轮(大轮)作无间隙啮合,读出此时各研磨点大轮安装距方向的坐标值;再经过侧隙计算,求得个研磨点的侧隙值,使研磨一对相互啮合的锥齿轮的接触区时每一研磨点都有相同的侧隙。
【关键词】研齿机双面啮合固定停侧隙计算相同侧隙前言锥齿轮研齿机是利用锥齿轮副啮合过程中齿面的滑动速度,在啮合区中加入研磨剂进行齿轮副的齿面啮合,主要用来减少齿面粗糙度以改善齿面接触质量,使齿轮副在传动时达到高平稳性和低噪声。
研齿时需要一些附加运动使两齿轮之间的相互位移不断变动才能研磨到全部齿面。
数控锥齿轮研齿机上研磨一对相互啮合的锥齿轮的接触区时,要确定各研磨点的位置,也就是h、v、j坐标值,而且每给出研磨点齿高方向坐标值h1和研磨点齿长方向坐标值v1,就要给出一个侧隙值j1,当h和v变化时,侧隙值j也要跟着变化。
调齿轮副的侧隙就是齿轮副工作面接触时,非工作面之间的最小距离。
研齿时侧隙过小或没有侧隙时,将会同时在轮齿的两齿上进行研齿,产生不正确的研齿运动,并且出现噪声。
如果研齿时齿轮副的侧隙过大,则会产生齿顶边缘干涉;侧隙还能保证研齿时研磨液的充分渗入,为了保证良好的研磨效果,各研磨点具有相同的侧隙值尤为重要。
1 固定停功能的控制原理图1中编程值一定要大于固定停的位置值。
如图3所示,是yk2560a结构示意图。
本研齿机小轮安装距方向的运动为x(h)轴,大轮与小轮偏置距方向的运动为y(v)轴,大轮安装距方向的运动为z(j)轴,x、y和z分别由伺服电机带动丝杠进给,大轮轴线方向(j轴线方向)的传动机构上有一弹性机构幷装有光栅尺,由于弹性机构的存在使大齿轮成为浮动轴,大齿轮会沿其轴线方向来回移动,作双面啮合时光栅尺会记录大齿轮沿其轴线移动的位置,自动双齿侧对滚过程其实就是z轴方向的综合跳动偏差的测量。
齿轮副最小和最大法向侧隙值计算
张 维官
圈
齿 轮 副 最 小 和 最 大 法 向侧 隙值 计 算
河北石家庄科一重工有限公司 ( 50 1 杨 晓亮 0 07 ) 北京丰 台车辆段 ( 00 0 白永彬 10 7 )
在我们设计齿轮时 ,都要考虑互相 啮合 的齿轮副 的 最小法向侧 隙,以保证齿 轮 的正常工 作和 良好 的润滑 ,
1 ( /c) t=5 ℃ ,A2 3  ̄ 0 1 c ,A l 5 t= 0C。
=
3 .结语
用上述齿轮副法向侧 隙计算方法 计算设计 的齿 轮减
速器 ,应用在石油无功换 向智能抽油机上 ,控 制了齿轮 的回程误差 ,取得了 良好 的效果 。MW
( 稿 日期 :2 100 ) 收 0 0 17
(0 )之差 ( ) 2℃ ℃ ;
=4 1m。 0 ̄
11+  ̄ (2 8 / 5 +5 6)×CS 0 O 2。+(0×2×s 2 。 4 i 0) n
28 m) 5(
: —— 齿轮副法向啮合角 ( ) 。;
6 —— 润滑状况系数 ( 见附表) ; m —— 齿 轮模数 。 例 :已知 o t 5 ,m =2 。 = 5 ,a= 3 0 m,/ 2 0m 3= 0 rs n ,喷油润滑 ,O =1 . / / 15×1 (/C) 2=1. 1 0 1 ̄ , 0 5×
防止 由于齿 轮 工作 温度 的变 化导 致 两个 啮合 的齿 轮 卡 死。对 于有 回程误差要求的正反转齿轮 ,还 需考虑其齿 轮副的最大法 向侧隙 。 由于国标规定 了齿轮副的最小法 向侧 隙值 ,所 以一
=
…
2×3 0×1 ×( 15×1 一 5—1 . 0 0 1. 0 ×5 0 5×
齿轮传动中的齿轮副侧隙调整研究
齿轮传动中的齿轮副侧隙调整研究摘要:齿轮转动时,为了保证齿轮安全稳定的生产工作模式,常常需要考虑齿轮副的侧隙大小,来保障齿轮副工作的稳定性,也有一些精度要求过高的齿轮转动机构中需要消除侧隙,避免其造成的往复运动而带来的精度缺失。
本文系统分析常见的的几种影响齿轮副侧隙的因素和计算方法,在传统的基础上给出了几种利用结构设计来调整侧隙的方法,从而可以减少生产成本。
关键词:齿轮传动;侧隙;调整一、齿轮传动侧隙优缺点齿轮侧隙主要是一对齿轮处于啮合状态下,其中一个齿轮单个齿同另一个齿轮单个齿齿面发生接触过程中,前一个齿的其他齿面同第二个齿轮彼此啮合的齿相邻的齿在分度圆上存在的间隙。
基于理论层面分析,齿轮侧隙需等于零,不过齿轮具体运行阶段,齿形会由于温度的变化产生相应的变化。
不过如处于常温环境条件下,若不存在侧隙则会发生咬死的情况,并且可以位于侧隙中空出储存的有效空间,因此,存在侧隙情况属于整张现象。
然而,侧隙同样存在一定的缺点,比如当齿轮发生转向情况下,会造成回程误差与冲击情况。
侧隙需按照具体情况存在的差异做出合理改变,比如仪表若想降低回程误差需保持较小的侧隙。
不过若侧隙过小则会产生咬死情况,且由于储油问题只是润滑效果不明显。
同样,侧隙过大也会造成一定的不利影响。
因此,侧隙测量方法就显得至关重要,装配阶段通常运用铅丝法对侧隙进行有效测量,使用粗细程度较为均匀的铅丝,在齿轮啮合使对其进行有效夹紧,之后对铅丝实际厚度做出测量,从而获得侧隙的实际大小数值[1]。
二、齿轮侧隙设计中存在的问题按照最小侧隙的具体计算方法,最大实效齿轮厚度的计算公式同按照测量前期有关的端面实效齿厚之间的偏差并未明显的差异,因此也表明,端面实效齿厚上存在的偏差度齿厚造成影响,不然即齿厚上存在的偏差对具体齿厚造成影响,不过实际恶言,以上情况均无法作为对齿厚是否满足标准进行分析判断的理论基础依据,因此,对齿厚是否满足标准进行分析判断的主要因素为最大检测半径。
浅析机械设计中齿轮传动侧隙的解决办法
· 178 ·
内燃机与配件
浅析机械设计中齿轮传动侧隙的解决办法
韦玉梅
(江苏南江智能装备股份有限公司,无锡 214192)
摘要院齿轮是机械装置中最常用到的零件,能够帮助很多大型的机器运转,它能够将微小的动力转化为较大的动力,近些年来,机 械装置的复杂程度越来越高,要求齿轮的质量也在不断地提高。其中齿轮传动侧隙是一个较大的问题,严重影响了齿轮的作用,是齿 轮发展中一个必须解决的问题。
轮,而对直齿轮的调整就是在齿轮啮合的地方垫一个薄
2.2 齿轮传动侧隙的优缺点
片,这是一种非常容易的操作。首先让齿轮自行啮合然后
如果齿轮正常工作的话,齿பைடு நூலகம்传动侧隙应该是零,但 在这个薄片的操作下产生传动侧隙,这样就可以制造出最
动车组列车故障维护检修过程中的数据管理问题,科学地 进行故障信息的有效记录,并将故障信息发送到地面服务 器的数据库中,实现数据的有效管理以及维修工单的生 成。故障处理维护系统每天都会有移动互联网设备专用系 统产生大量的数据文档,系统可以借助成熟的关系数据库 完成相关数据的处理及储存。相关用户可以通过模块提供 的界面对数据进行存储。目前移动互联网设备专用系统的 数据管理过程中,可以按照数据的用途分成移动互联网设 备专用系统配置信息和布局信息以及故障信息和工单信 息两部分内容。配置信息和布局信息主要包括人员配置信 息、车辆配置信息、UI 布局信息等,相对来说信息变更的 可能性不大,可以采取非结构化的方式进行存储。工单信 息和故障信息是管理模块的主要操作对象,对管理模块的 修改和查询的操作相对比较频繁,一般采取半结构化的存 储模式进行存储。
浅谈机械设计中齿轮传动侧隙的解决方法
浅谈机械设计中齿轮传动侧隙的解决方法在机械设计中,齿轮传动是常用的一种传动方式,其结构简单、传动效率高,在各种机械设备和装置中被广泛应用。
然而,在实际应用中,齿轮传动中存在一个重要问题,即齿轮传动侧隙。
齿轮传动侧隙会导致传动效率降低、噪音增大、寿命缩短等问题,因此解决齿轮传动侧隙问题对于机械设计至关重要。
齿轮传动侧隙是指齿轮啮合时因加工精度、安装误差等原因造成的两轴间的间隙。
侧隙造成的主要问题有两个方面:一是误差传递问题,即在传动过程中,侧隙会导致原动轴和从动轴之间产生相对偏移,进而影响传递误差,降低传动精度;二是冲击问题,当传动时侧隙的方向发生急剧变化时,会导致冲击现象,加剧齿轮磨损、噪声等问题。
为了解决齿轮传动侧隙问题,可以采取以下的方法:1.加工精度提高:齿轮加工精度是影响齿轮传动侧隙的关键因素之一、通过提高齿轮的加工精度,可以减少加工误差带来的侧隙,提高齿轮传动的精度和效率。
常用的提高加工精度的方法包括采用精密加工设备、优化加工工艺等。
2.安装调整:在齿轮传动装配过程中,可以通过一些装配调整的方法来减少或消除侧隙。
例如,在装配过程中可以采用间隙分配法,即通过控制不同位置的齿轮与轴之间的间隙大小,来减少总侧隙;或者可以采用调整轴的位置和方向,来消除或减小侧隙。
3.采用齿轮啮合预紧装置:齿轮啮合预紧装置是一种能够消除齿轮传动侧隙的装置,常见的有弹簧预紧装置和调整螺钉预紧装置。
这些装置通过预先施加一定的预紧力,使齿轮在传动过程中始终保持紧密啮合状态,从而减少侧隙的影响。
4.采用齿轮侧隙补偿装置:除了消除侧隙的方法外,还可以采用齿轮侧隙补偿装置来解决侧隙问题。
齿轮侧隙补偿装置通过在传动系统中增加一定的装置来填充侧隙,保持齿轮的紧密啮合状态,减少侧隙带来的影响。
常见的齿轮侧隙补偿装置有齿轮联轴器、挤压补偿装置等。
总之,在机械设计中,齿轮传动侧隙是一个需要重视的问题。
通过提高加工精度、优化装配、采用齿轮预紧装置和齿轮侧隙补偿装置等方法,可以有效地解决齿轮传动侧隙问题,提高齿轮传动的精度、效率和寿命,从而提高机械设备的性能和可靠性。
齿轮副的齿侧间隙和精度
±
it7 it8 it9
表5-39 斜齿轮装配后的接触斑点(摘自gb/z18620.4—2002)
齿轮副的侧隙是在齿轮装配后自然形成的,侧隙的大小主要取决于齿厚和中心距。
在最小的中心距条件下,通过改变齿厚偏差来获得大小不同的齿侧间隙。
表5-40为中、大模数齿轮最小侧隙的推荐值。
表5-40 对于中、大模数齿轮最小侧隙j bnm in的推荐值(摘自gb/z18620.2—2002)(mm)
3.齿厚偏差与公差
公称齿厚是指齿厚的理论值,两个具有公称齿厚sn的齿轮在公称中心距下啮合是无侧隙的。
为了得到合理的齿侧间隙,通过将轮齿齿厚减薄一定的数值,在装配后侧隙就会自然形成。
4.公法线长度偏差ebn
公法线长度偏差为公法线实际长度与公称长度之差。
公法线长度是在基圆柱切平面(公法线平面)上跨k个齿,在接触到一个齿的右齿面和另一个齿的左齿面的两个平行平面之间测得的距离。
对于大模数的齿轮,生产中通常测量齿厚控制侧隙;齿轮齿厚的变化必然会引起公法线长度的变化,在中、小模数齿轮的批量生产中,常采用测量公法线长度的方法来控制齿侧间隙。
浅析机械设计中齿轮传动侧隙的解决方法
浅析机械设计中齿轮传动侧隙的解决方法作者:马博来源:《农家科技下旬刊》2017年第02期摘要:齿轮具有改变运动方向和运动速度,以及传递动力的作用。
齿轮在船舶、能源、制造、汽车等行业领域的设备中广泛地得到应用。
随着各个领域技术的不断更新与发展,对高质量齿轮的制造的要求也越来越高。
为了有效提高齿轮传动的传动率以及精度,文章简要地介绍了在齿轮的传动作用中,通过对齿轮传动侧隙所产生的问题提出了解决侧隙的有效方法。
关键词:传动;侧隙;齿轮;啮合状态;设计问题;放大补偿齿轮从东汉时期的指南车开始被人们逐渐应用,经历了许多年代,齿轮的形式以及作用都在不断地演变和发展。
有齿,并可以相互啮合的机械零部件就是齿轮。
按照齿轮的制造方法可以将齿轮分为烧结齿轮、轧制齿轮、切制齿轮、铸造齿轮等;按照齿线的形状可将齿轮分为曲线齿轮、人字齿轮、斜齿轮、直齿轮等;按照轮齿所处表面可将齿轮分为内齿轮和外齿轮;按照齿轮的外形将能够将齿轮分为蜗杆齿轮、非圆齿轮、锥齿轮、圆柱齿轮等等;再如按照齿廓曲线可将其分为圆弧齿轮、摆线齿轮、开线齿轮等。
齿轮其结构包括模数、周节即齿距、齿厚、齿廓、分度圆、齿根圆、齿顶圆、齿槽即齿间,轮齿等。
一、齿轮传动侧隙的优劣既然文章是对机械设计中齿轮法向侧隙的解决方法进行讨论,那我们就先来了解一下什么是齿轮侧隙。
在2个齿轮互相啮合的状态下,齿轮与齿轮在接触时,第二个齿轮和前一齿轮相互咬合的齿所邻近的齿在分度圆上的间隙称为齿轮侧隙。
在常温的状态下,齿轮与齿轮的啮合如果没有侧隙的存在就会出现咬死的现象。
在实际的齿轮运行中,随着机械工作过程中温度的逐渐上升,理论上应该为零的齿轮侧隙就会随着温度的升高而间隙变大。
因此,侧隙的产生也是正常现象,而且,侧隙中可以保留储油的空间,这些都是齿轮侧隙的特点。
但是,侧隙也会出现在齿轮转向时的回程误差,以至于给齿轮带来冲击影响,这就是齿轮侧隙的劣势所在。
侧隙过于窄小会因储油空间不足导致润滑不良,而且会容易造成齿轮咬死。
浅论齿轮传动中的齿轮副侧隙调整
浅论齿轮传动中的齿轮副侧隙调整作者:崔明杰来源:《科学与财富》2020年第15期摘要:齿轮转动时,为了保证齿轮安全稳定的生产工作模式,常常需要考虑齿轮副的侧隙大小,来保障齿轮副工作的稳定性,也有一些精度要求过高的齿轮转动机构中需要消除侧隙,避免其造成的往复运动而带来的精度缺失。
本文系统分析常见的的几种影响齿轮副侧隙的因素和计算方法,在传统的基础上给出了几种利用结构设计来调整侧隙的方法,从而可以减少生产成本。
关键词:齿轮传动;侧隙;调整1齒轮副侧隙概述1.1 齿轮误差来源齿轮误差的主要来源来自于:传动时造成的齿轮间误差、安装时产生的系统误差、设计图纸和施工之间的误差、加工精度缺失而产生的误差、受温度影响造成的系统误差等。
其中,传动时产生的误差成为转动误差,常见于多轮工作时,与轴承、齿轮之间的的传动链在输出转角和理论转角不一致造成的误差,记为Δφ。
传动链中,齿轮加工中的零部件和安装都会造成齿轮加工误差,不同齿轮的粗糙度、孔轴间隙值、滚动轴承与机架配合的公差带及轴承动环的偏心值,都是单个齿轮中的切向综合误差ΔFi及装置误差所产生误差集合。
1.2 齿轮副侧隙定义及作用齿轮副侧隙是指在一对齿轮啮合时,非工作齿面间的间隙。
在齿轮传动时,会产生摩擦作用而产生发热碰撞现象,在受力下也会造成齿轮表面变形,如果采取合适的间隙就会补偿其所产生的空隙,降低制造误差,起到齿廓润滑的作用。
通常情况下,可以通过制造公差来保证齿轮副侧隙大小。
而在一些精度要求过高的齿轮转动中,常见一些伺服系统,会出现因齿侧间隙造成的传动死区现象,造成闭环系统工作,这会造成齿轮系统工作的不稳定性,因此,在这种精度高的伺服系统中通常要采取较低的齿侧隙值、精度较高的齿轮副传动,以便提升传动精度,增强系统的稳定性。
2齿轮副侧隙的分类2.1法向侧隙法向侧隙的定义为齿轮副接触在工作齿面和非工作齿面之间的最小距离。
其距离可以用塞尺和铅丝沿一对齿轮啮合线上进行测量,也可以将铅丝放置在齿轮齿间,通过千分尺测量压扁的铅丝厚度得出。
齿轮副圆周侧隙
齿轮副圆周侧隙齿轮副是一种常见的传动装置,它由两个或多个啮合齿轮组成。
在实际应用中,齿轮副的运转要求齿轮之间有一定的侧隙。
本文将重点探讨齿轮副圆周侧隙的作用以及如何合理设置。
一、圆周侧隙的作用齿轮副圆周侧隙指的是齿轮与齿轮之间的空隙,一般是指齿向方向的侧面间隙。
它具有以下几个作用:1. 承载能力:圆周侧隙可以为齿轮副提供一定的弹性,使得齿轮的载荷能够得到有效的分配和传递。
在高速运动和高载荷情况下,圆周侧隙可以减小齿轮之间的接触应力,提高传动的可靠性和使用寿命。
2. 自动修正:由于齿轮制造和安装的误差,齿轮副很难做到完全精确的啮合。
合适的圆周侧隙可以为齿轮副提供一定的自动修正能力,使得齿轮在运动过程中能够自动调整位置,从而减小噪声和振动。
3. 温度变化:齿轮副在工作过程中会产生一定的摩擦热量,导致温度的升高。
适当设置圆周侧隙可以使齿轮副在温度变化时有足够的空间进行热胀冷缩,从而避免因温度变化引起的不良影响。
二、圆周侧隙的设计原则在设计齿轮副圆周侧隙时,需要考虑下列原则:1. 全面啮合:圆周侧隙应该能够满足齿轮的全面啮合。
即在齿轮轮齿接触线上的每个齿面都可以与对应齿轮的齿面进行正常啮合,确保传动效果的稳定和可靠。
2. 合理设置:圆周侧隙的大小应根据具体的传动要求来确定。
一般来说,过大的侧隙会增加齿面的相对移动,导致效率下降;而过小的侧隙则容易导致齿轮副过紧,增大运动和噪声。
3. 加工和安装误差考虑:齿轮的加工和安装会带来一定的误差。
在设计圆周侧隙时,需要充分考虑这些误差,并合理设置侧隙的上下限,以保证传动的正常运行。
三、圆周侧隙的计算方法在实际应用中,可以通过以下方法来计算齿轮副的圆周侧隙:1. 标准数值法:根据齿轮副的模数、压力角和精度等级,可以查阅相关的标准手册或规范,找到适用的圆周侧隙数值。
2. 经验公式法:根据实际经验,结合传动的类型和工作条件,可以使用经验公式来计算圆周侧隙。
这种方法比较简便,但精度相对较低。
[2016最新精品]齿轮副法向齿侧间隙的计算与检测
齿轮副法向齿侧间隙的计算与测量一、齿轮副法向侧隙的计算为保证齿轮副始终呈单面啮合的正常运转。
其工作齿面之间需有油膜润滑,而非工作齿面之间则要考虑到温升变形的影响,故齿轮副的工作齿面间和非工作齿面间都应有一足够而不过大的最小侧隙。
前者用于储油,后者用于弥补热膨胀所需。
这两者最小法向值之和称为齿轮副的最小法向齿侧间隙(简称最小侧隙jnmin) 其最小值取决于齿轮副的工作速度,润滑方式和温升。
与齿轮副的精度等级无关。
关于齿轮副的侧隙.GB10095—88规定采用基齿厚制,即利用减薄相配齿轮齿厚的办法获得。
为获得jnmin齿厚应有一最小减薄量(Ess齿厚上偏差)又因齿轮副的加工和安装不可能没有误差,如:-fpb、-fn.、Fβ和fx、fy等。
所以齿厚的最小减薄量,除取决于jnmin外还应考虑以上诸多误差都会对侧隙值产生减小的影响。
1.1齿轮副的最小法向齿侧间隙jnmin的计算:1)温升变形所需的最小法向侧隙jnmin1:jnmin1=a(α1△t1-α2△t2)×2sinαn式中:a——齿轮中心距(mm);α1,α2——齿轮和箱体材料的线膨胀系数;αn——齿轮法向啮合角;△t1,△t2——齿轮和箱体工作温度与标准温度之差:△t1=t1-20℃;△t2=t2-20℃。
2)保证正常油膜润滑所需的最小法向侧隙jn2:保证正常油膜润滑所需的最小法向侧隙jn2,取决于齿轮副的润滑方式和工作速度.当油池润滑时,jn2=(5~10)Mn(μm)。
当喷油润滑时,对于低速传动(工作速度v<10m/s),jn2=10Mn;对于中速传动(v=10~24m/s),jn2=30Mn;对于高速传动(v>60m/s),jn2=(30~50)Mn。
Mn为法向模数(mm)。
所以:齿轮副最小极限侧隙(jnmin)应为:jnmin=jn1+jn21.2齿轮副实际的最小法向侧隙(安装后的侧隙)的计算Jnmin′=|EssA+EssB|cosαn+(-fa)2sinαn-jn式中:EssA 和EssB ——AB 齿轮的齿厚上偏差;jn ——齿轮加工误差和齿轮副的安装无误差(fx ,fy )对侧隙的影响的最小量2f a ·sin αn —当齿轮副A/B 的中心距处于下偏差(-fa )时,对侧隙影响的最小值其中jn=222n 22)cos ()sin (cos 2n y n x pbB pbA f f F f f ααβ⋅+⋅++)α(+当=n α20°,F β=fx=2fy 时222104.2βF f f J pbB pbA n ++=1.3齿轮副最大法向侧隙jnmax 的计算:当AB 齿轮的精度等级,齿厚公差和AB 齿轮副的中心局极限偏差都确定时,jnmax 也就自然形成,一般齿轮副对其要求不严,可以免算,只作为检测的一个判定参考。
精密齿轮传动中齿轮副侧隙的调整方法
精密齿轮传动中齿轮副侧隙的调整方法
郭聚东;彭伟;张红鸽
【期刊名称】《起重运输机械》
【年(卷),期】2005(000)003
【摘要】齿轮副侧隙是指1对齿轮啮合时,非工作齿面间的间隙。
适当的侧隙是齿轮副工作的必要条件:它可以补偿轮齿因受力变形和摩擦发热而膨胀所引起的挤压;补偿制造和装配的误差;便于齿廓润滑等。
【总页数】2页(P80-81)
【作者】郭聚东;彭伟;张红鸽
【作者单位】河北科技大学机械电子工程学;河北科技大学机械电子工程学;河北省送变电公司
【正文语种】中文
【中图分类】TH17
【相关文献】
1.用轴承偏心套调整斜齿轮副的接触状态和侧隙 [J], 林春
2.浅析渐开线型圆柱齿轮增速器齿轮副侧隙的计算方法及测量 [J], 强海波
3.HY68精梳机分离传动机构齿轮副侧隙的设计计算 [J], 周冬凤
4.弧齿锥齿轮传动齿轮副侧隙调整 [J], 张燕飞;高红梅
5.基于换向传动齿轮副运动特点的最小齿轮副侧隙设计 [J], 李长河;侯雅丽
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=1
E刚+E.n1咖d+2工锄d+矗
E。n+E。,z1+0.7281n理tFd+Fn) +2工sin旺+血
对内啮合齿轮而言,公式表示为: 形时所表现出的塑性就越高。在此种旋转变薄拉伸中, 工件所受的拉应力比普通拉伸时要小很多,可近似认 为处于两向压应力状态,所以可达到较大的变形程度。 据介绍,旋转凹模速度在850~1100r/min时,可 得到尺寸精度高、表面粗糙度值低的产品,此时工件进 给速度可选40~120mm/r。若旋转凹模速度在1300r/ min时,进给速度可以为50~150mm/r。
多。
4弯曲模
5定位模
4
起皱极限进行r研 究,给出了不起皱条件下最小弯曲半径,并得出最小弯 曲半径与管径、模具形状和材料性能有关的结论。 金
(编辑禾禾)
;2.工件
3蒗璩 4、6.环 5下模座
金属塑性变形时,拉应 力所起的作用越小,压应力 所起的作用就越大,金属变
误差等随机变量对侧隙的影响在齿轮批量生产中成概 率分布.而平时设备修理更换的齿轮多为单件生产。其 实际侧隙为装配中各有关零件相关尺寸综合作用的结 果.当以上随机变量等均处于极限状态时,齿轮剐出现 的最小或最大法向侧隙可用下式表示:
i…。=IE。l+冒I-2l cosQ一2工sinq一^
=1日.1+F,。2I一0 72sin“(F1+凡2)
困旋转拉伸弯管法
这是较新的工艺,其原理如图6所示。弯管时.一方 而让管子随弯曲模旋转弯曲,另一方面与常规不同的是 再设加压模,使管子 在旋转受拉的状态下 弯曲。则有可能使最 小弯管半径和降低回 弹值方面有所突破。 该工艺可用于薄壁管 弯曲,更适用于航空
▲图6旋转拉伸弯曲模 1加压模
2管材 3心轴
囝旋转变薄拉伸
图5所示为旋转变薄拉伸示意图。用旋转变薄拉伸 能极大地提高壁厚变薄量,此种拉伸一方面凸模以一 定速度向下运动,另一方面与工件接触的滚珠3装在环 4与环6内.构成一旋转凹模。拉伸时工件轴向受到凸模 拉力作用.径向受到凹模的旋转辗压作用。且此种旋转 辗压作用占主导地位,因而其塑性变形是在滚动摩擦 条件下实现的,与普通变薄拉伸相比,其条件要优越得 多。此外还可由油泵通人一 定压力的润滑油,使得工件 与钢珠间摩擦系数(“= 0.14~0.16)很小,它比普通 拉伸时所需的轴向力要小得
浅谈齿轮副法向侧隙的控制
口张雨
中围分类号:TG61,THl32
4
文献标识码:B
文章编号:1000一4998(2003)02—0033—02
Ⅱ影响法向侧隙的因素
齿轮副的法向侧隙^是齿轮副在工作齿面接触 时.非工作齿面之间的最小距离。齿轮设计中,其侧隙 主要靠齿厚极限偏差和中心距极限偏差来保证。渐开 线圆柱齿轮精度规定了齿厚极限偏差的数值由小到 大,依次为c,D……s等14种字母代号来表示,每种代 号所表示的齿厚偏差值以周节极限偏差^。的倍数计 算,设I十时可根据齿轮副的工作情况来选择,由齿厚 极限上偏差E.、下偏差臣,或公法线平均长度上偏差 日.、下偏差E。。两种代号组成。 由于齿轮的齿厚公差、中心距公差、加工和安装 究认为.此加工方法工件径向应力不再呈现全部的 拉应力状态.而是分成拉应力与压应力两个区域, 故有一个径向应力是为零的点。增大拉伸中的推力 能使径向为零的点内移,则凸模圆角区域坯料内的 最大拉应力能有所降低,因而坯料变薄量得以减 小.可以提高一次变形程度。推力如何有效供给, 可能是推拉拉伸的一个关键问题。故推拉拉伸法离 实际应用还有一定距离。
作者单位:马鞍山市鼎泰金属州品公司 邮政编码:安徽-24301I 收稿日期:2002年1月
▲幽5旋转变薄拙伸
盘垫垫塑迪塑堂蔓丝塑
万 方数据
撕/2国
万 方数据