《整式的加减》第三课时参考教案-PDF
北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计
北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计一. 教材分析《整式的加减》是北师大版数学七年级上册第3.4节的内容,本节课主要介绍整式的加减运算。
学生在之前的学习中已经掌握了整式的概念和基本运算,本节课将进一步深入学习整式的加减运算,为后续学习更复杂的代数式打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于整式的概念和基本运算已经有了一定的了解。
但学生在进行整式的加减运算时,可能会遇到一些困难,如合并同类项的方法不够熟练,对于复杂的式子缺乏运算技巧等。
因此,在教学过程中,需要引导学生回顾和巩固已学的知识,提供适当的例子和练习,帮助学生掌握整式的加减运算方法。
三. 教学目标1.理解整式加减的概念和意义。
2.掌握整式加减的运算方法,能够正确进行整式的加减运算。
3.能够运用整式加减解决实际问题,提高解决问题的能力。
四. 教学重难点1.重点:整式加减的概念和意义,整式加减的运算方法。
2.难点:整式加减的运算方法,特别是合并同类项的方法和技巧。
五. 教学方法采用问题驱动法、引导发现法、合作交流法等教学方法。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和积极性。
同时,通过合作交流,让学生互相学习和帮助,提高学生的合作能力和沟通能力。
六. 教学准备1.教学课件:制作教学课件,包括整式的加减运算的定义、方法和例子等。
2.练习题:准备一些整式的加减运算的练习题,包括不同难度的题目。
3.黑板:准备黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)通过提问方式回顾整式的概念和基本运算,引导学生思考整式的加减运算的意义和必要性。
2.呈现(15分钟)展示一些实际的例子,让学生观察和分析整式的加减运算的过程和结果。
引导学生总结整式加减的运算方法。
3.操练(15分钟)让学生分组合作,进行一些整式的加减运算的练习题。
教师巡回指导,解答学生的问题,并及时给予反馈和评价。
4.巩固(10分钟)让学生独立完成一些整式的加减运算的练习题,巩固所学的知识。
最新人教版七年级数学上册《第3课时 整式的加减》优质教案
2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(-32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12) 解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52 (4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
人教版-数学-七年级上册-《整式的加减》第三课时教案
2.2 整式的加减第三课时整式的加减一、教学目标知识与技能1. 掌握整式加减的一般步骤,会熟练地进行整式的加减运算。
2. 会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
过程与方法经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力.情感、态度与价值观培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式加减的应用价值.二、学情分析三、教学重点、难点及关键重点能够正确地进行整式的加减运算.难点理解整式的加减实质,体会整式加减的必要性.关键明确问题中的数量关系,熟练掌握去括号规律.突破方法通过探索性练习,引导学生总结归纳整式加减运算的一般步骤,并应用其正确地进行整式的加减运算.四、教法与学法导航教学方法以旧引新,通过自己探究发现整式加减运算的一般步骤。
学习方法在自主探究学习的过程中,掌握整式加减运算的一般步骤.五、教学准备教师准备:多媒体课件、投影仪(用于展示问题,引导讨论,出示答案).学生准备:合并同类项、去括号的有关知识.六、教学过程(一)、导入新课活动一:一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?教师操作多媒体,展示问题,启发、•引导学生用不同方法列式表示小红和小明共花费的钱.学生独立思考,然后与同伴交流.思考点拨:方法一:小红买3本笔记本,花去3x元,2支圆珠笔花去2y元,•小红共花去(3x+2y)元;小明买4本笔记本,花去4x元,3枝圆珠笔花去3y元,小明共花去(•4x+3y)元,所以他们一共花去元.方法二,小红和小明买笔记本共花去(3x+4x)元,买圆珠笔共花去(2y+3y)元.买笔记本和圆珠笔共花去元.方法三,小红和小明共买了(3+4)本笔记本,(2+3)支圆珠笔,•因此他们共花费元.对上面的式子进行化简得出小红和小明共花费的钱数,从而引出课题——整式的加减。
3.4《整式的加减第3课时》 北师大版七年级数学上册教案
第三章整式及其加减4 整式的加减第3课时一、教学目标1.在具体情境中体会去括号的必要性.2.利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.3.能利用去括号法则进行运算.4.培养学生观察、语言组织与表达的能力.二、教学重难点重点:利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.难点:能利用去括号法则进行运算.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:教师提出问题,引导学生复习之前所学知识.师:同学们还记得如何去括号和合并同类项吗?预设答案:(1)去括号,括号前是“+”号,直接去掉“+” 和括号;括号前是“-”号,去掉“-”和括号,括号里边的各项都变号;(2)如果括号前有数字因数时,运用乘法分配律运算,切勿漏乘;(3)出现多层括号时,一般是由里向外逐层去括号.把同类项的系数相加,字母和字母的指数不变.学生思考并反馈.通过回顾之前学习过的去括号和合并同类项的知识,为接下来进行整式的加减运算奠定基础.环节二探究新知【操作】教师活动:教师出示要求,学生动手计算并集体交流反馈.数字游戏1两个数相加后的结果有什么规律?预设答案:能被11整除.追问:换一些数试试,对于任意一个两位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立. 【证明】如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:.预设答案:10a+b交换这个两位数的十位数字和个位数字,得到的数是:.预设答案:10b+ a将这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a学生写出两位数动手计算并反馈.学生在老师的引导下总结并反馈.让学生通过动手计算的过程,找到这两个两位数相加后的结果的特征,然后再引导学生通过列代数式进行验证,不仅让学生进一步熟悉了去括号和合并同类项的法则,还积累了一些经验,为接下来探究三位数相减后的规律做铺垫.=11a+11b=11(a+b)小结:这些和都是11的倍数【操作】数字游戏2两个数相减后的结果有什么规律?预设答案:它们的差是99的倍数追问:换一些数试试,对于任意一个三位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立. 【证明】任意一个三位数可以表示为:100a+10b+c交换它的百位数字和个位数字,得到的数为:100c+10b+a将这两个数相减:(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c)小结:它们的差都是99的倍数.【议一议】在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?学生动手做一做并交流反馈.学生认真思考,并交流反馈.学生认真思考并回答.、通过之前学习的探究方法,探索三位数交换百位数字与个位数字之后,与原来三位数作差后结果的规律,让学生感受整式加减运算的必要性.通过议一议的活动,让学生预设答案:整式的加减运算,通过去括号,合并同类项进行运算.小结:进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.【做一做】计算.(1)2x 2-3x +1与-3x 2+5x -7的和;(2) -x 2+3xy -12 y 2与-12x 2+4xy -32y 2 的差.预设答案:解:(1)(2x 2-3x +1)+(-3x 2+5x -7)=2x 2-3x +1-3x 2+5x -7=2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6提示:先去括号,再合并同类项,合并同类项时把系数相加减,字母和字母的指数不变字母.(2) (-x 2+3xy -12y 2)-(12x 2+4xy -32y 2)=-x 2+3xy -12y 2-12x 2-4xy +32y 2=-x 2-12x 2+3xy -4xy -12y 2+32y 2=-12x 2-xy +y 2提示:去括号时,当括号前面是负号时,括号内各项都要变号.【归纳】1. 几个整式相加减,通常用括号把每一个整式括起来,再用加、减符号连接,然后进行运算.2. 整式加减实际上就是去括号、合并同类项.学生动手计算并反馈.明确整式加减运算实际上就是去括号和合并同类项的过程,也是为接下来进行整式的加减运算奠定基础.通过做一做,让学生进一步巩固整式加减运算的运算步骤,加强学生的运算能力..环节三应用新知教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.【典型例题】例1 计算:(1) (4k2+7k)+(-k2+3k-1)(2) (5y+3x-15z2)-(12y+7x+z2)(3) 7(p3+p2-p-1)-2(p3+p)(4) -(13+m2n+m3)-(23-m2n-m3)分析:进行整式加减运算时,通常要先去括号,再合并同类项.解:(1)原式=4k2+7k-k2+3k-1=4k2-k2+7k+3k-1=3k2+10k-1.(2) 原式=5y+3x-15z2-12y-7x-z2=5y-12y+3x-7x-15z2-z2=-7y-4x-16z2.(3) 原式=(7p3+7p2-7p-7)- (2p3+2p)=7p3+7p2-7p-7-2p3-2p=7p3-2p3+7p2-7p-2p-7=5p3+7p2-9p-7.(4) 原式=-13-m2n-m3-23+m2n+m3=-13-23-m2n+m2n―m3+m3=-1.例2从1~9这九个数字中选择三个数字,由这三个数字可以组成六个两位数,先把这六个两位数相加,然后再用所得的和除以所选三个数字之和。
人教版七年级数学上册整式的加减《整式(第3课时)》示范教学设计
2.1整式(第3课时)教学目标1.理解多项式、多项式的项及其次数以及整式的概念.2.能确定一个多项式的项和次数,会用多项式表示简单的数量关系.教学重点理解整式及多项式的有关概念,会用多项式表示实际问题中的数量关系.教学难点准确确定多项式的项及次数.教学过程新课导入填空:1.买一个书包需要x元,买一支铅笔需要y元,买一个本子需要z元,买1个书包、2支铅笔、2个本子共需要(x+2y+2z)元.2.若三角形的三条边长分别为a,b,c,则三角形的周长是a+b+c .3.如下图,长方形的宽为a,长为b,圆的半径为r,则阴影部分面积是ab-πr² .新知探究一、探究学习【问题】思考:列出的这些式子有什么共同特点?与单项式有什么联系?x+2y+2z,a+b+c,ab-πr².【师生活动】学生先独立分析所写出的三个式子,尽自己努力找到它们的共同特点,师生再共同进行总结.【设计意图】通过自主探究,让学生更深刻地理解多项式和单项式之间的关系.二、新知精讲【新知】多项式的定义几个单项式的和叫做多项式.【师生活动】学生复述这一定义.【设计意图】通过重复记忆,让学生进一步加深对多项式的定义的理解.【新知】多项式的相关概念:x2-2x+18多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里,次数最高项的次数,叫做这个多项式的次数.【师生活动】结合实例,让学生认识多项式的项和次数.【设计意图】为后面确定多项式的项和次数做好铺垫.【问题】多项式的次数与单项式的次数有什么区别?【师生活动】引导学生结合定义做出回答.【设计意图】通过对问题的解答,使学生理解多项式和单项式的次数之间的联系和区别.【思考】展示单项式与多项式的动图,想一想单项式和多项式有什么关系.【思考】多项式是几个单项式的和,那么多项式与单项式有统称吗?【新知】整式的概念单项式与多项式统称整式.【思考】单项式、多项式、整式之间有什么关系?【师生活动】对三者的定义进行区分,明确它们之间的关系.【设计意图】巩固并加深学生对概念的理解.三、典例精讲【例1】请指出下列式子中的多项式:(1)12xy3-5x+3;(2)222+a b;(3)2+mnm n;(4)-7.【答案】解:根据“多项式是几个单项式的和”进行判断即可.(1)12xy3-5x+3可看成单项式12xy3,-5x,3的和,是多项式;(2)222+a b可看成单项式22a,22b的和,是多项式;(3)2+mnm n的分母中含有字母,显然不符合题意;(4)-7是单项式.所以,(1)(2)是多项式.【师生活动】学生回答,老师点评.【设计意图】巩固学生对多项式的概念的理解和掌握.【例2】指出下列多项式的项与次数:(1)a3-a2b+ab2-b3;(2)3n4-2n2+1.【答案】解:(1)多项式a3-a2b+ab2-b3的项有a3,-a2b,ab2,-b3,次数是3.(2)多项式3n4-2n2+1的项有3n4,-2n2,1,次数是4.【师生活动】学生独立解决,组内探讨答案是否正确.【设计意图】让学生熟练找出多项式的项和次数.【例3】如图,用式子表示圆环的面积.当R=15 cm,r=10 cm时,求圆环的面积(π取3.14).【答案】解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR2-πr2.当R=15 cm,r=10 cm时,圆环的面积(单位:cm2)是πR2-πr2=3.14×152-3.14×102=392.5.这个圆环的面积是392.5 cm2.【师生活动】首先用式子表示出圆环面积,再把数值代入求解.【设计意图】掌握用多项式表示数量关系的方法,并能对多项式进行求值.课堂小结板书设计一、多项式的定义二、多项式的项和次数三、整式的定义课后任务完成教材第58页练习1~2题.。
七年级数学上册第3章整式的加减第3节整式3《升幂排列与降幂排列》教案(新版)华东师大版
在排列中,应能让学生说出哪几种排列比较整齐,这样让学生去体验它所蕴含的排列组合思想与数学美感,能培养学生的审美观,也有利于教师把握本节课的情感因素,为本节课打下良好的情感基础。
这里头的两个注意点都是以Βιβλιοθήκη 我们继续学习多项式必须时时注意的点。
三、巩固训练:
P100 练习题
四、知识小结:
本节课的学习涉及到数学美感的问题,通过对多项式按照某一个字母的指数从大到小或是从小到大的顺序重新排列,在排列中必须认识到排列后的结果仍然是一个多项式,只是项的位置发生了一定的变化而已。
五、家庭作业:
P100 习题3.3 4、5
六、每日预题:
什么是同类项?如何确定两个单项式是同类项?
讲透升(降)排列的方法。
在讲解几个例题时,都可以引导学生用另一种的排列方式(包括用另外的字母),从面举一反三。
注:(1)重新排列多项式时,每一项一定要连同它的符号一起移动;
(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。
所以,“ ”是按 的降幂排列,“ ”是按 升幂排列。
例:把多项式 按 升幂排列。
例:把多项式 重新排列:
(1)按 升幂排列;
(2)按 降幂排列。
例:把多项式 按 升幂排列。
二、新课拆析:
1、知识尝试:
从多项式 的任意排列(运用加法交换律),我们知
道:此多项式有多种的排列方式,这就要求能从中找到更好的排列方式。
2、知识形成:
从尝试的结果我们知道:任意交换多项式 中各项的位置,可以得到6种不同的排列方式,在这其中排列方式中,“ ”与“ ”的排列是比较整齐的,为什么?
整式的加减第三课时教案
整式的加减第三课时教案教案标题:整式的加减第三课时教案教学目标:1. 理解整式的加法和减法的定义及运算规则。
2. 掌握整式加法和减法的基本技巧。
3. 能够灵活运用整式的加减法解决实际问题。
教学重点:1. 整式的加法和减法的定义及运算规则。
2. 整式加法和减法的基本技巧。
教学难点:1. 运用整式的加减法解决实际问题。
教学准备:1. 教材:教科书、练习册。
2. 教具:黑板、彩色粉笔、计算器。
教学过程:Step 1:导入(5分钟)通过一个简单的问题导入本节课的内容:小明手上有3个苹果,小红给了他2个苹果,小明手上一共有几个苹果?引导学生思考并回答。
Step 2:知识讲解(15分钟)1. 复习整式的定义:由常数、字母和它们的乘积(称为单项式)以及单项式之和(称为多项式)组成的代数式。
2. 整式的加法和减法定义:- 加法定义:将同类项的系数相加,保留字母和指数不变。
- 减法定义:将减数中的每一项的系数变为相反数,然后按照加法的规则进行运算。
3. 整式加法和减法的运算规则:- 同类项:具有相同字母和指数的项。
- 合并同类项:将同类项的系数相加,保留字母和指数不变。
- 简化整式:将合并同类项后的整式写成系数从大到小排列的标准形式。
Step 3:示范演示(10分钟)通过几个例题演示整式的加法和减法的步骤和技巧,引导学生掌握加减法的基本运算方法。
Step 4:练习训练(20分钟)学生进行课堂练习,通过计算器辅助计算,完成练习册上的相关题目。
教师巡回指导,及时纠正学生的错误。
Step 5:拓展应用(10分钟)引导学生将整式的加减法应用到实际问题中,例如:小明去购物,买了3本书,每本书的价格是x元;小红也去购物,买了2本书,每本书的价格是y元。
问两人一共花了多少钱?通过列式和整式的加减法解决该问题。
Step 6:归纳总结(5分钟)让学生总结整式的加减法的定义、运算规则和基本技巧,并记录在黑板上。
Step 7:作业布置(5分钟)布置课后作业:完成练习册上的相关习题,并思考如何运用整式的加减法解决实际问题。
4.2 整式的加减 第3课时 教案 2024-2025学年数学人教版七年级上册
4.2整式的加减第3课时【教学目标】1.会进行整式加减的运算,并能说明其中的算理,让学生从实际背景中去体会进行整式的加减的必要性.2.经历探索的整式加减运算的法则的过程,进一步培养学生观察、归纳、类比、概括等能力.【重点难点】重点:熟练进行整式的加减运算.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号.灵活准确的运用整式的加减的步骤进行运算.【教学过程】一、创设情境(一)复习回顾1.计算(1)4x-x=;(2)-6ab+ab+8ab=.2.化简下列各式:x=;(1)125x+16(2)3x-1x=.33.化简:(1)6y-(3x+2y);(2)3a2-(3a2+2a).(二)情境导入李亮和张莹到希望小学去看望小同学,李亮买了10支钢笔和5本字典作为礼物;张莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a 元,字典的售价为每本b元,文具盒的售价为每个c元.请你计算:(1)李亮花了元;张莹花了元;李亮和张莹共花元.(2)李亮比张莹多花元.想一想:如何进行整式的加减运算?二、探究归纳探究点1:整式的加减【典例评析】例1:教材P100【例6】(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).这是课本例题的处理,学生对如何去括号已经能够很好地掌握,学生完全可以利用以前所学习的知识进行问题的解决,稍有难度的点是合并同类项,因为有多个同类项如何处理需要教师进行点拨指导.教师可以类比有理数的加减运算,进行处理(见课本例题详解);也可以使用添括号方式进行处理,解答过程如下:(1)解:原式=2x-3y+5x+4y=(2x+5x)+(-3y+4y)=7x+y;(2)解:原式=8a-7b-4a+5b=(8a-4a)+(-7b+5b)=4a-2b教师可以对两种情况进行对比,让学生择优选择.【针对性训练】化简(x +3y )-2(x -3y )-12(x +3y )+(x -3y ) =x +3y -2x +6y -12x -32y +x -3y =x -2x -12x +x +3y +6y -32y -3y =-12x +92y 要点归纳:整式的加减运算归结为 、 ,运算结果仍是 .运算结果,常将多项式的某个字母(如x )降幂(升幂)排列.探究点2:整式的加减的应用例2:教材P100【例7】教师引导:(1)求纸盒用料实际应该求什么?(2)怎样解决这两个问题?展示两个长方体纸盒实物模型,引导学生围绕以上两个问题观察,学生分组讨论、交流,教师倾听学生交流,指导学生探究.或借助多媒体展示长方体各个面的长、宽,引导学生完成列代数式,合并同类项,解决实际问题.师生活动:师:我们利用整式的加减解决实际问题的步骤是什么?整式加减的实质是什么?学生分组讨论、交流后归纳出(学生自己表述).要点归纳:整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【针对性训练】教材P102练习T3例3:教材P101【例8】师生活动:教师板书示范,同时引导学生领会每一步的计算依据.注意引导学生总结整式化简求值的一般步骤.使学生领会整式的求值过程,能自觉地运用“先化简,然后再求值”的这一思路解决问题.同时进一步使学生体会整式的加减在求代数式的值时的便捷.三、检测反馈1.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A.-5x -1B.5x +1C.-13x -1D.13x +12.长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是( ) A.14a +6b B.7a +3bC.10a +10b D .12a +8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是 ( )A.二次多项式 B .三次多项式C.五次三项式 D .五次多项式4.多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 为( )A.2 B .-2C.4 D .-45.已知A =3a 2-2a +1,B =5a 2-3a +2,则2A -3B = .6.若mn =m +3,则2mn +3m -5mn +10= .7.计算:(1)-53ab 3+2a 3b -92a 2b -ab 3-12a 2b -a 3b ; (2)(7m 2-4mn -n 2)-(2m 2-mn +2n 2);(3)-3(3x +2y )-0.3(6y -5x );(4)(13a 3-2a -6)-12(12a 3-4a -7). 8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?四、本课小结整式的加减{ 整式加减的步骤{ ①列代数式②去括号③合并同类项整式加减的应用五、布置作业基础:教材P102习题T3、4、5.综合:教材P102习题T6,P103习题T11.六、板书设计七、教学反思整式的加减是学生进入第三学段后最先遇到的有关式子的运算,是由具体的数字运算发展到代数式运算的转折点.整式的加减运算是今后学习整式的乘除、分式的化简等涉及(代数)“式”运算的基础.由于整式中的字母可以表示任意有理数,因此整式的加减运算可以类比和应用有理数的运算与加法、乘法的运算律,进一步体会“(有理)数”与“(整)式”运算的相通性.用字母可以表示数或数量关系,也可以表示特定意义的公式或具有某些规律的数.用整式表示和分析实际问题中的数量关系,能使数量之间的关系更简明,更具有普遍意义.当整式中所含字母的取值确定后,可以求得此时整式的值,通常的做法是,先将整式化简,即先去括号、合并同类项,再将字母的值代入计算,这样可以化繁为简,使运算简便,这也说明,式的运算更具有一般性,数的运算是式的运算的特殊情形.本课旨在通过探索整式加减运算法则的过程,进一步培养学生观察、归纳、类比、概括等能力,提高有条理的思考及语言表达能力.让学生在探索整式加减运算法则的活动中通过相互间的合作与交流,进一步挖掘学生合作交流的能力和数学表达能力.在解决问题的过程中了解数学的价值,增强“用数学”的信心.。
【教案】整式的加减(第3课时)
第二章整式的加减2.2 整式的加减第3课时一、教学目标【知识与技能】能根据题意列出式子:会进行整式加减运算,并能说明其中的算理.【过程与方法】经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力.【情感态度与价值观】培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值.二、课型新授课。
三、课时第3课时,共3课时。
四、教学重难点【教学重点】列式表示实际问题中的数量关系,会进行整式加减运算.【教学难点】列式表示问题中的数量关系,去掉括号前是负因数的括号.五、课前准备教师:课件、直尺、去括号图片等。
学生:三角尺、练习本、圆珠笔或钢笔、铅笔。
六、教学过程(一)导入新课教师:我们先来做一个数字游戏:我来说你来写(出示课件2)重复几次看看,谁能先发现这些和有什么规律?对于任意一个两位数都成立吗?(二)探索新知1.师生互动,探究整式加减运算法则教师问1:某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?学生答案:n+(n+1)+(n+2)+(n+3)教师问2:以上答案进一步化简吗?如何化简?我们进行了哪些运算?学生回答:可以,去括号,合并同类项.教师问3:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:__________.(出示课件4)学生回答:10a+b教师问4:交换这个两位数的十位数字和个位数字,得到的数是:_____________,将这两个数相加:_____________.学生回答:10b+a,(10a+b)+ (10b+a)= 10a+b+10b+a=11a+11b=11(a+b)教师问5:结果有何特点?学生回答:是11的倍数.教师问6:任意写一个三位数,交换它的百位数字与个位数字,又得到一个数,两个数相减,你又发现什么了规律?(出示课件5)学生回答:举例:原三位数728,百位与个位交换后的数为827,由728 –827= – 99.结果也是11的倍数. (出示课件6)教师问7:你能看出什么规律并验证它吗?师生共同解答如下:任意一个三位数可以表示100a+10b+c验证:设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(出示课件7)(100a+10b+c) –( 100c+10b+a)= 100a+10b+c–100c–10b–a=99a–99c=99(a–c).教师问8:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?学生回答:去括号,合并同类项.总结点拨:整式加减的一般步骤可以总结为:(1)如果有括号,那么先去括号。
人教版七年级数学上册整式的加减《整式的加减(第3课时)》示范教学设计
2.2整式的加减(第3课时)教学目标1.掌握整式加减的运算法则.2.让学生感受到整式的加减运算在解决实际问题中所起的作用.教学重点整式加减的运算法则.教学难点能正确进行整式的加减运算.教学过程新课导入【问题】某中学合唱团出场时第一排站了n名同学,从第二排起每一排都比前面一排多1人,一共站了四排,则该合唱团一共有多少名同学参加?【答案】解:参加该合唱团的学生人数为n+(n+1)+(n+2)+(n+3).解决实际问题时,经常需要把若干个整式相加减.像这样把若干个整式相加减,即为整式的加减运算.新知探究一、探究学习【问题】化简:n+(n+1)+(n+2)+(n+3).【答案】解:原式=n+n+1+n+2+n+3=(n+n+n+n)+(1+2+3)=4n+6.【问题】在上面的化简过程中,实际进行了哪些运算?怎样进行整式的加减运算?【师生活动】学生运用已经学过的知识,独立解答.【设计意图】通过解决这一问题,引出后面的整式加减的运算法则.二、新知精讲【问题】1.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).【答案】解:(1)原式=2x-3y+5x+4y=7x+y;(2)原式=8a-7b-4a+5b=4a-2b.【师生活动】学生独立解决,然后同桌之间进行交流.【设计意图】使学生意识到,进行整式加减运算时,通常是先去括号,再合并同类项.【思考】如果题目(1)变形为:求多项式2x-3y和5x+4y的和;(2)变形为:求多项式8a-7b和4a-5b的差,应分别怎样列式?【师生活动】学生尝试独立列式.【设计意图】基于实例使学生明白,多项式之间相加减的时候,要把每一个多项式添加括号,再用加减运算符号连接起来.【问题】2.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,2支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?【答案】解法1:小红买笔记本和圆珠笔共花费(3x+2y)元,小明买笔记本和圆珠笔共花费(4x+3y)元.小红和小明一共花费(单位:元)(3x+2y)+(4x+3y)=3x+2y+4x+3y=7x+5y.解法2:小红和小明买笔记本共花费(3x+4x)元,买圆珠笔共花费(2y+3y)元.小红和小明一共花费(单位:元)(3x+4x)+(2y+3y)=3x+4x+2y+3y=7x+5y.【师生活动】教师指导,学生通过两种方法列式计算.【设计意图】知道从不同的角度考虑问题并列式,从而发现,虽然式子不同,但最终会得到同一结果.【问题】3.做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?【答案】解:小纸盒的表面积是(2ab +2bc +2ca ) cm 2,大纸盒的表面积是(6ab +8bc + 6ca ) cm 2.(1)做这两个纸盒共用料(单位:cm 2)(2ab +2bc +2ca )+(6ab +8bc +6ca )=2ab +2bc +2ca +6ab +8bc +6ca=8ab +10bc +8ca ;(2)做大纸盒比做小纸盒多用料(单位:cm 2)(6ab +8bc +6ca )-(2ab +2bc +2ca )=6ab +8bc +6ca -2ab -2bc -2ca=4ab +6bc +4ca .【师生活动】一起读题,写出要求的表达式.【设计意图】熟悉利用整式的加减运算解决实际问题的过程,明确应该注意的问题.【新知】解决整式加减运算应用题的“三步法”:(1)列式;(2)运算:去括号,合并同类项;(3)得出结果.【新知】整式加减的运算法则一般地,几个整式相加减,如果 有括号就先去括号 ,然后 再合并同类项 .三、典例精讲【例1】求22113122323x x y x y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--+-+的值,其中x =-2,y =23. 【答案】解:22113122323x x y x y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--+-+ =12x -2x +223y -32x +213y=-3x+y2.当x=-2,y=23时,原式=(-3)×(-2)+223⎛⎫⎪⎝⎭=6+49=469.【师生活动】学生独立解决,组内交流,判断对错.【设计意图】熟悉整式加减的运算法则.【思考】整式的化简与求值的具体步骤是什么?课堂小结板书设计一、整式加减运算的实质二、整式加减运算的步骤三、整式加减运算的结果课后任务完成教材第69页练习1~3题.。
《整式的加减》第三课时教案 (公开课)2022年
3.4 整式的加减〔第三课时〕●教学目标〔一〕教学知识点1.经历用字母表示数量关系的过程,开展符号感.2.会进行整式加减运算,并能说明其中的算理.〔二〕能力训练要求1.在进行整式加减运算的过程中,开展学生有条理的思考及语言表达能力.2.在实际情景中,进一步开展学生的符号感.〔三〕情感与价值观要求1.在解决问题的过程中了解数学的价值,开展“用数学〞的信心.2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.●教学重点1.经历字母表示数的过程,开展符号感.2.会进行整式加减运算,并能说明其中的算理.●教学难点灵活地列出算式和去括号.●教学方法活动——讨论法教师利用活动游戏或根据情况创设情景,鼓励学生通过讨论发现数量关系,运用符号进行表示,再利用所学的合并同类项、去括号的法那么验证自己的发现,从而理解整式加减运算的算理.●教学过程Ⅰ.提出问题,引入新课[师]下面我们先来做一个游戏:〔1〕任意写一个两位数;〔2〕交换这个两位数的十位数字和个位数字,又得到一个数;〔3〕求这个两位数的和.[生]我取了一个两位数12;交换这个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.观察可以发现这些和都是11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.[师]这个规律是不是对任意的两位数都成立呢?为什么?〔鼓励同伴之间互相讨论,相互启发〕[生]对于任意一个两位数,我们可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.这两个数相加:〔10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b 根据运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.[师]很棒!〔10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a都是什么样的代数式?[生]10a+b与10b+a是多项式,也就是整式,因此(10a+b)+(10b+a)是整式的加法.[师]如果要是求这两个数的差,又如何列出计算的式子呢?[生]〔10a+b)-(10b+a).[师]这就是整式的减法.你能发现它们的差有何规律吗?[生]〔10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b由此可知,这两个数的差是9的倍数.[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发现了其中的规律.在说明(10a+b)+(10b+a)是11的倍数时,每一步的依据的法那么是什么呢?(10a+b)-(10b+a)是9的倍数呢?[生]第一步的依据是去括号法那么;第二步是合并同类项法那么.[师]从上面的例子中可以发现整式的加减法可以帮我们解决实际情景中的问题.因此,我们这节课就来学习整式的加减.Ⅱ.合作讨论新课,学会运算整式的加减1.做一做出示投影片(§1.2.1 A)图1-6两个数相减后,结果有什么规律?这个规律对任意一个三位数都成立吗?为什么?[师]同学们先来按照上面所示的框图的步骤来讨论一下两个数相减后,结果有什么规律?[生]任取一个三位数,经过上述程序后结果一定是99的倍数.[师]是不是任意的三位数都有这样的规律呢?首先我们先要设出一个任意的三位数.如何设呢?[生]可以设百位、十位、个位上的数字分别为a,b,c,那么这个三位数为100a+10b+c.[师]任意的一个三位数为100a+10b+c,接下来我们按照框图所示的步骤可得:交换百位和个位上的数字就得到一个新数,是什么呢?[生]100c+10b+a.[师]两个数相减,可得到一个算式为什么呢?[生](100a+10b+c)-(100c+10b+a).[师]为什么在上面的算式中要加上括号呢?[生]“两个数相减〞,而这两个三位数,我们都是用多项式表示出来的,每一个多项式,它都是一个整体,因此需加括号.[师]这一点很重要,如何说明这个差就是99的倍数呢?[生]化简可得,即(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=(100a -a)+(10b -10b)+(c -100c)=99a -99c也就是说任意一个三位数,经过上述程序后结果一定是99的倍数.2.议一议[师]在上面的问题中,涉及到整式的什么运算?说一说你计算的每一步依据?[生]在上面的问题中,我们涉及到整式的加减法.在进行整式的加减时,我们先去括号,再合并同类项.[师]在去括号和合并同类项时应注意什么呢?[生]我们上学期已学习过去括号和合并同类项.去括号时,特别要注意括号前面是“-〞号的情况,去掉“-〞号和括号时,里面的各项都需要变号;合并同类项时,先判断哪些项是同类项,利用加法结合律和合并同类项的法那么即可完成.3.例题讲解[例1]计算(1〕2x 2-3x+1与-3x 2+5x -7的和(2〕(-x 2+3xy -21y 2)-(-21x 2+4xy -23y 2) (这样的题目,我们已经训练过,因此可让学生自己完成,叫两个同学板演,同时教师深入到学生之中进行观察,对于发现的问题,可以通过让学生表达算理即去括号法那么和合并同类项法那么,自纠自改〕解:(1)(2x 2-3x+1)+(-3x 2+5x -7)=2x 2-3x+1-3x 2+5x -7=2x 2-3x 2-3x+5x+1-7=-x 2+2x -6(2)(-x 2+3xy -21y 2)-(-21x 2+4xy -23y 2) =-x 2+3xy -21y 2+21x 2-4xy+23y 2 =-x 2+21x 2+3xy -4xy -21y 2+23y 2 =-21x 2-xy+y 2 注:1°列算式时,每一个多项式表示的是一个整体,因此必须加括号.2°在第(2〕小题中,去括号要注意符号问题.[例2](1〕A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.(2〕xy=-2,x+y=3,求代数式(3xy+10y)+[5x-(2xy+2y-3x)]的值.分析:(1〕可用逆运算来代入求解;(2〕求代数式的值,一般是先化简,再求值,这个地方应注意整体代入. 解:(1〕根据A+B+C=0,可得C=-A-B即C=-(a2+b2-c2)-(-4a2+2b2+3c2)=-a2-b2+c2+4a2-2b2-3c2=-a2+4a2-b2-2b2+c2-3c2=3a2-3b2-2c2(2)原式=3xy+10y+[5x-2xy-2y+3x]=3xy+10y+5x+3x-2xy-2y=3xy-2xy+10y-2y+5x+3x=xy+8x+8y=xy+8(x+y)当xy=-2,x+y=3时原式=xy+8(x+y)=-2+8×3=-2+24=22.Ⅲ.随堂练习1.计算:(1〕(4k2+7k)+(-k2+3k-1)(2)(5y+3x-15z2)-(12y-7x+z2)解:(1)原式=4k2+7k-k2+3k-1=4k2-k2+7k+3k-1=3k2+10k-1(2)原式=5y+3x-15z2-12y+7x-z2=5y-12y+3x+7x-15z2-z2=-7y+10x-16z2Ⅳ.课时小结[师]这节课我们学习了整式的加减,你有何收获和体会呢?[生]在实际情景中,利用整式的加减发现了一般规律,使我们认识到学习整式加减的重要性.[生]整式加减运算的步骤是遇到括号先去括号,再合并同类项.[生]在去括号时,特别注意括号前是“-〞号的情况.……Ⅴ.课后作业1.课本P 96、习题3.7,第1、2、3题;2.自己设计一个数字游戏,并用整式加减运算说明其中的规律.Ⅵ.活动与探究(a+12)2+|b+4|=0,求代数式21 (a -b)+41(a+b)+3b a +-6b a -的值. [过程]由条件可得,两个非负数的和为零的两个非负数都为零,列出方程求出a 、b 的值;在化简代数式时,观察可发现在这个题中遇到括号假设先去括号会较繁,如果将(a+b)、(a -b)当成一个整体,计算起来反而简便.[结果]由(a+12)2+|b+4|=0,得a+12=0,b+4=0,即a=-12,b=-4;当a+b=-16,a -b=-8时21(a -b)+41(a+b)+3b a +-6b a - =(21-61)(a -b)+(41+31)(a+b) =31(a -b)+127(a+b) =31×(-8)+127×(-16) =-12.●备课资料一、参考例题[例1]A+B=3x 2-5x+1,A -C=-2x+3x 2-5,当x=2时,求B+C 的值.解:B+C=(A+B)-(A -C)=(3x 2-5x+1)-(-2x+3x 2-5)=3x 2-5x+1+2x -3x 2+5=-3x+6当x=2时,原式=-3x+6=-3×2+6=0评述:先观察分析到B+C=A+B -A+C=(A+B)-(A -C)是解此题的关键.因此,一定要先观察,再分析.[例2]有理数a 、b 、c 如图1-7所示,化简|a+b|-|c -a|.图1-7解:由得:a<0,b>0,c<0且|a|<|b|,|c|>|a|,所以a+b>0,c -a<0.|a+b|-|c -a|=(a+b)-[-(c -a)]=a+b+c -a=b+c评述:要化简掉绝对值符号,必须判定被绝对值的数的正负,然后由绝对值定义化掉绝对值符号.[例3]y x xy +=2,求代数式y xy x y xy x -+-+-3353的值. 解:由y x xy+=2,得xy=2(x+y)y xy x y xy x -+-+-3353=xyy x xy y x 3)(5)(3++--+ =)(6)()(10)(3y x y x y x y x +++-+-+=)(5)(7y x y x ++-=-57. 评述:此题运用了“整体〞代换的思想,把xy 和x+y 分别看作“整体〞,添括号在形成“整体〞的过程中起了很重要的作用.[例4]三角形的周长为48,第一边长为3a+2b,第二边长的2倍比第一边少a -2b+2,求第三边长.解:根据题意,得48-(3a+2b)-21[(3a+2b)-(a -2b+2)] =48-3a -2b -21[3a+2b -a+2b -2] =48-3a -2b -21[2a+4b -2]=48-3a -2b -a -2b+1=49-4a -4b所以第三边的长为49-4a -4b.评述:先求出第二边,利用等式第二边×21=第一边-(a -2b+2),求得第二边为21[(3a+2b)-(a -2b+2)]再利用三角形的周长即可解出答案.1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§1.8.1 B)第三张:例题,记作(§1.8.1 C)第四张:补充练习,记作(§1.8.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡〞活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a+b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b〞代替公式中的“b〞,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§1.8.1 B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;(4)(x+y)2-(x-y)2;(5)(2x-3y)2(2x+3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x+2y)2=(2y-x)2=4y2-4xy+x2;方法二:(-x+2y)2=[-(x-2y)]2=(x-2y)2=x2-4xy+4y2.(2)(-x-y)2=[-(x+y)]2=(x+y)2=x2+2xy+y2.(3)(x+y-z)2=[(x+y)-z]2=(x+y)2-2(x+y)·z+z2=x2+y2+z2+2xy-2zx-2yz.(4)方法一:(x+y)2-(x-y)2=(x2+2xy+y2)-(x2-2xy+y2)=4xy.方法二:(x+y)2-(x-y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=4xy.(5)(2x -3y)2(2x+3y)2=[(2x -3y)(2x+3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2+81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy+51x)2; (3)(n+1)2-n 2.解:(1)(21x -2y)2=(21x)2-2·21x·2y+(2y)2=41x 2-2xy+4y 2 (2)(2xy+51x)2=(2xy)2+2·2xy·51x+(51x)2=4x 2y 2+54x 2y+251x 2(3)方法一:(n+1)2-n 2=n 2+2n+1-n 2=2n+1.方法二:(n+1)2-n 2=[(n+1)+n ][(n+1)-n ]=2n+1.Ⅳ.课后作业1.课本习题1.13的第1、2、3题.2.阅读“读一读〞,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下缺乏十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?[过程]因牛n 头,每头卖n 元,故共卖得n 2元.令a 表示n 的十位以前的数字,b 表示n 的个位数字.即n=10a+b,于是n 2=(10a+b)2=100a 2+20ab+b 2=10×2a(5a+b)+b 2.因甲先取10元,而乙最后一次取钱时缺乏10元,所以n 2中含有奇数个10元,以及最后剩下缺乏10元.但10×2a(5a+b)中含有偶数个10元,因此b 2中必含有奇数个10元,且b<10,所以b 2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a2+2ab+b2②(a+b)2比照得:(a+b)2=a2+2ab+b2二、代数推导(a+b)2=(a+b)(a+b)=a2+2ab+b2(a-b)2=[a+(-b)]2=a2-2ab+b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有?详解九章算法?十二卷(1261年)、?日用算法?二卷(1262年)、?乘除通变本末?三卷(1274年)、?田亩比类乘除算法?二卷(1275年)、?续古摘奇算法?二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和开展,有的还编成了歌诀,如九归口诀。
2.2第3课时整式的加减教案
2.礼堂第一排有(a-1)个座位,后面每排都比前一排多1个座位.
(1).第二排有__________个座位.
(2).第三排有__________个座位.
(3).第n排有多少个座位?
六、布置作业1.课本习题2.2第3 ,7 ,11题
2.预习
(一)自主学习
学生自学课本p67-69页的内容,把不懂的地方勾画出来,解决下列问题
计算: (1)(2x-3y)+(5x+4y)
(2)(8a-7b)-(4a-5b)
(二)合作学习
小组探究解决问题,记录本组不能解决的问题;认真帮扶和组内分享;充分准备班内展示.`问题:
1 .一 种笔记本的单价是x元 ,圆珠笔的单价是 y元。小红买这种笔记本3个,买圆珠笔2支;小明买这种笔记本4个,买圆珠笔3支。买这些笔记本和圆珠笔,小红和小明一共花了多少钱?
板书设计
2.2整式的加减(第三课时)
一、学习目标:
二、提出问题:
三、展示点拨
四、课堂小结
教学反思
解: (略 ).
点拨:整式加减运算法则
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
四.检测达标
1、求 的值,其中 。
2.一个多项式加上5x²+4x-1得6x-8x²+2,求这个多项式.
五、课堂小结
1.谈谈今天有什么收获?
2.还有哪些疑惑?
3.整式加减的一般步骤是什么?
练一练:课本70的练习题
3.一 种笔记本的单价是x元 ,圆珠笔的单价是 y元。小红买这种笔记本3个,买圆珠笔2支;小明买这种笔记本4个,买圆珠笔3支。买这些笔记本和圆珠笔,小红和小明一共花了多少钱?
3.2 整式的加减(教案)北师大版(2024)数学七年级上册
3.2整式的加减第1课时合并同类项1.在具体情境中感受合并同类项的必要性,理解合并同类项法则所依据的运算律;2.了解合并同类项的法则,能进行同类项的合并.重点了解同类项的定义以及合并同类项的法则.难点准确理解合并同类项法则并进行计算.一、导入新课课件出示生活中各种水果的图片,让学生根据其本身具有的不同特征对其进行分类.教师:我们常常把具有相同特征的事物归为一类.今天我们要将生活中的分类思想应用到数学中.二、探究新知1.同类项的概念课件出示问题:图3-6中的长方形由两个小长方形组成.(1)利用图3-6化简8n+5n,并用运算律解释你的化简结果.(2)你能用类似的方法化简2xy+3xy及-7a2b+2a2b吗?根据乘法对加法的分配律可得8n+5n=(8+5)n=13n,2xy+3xy=(2+3)xy=5xy,-7a2b+2a2b=(-7+2)a2b=-5a2b.把你认为类型相同的式子归为同一类,并说出分类依据.8n与5n,2xy与3xy,-7a2b与2a2b先让学生自己独立思考,再在小组内讨论说出分类的依据.教师点评并进一步讲解:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.强调判断同类项的方法:①两相同:字母相同,相同字母的指数也相同;②两无关:与系数无关,与字母顺序无关;③所有的常数项都是同类项.2.合并同类项教师:同类项之间能否进行运算呢?课件出示教材第90页图3-8,提出问题:图3-8的长方形由两个小长方形组成,求这个长方形的面积.学生独立完成后汇报答案,教师进一步讲解:长方形的面积可用代数式表示为8n+5n,或(8+5)n,从而8n+5n=(8+5)n=13n.引导学生说明:同类项之间能进行运算,把同类项合并成一项,叫做合并同类项.让学生进一步观察:在合并同类项的过程中,它们的系数、字母和字母的指数有什么变化?学生归纳出合并同类项的方法,教师进一步说明:合并同类项的法则:同类项的系数相加,字母和字母的指数不变. 课件出示例1:(1)-xy 2+3xy 2;(2)7a +3a 2+2a -a 2+3.学生独立完成后,小组讨论合并同类项的步骤:(1)发现同类项(找);(2)确定各同类项系数(移);(3)合并同类项(并).课件出示例2:例2 合并同类项:(1)3a +2b -5a -b ;(2)-4ab +13 b 2-9ab -12 b 2课件出示练习:求代数式-3x 2y +5x -0.5x 2y +3.5x 2y -2的值,其中x =15 ,y =7.说说你是怎么做的,并与同伴进行交流.三、举例分析例1 (课件出示教材第90页例1)例2 (课件出示教材第91页例2)学生独立完成后汇报答案,教师点评.四、课堂练习1.合并同类项:6xy-10x2-5yx+7x2.2.求x2+2x-2y2-y-x2+2y2的值,其中x=1,y=2.3.教材第89页“随堂练习”第1~3题.【答案】1.-3x2+xy 2.原式=2x-y,当x=1,y=2时,原式=2×1-2=0五、课堂小结1.什么是同类项?其判定方法是什么?2.合并同类项的定义及法则分别是什么?3.怎样合并同类项?六、课后作业教材第93页第1,2题.本节课的内容是合并同类项,是本章的一个重点知识,是以后学习解方程、解不等式的基础.课堂中,用生活中的事例导入新课,充分调动了学生学习的积极性,激发了学生的求知欲.随后,通过教师的引导,让学生一步步总结出了同类项的定义、合并同类项的定义及法则.本节课充分尊重学生的主体地位,积极鼓励学生独立思考,自主探索,合作交流,让同学们体验和经历知识的发生、发展、形成和应用的过程,学会获取新知识的方法.第2课时去括号1.掌握去括号的法则,并能根据去括号的法则进行运算;2.培养学生观察、类比、归纳的能力.重点运用去括号的法则进行化简.难点正确进行括号前面是“-”号的运算.一、导入新课问题1:什么叫同类项?问题2:若149xm y4和34x5y2n是同类项,则m=________,n=________,它们的和为________.指名学生回答,教师点评.二、探究新知1.去括号法则课件出示:(1)13+2×(7-5);(2)13-2×(7-5).教师:谁能用两种方法分别解这两题?学生回答,教师进一步提出:运用分配律可以去括号.教师:若将数换成代数式,又会怎么样呢?课件出示:在上一节用小棒拼摆正方形时,我们得到了几个不同的代数式:x+x+(x+1),4+3(x-1),4x-(x-1),3x+1,它们都表示拼摆x个正方形所需小棒的根数,因此应该相等.对此,你能用运算律加以解释吗?与同伴进行交流.利用乘法分配律去括号,可得x+x+(x+1)=x+x+x+1=3x+1;4+3(x-1)=4+3x-3=3x+1;4x-(x-1)=4x+(-1)(x-1)=4x+(-1)x+(-1)(-1)=4x-x+1=3x+1.三个代数式都可化为3x+1的形式,因此,这四个代数式是相等的.教师:仿照刚才的两种方法,分别化简这两道题.利用乘法分配律将下列各式去括号.去括号前后,括号里各项的符号有什么变化?与同伴进行交流.(1)a+(b+c);(2)a-(b+c);(3)a+(b-c);(4)a-(b-c).学生完成后汇报答案,教师点评,引导学生思考:(1)我们是怎么得到多项式去括号的方法的?(2)这两道题中的第(1)小题与第(2)小题的去括号有何不同?(3)你能总结去括号的法则吗?学生讨论后回答,教师讲评并课件出示:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,要变号.课件出示例3:化简下列各式:(1)4a-(a-3b);(2)a+(5a-3b)-(a-2b)(3)3(2xy-y)-2xy;(4)5x-y-2(x-y)你认为去括号时要注意什么?与同伴进行交流.三、课堂练习1.教材第91页“随堂练习”第1,2题.2.(1)9a+2(6a-a);(2)9a-2(6a-a).【答案】(1)原式=9a+10a=19a(2)原式=9a-10a=-a四、课堂小结1.去括号的法则是什么?五、课后作业教材第93页第5,6,7题.本节课的内容是去括号,是本章的一个重点知识,是以后学习解方程、解不等式的基础.去括号看似容易,实际上是最容易出错的地方.课堂中,用自然数去括号的计算导入代数式去括号的问题.随后,让学生通过比较归纳得出去括号时符号的变化规律,将新知识转化为已经学过的知识,从而构建新的知识体系,在此基础上要求学生用自己的语言叙述这个规律,有利于提高学生数学语言的表达能力.第3课时整式的加减1.让同学们从实际背景中去体会进行整式加减的必要性,会进行整式的加减运算;2.经历探索整式加减运算法则的过程,进一步培养学生观察、归纳、运算的能力.重、难点掌握去括号法则.一、导入新课课件出示问题:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)求这两个数的和.二、探究新知1.整式的加减教师:再写几个两位数重复上面的过程.这些和有没有规律?如果有规律,这个规律对任意一个两位数都成立吗?如果用字母表示两位数,结果会怎样?学生小组讨论完毕后,派代表回答,教师点评.课件出示问题:(1)任意写一个三位数;(2)交换它的百位数字与个位数字,又得到一个三位数;(3)两个数相减.教师:两个数相减后的结果有什么规律?这个规律对任意一个三位数都成立吗?如果用字母表示三位数,结果会怎样?在上面的两个问题中,分别涉及整式的什么运算?说一说你是如何运算的,并与同伴进行交流.学生小组讨论完毕后,派代表回答,教师点评,进一步引导学生总结归纳:整式的加减实质上就是去括号后合并同类项,运算的结果是一个单项式或一个多项式.课件出示例4计算:(1)2x 2-3x +1与-3x 2+5x -7的和;(2)-x 2+3x -12 y 2与-12 x 2+4xy -32 y 2的差.学生独立完成后汇报答案,教师点评,进一步引导学生得出:进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.三、课堂练习计算:(1)(4k 2+7k )+(-k 2+3k -1);(2)(5y +3x -15z 2)-(12y +7x +z 2);(3)7(p 3+p 2-p -1)-2(p 3+p );(4)-(13 +m 2n +m 3)-(23 -m 2n -m 3).【答案】(1)原式=3k 2+10k -1 (2)原式=-16z 2-4x -7y (3)原式=5p 3+7p 2-9p -7 (4)原式=-1四、课堂小结1.整式加减运算的实质及步骤是什么?五、课后作业教材P93~P94第6、7、9题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
人教版七年级数学上册2.2第3课时整式的加减教案设计
2.2整式的加减(第3课时)学习内容 :课本第 66 页至第 68 页.学习目标1、能运用运算律研究去括号法例,而且利用去括号法例将整式化简.2、经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,概括出去括号法例,培育察看、剖析、概括能力.3、培育主动研究、合作沟通的意识,谨慎治学的学习态度。
重、难点与要点1.要点:去括号法例,正确应用法例将整式化简.2.难点:括号前方是“-”号去括号时,括号内各项变号简单产生错误.3.要点:正确理解去括号法例.一、自主学习问题:在格尔木到拉萨路段,假如列车经过冻土地段要土地段的时间为(t- 0.5)小时,于是,冻土地段的行程为100tt 小时, ?那么它经过非冻千米, ?非冻土地段的行程为 120( t- 0.5)千米,所以,这段铁路全长为100t+120 (t- 0.5)千米①冻土地段与非冻土地段相差100t- 120( t-0.5)千米②上边的式子①、②都带有括号,它们应怎样化简?【提示】类比数的运算,利用分派律,能够去括号,归并同类项,得:100t+120 (t- 0.5) =100t+120t+120(×-0.5)=220t-60100t- 120( t-0.5) =100t-120t - 120 ×(- 0.5) =- 20t+60我们知道,化简带有括号的整式,第一应先去括号.上边两式去括号部分变形分别为:+120(t - 0.5) =+120t -60③- 120( t-0.5) =- 120+60④比较③、④两式,你能发现去括号时符号变化的规律吗?【提示】假如括号外的因数是正数,去括号后原括号内各项的符号与本来的符号同样;假如括号外的因数是负数,去括号后原括号内各项的符号与本来的符号相反.【注意】去括号规律要正确理解,去括号应付括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;法例顺口溜:去括号,看符号:是“+号”,不变号;是“―”号,全变号。
2.2整式的加减(第三课时)教学设计2023-2024学年人教版数学七年级上册
其次,我会收集学生的课后作业和练习题,以评估他们在实际应用整式加减知识方面的能力。通过分析学生的作业,我可以了解他们在合并同类项、简化整式以及解决实际问题时可能遇到的困难和错误。
3. 实例分析:结合实际问题,运用整式的加减方法解决问题,提高学生运用数学知识解决实际问题的能力。
4. 练习题:完成教材中的练习题,巩固整式的加减运算方法,提高计算速度和准确性。
二、核心素养目标
1. 培养学生运用数学语言表达和逻辑思维能力,通过整式的加减运算,提高学生对数学符号的理解和运用能力。
2. 培养学生的观察能力和抽象思维能力,使学生能够从具体问题中抽象出数学模型,并用所学知识解决问题。
2. 教学软件:运用数学软件辅助教学,让学生通过实际操作,加深对整式加减运算的理解。
3. 实物教具:使用实物教具,如代数棒等,让学生在动手操作中直观地感受整式的合并过程。
五、教学实施过程
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校在线学习平台,发布关于整式加减预习的PPT和视频资料,明确预习目标和要求。
3. 培养学生的运算能力和问题解决能力,掌握整式的加减法则,并能熟练运用于解决实际生活中的数学问题。
4. 培养学生的合作意识和团队精神,通过小组讨论和合作完成练习题,提高学生沟通交流和协作解决问题的能力。
三、学习者分析
1. 学生已经掌握了整式的概念、同类项的定义以及简单的整式加减运算。他们能够识别同类项并进行初步的合并运算。
【人教版】七上数学:2.2《整式的加减》(3课时)教学设计
2.2整式的加减(第1课时)教学目标:1.理解同类项的概念.2.掌握合并同类项法则,会进行简单的同类项合并.3.运用类比数学思想方法,发展学生探究能力、问题的抽象概括能力.教学重点:合并同类项法则难点:对同类项概念的理解,合并同类项法则的探究过程.教法:互动探究法学法:小组研讨法教学过程:复习(1)举例说明什么是多项式,多项式的次数、多项式的项、常数项.学生活动:学生抢答一、情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h ,在非冻土地段的行驶速度是120 km/h ,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h ,你能用含t 的式子表示这段铁路的全长吗?学生合作探究:分析已知量和未知量之间的数量关系.教师总结:依题意可列出非冻土地段所需时表示为t 1.2,根据路程=时间⨯速度,铁路全长是t t 1.2120100⨯+,即t t 252100+.那么t t 252100+能够化简吗?下面我们就来学习今天的新知识——同类项问题2:(1)运用运算律计算:22522100⨯+⨯= ,()()22522100-⨯+-⨯= ;(2)根据(1)中的方法完成下面的运算,并说明其中的道理:t t 252100+= .学生活动:在独立完成的基础上,小组合作探究.师生合作探究:前面我们学习过特殊到一般的方法解决问题,本题22522100⨯+⨯可看作,t t 252100+中当t 取多少时的算式?()()22522100-⨯+-⨯呢?类比它们的关系,t t 252100+也能用运算律来化简吗?教师总结:运用分配律可得(1)题中()2352225210022522100⨯=⨯+=⨯+⨯,()()()()()2352225210022522100-⨯=-⨯+=-⨯+-⨯(2)题t t 252100+有与(1)题相同的结构,其中t 代表一个因数,因此也可以用分配律得()t t t 252100252100+=+.本题利用类比方法,推导出运算律同样适用于含字母因数的式子,为下面的同类项概念的引入做准备.问题3:填空:(1)=-t t 252100( )t ;(2)=+2223x x ( )2x ;(3)=-2243ab ab ( )2ab .上述运算式有什么特点,你能多中得出什么规律?学生活动:独立完成的基础上,小组合作交流.教师总结:利用分配律可得()t t t t 152252100252100-=-=-,()2222323x x x +=+,()2224343ab ab ab -=-.观察(1)中的多项式的项t 100和t 152-,它们含有相同的字母t ,并且字母的指数都是1;(2)中多项式的项23x 、22x 都含有相同的字母x ,并且x 的指数都是2;(3)中多项式的项23ab 、24ab -,它们都含有字母a 、b ,并且a 都是1次的,b 都是2次的.象t 100与t 152-,23x 与22x ,23ab 与24ab -这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项系数的和,且字母部分不变.问题 4.你能化简多项式28372422--+++x x x x 吗?若能,请你把最后结果中的各项按照某个字母的指数从大到小或者从小到大的顺序排列.学生活动:小组合同探究,结合前面的结论,来寻求解决问题的途径与方法.师生合作探究:多项式中有同类项吗?能利用交换律、结合律合并同类项吗?教师总结:因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.2732842837242222-+++-=--+++x x x x x x x x()()()55427328422++-=-+++-x x x x最后结果是按照x 的指数从大到小(降幂)的顺序排列,其中5是常数项,相对于x ,可以看作“没有指数”.最后结果也可以按照x 的指数从小到大(升幂)的顺序,写成2455x x -+.二、范例学习例1:合并下列各式的同类项:(1)2251xy xy -; (2)22222323xy xy y x y x -++-;(3)222244234b a ab b a --++学生活动:在独立完成的基础上,小组交流,讨论解题过程以及结果的合理性.师生合作探究:利用运算律,先合并同类项,结果按照某个字母的升幂或降幂排列.教师总结:(1)22225451151xy xy xy xy =⎪⎭⎫ ⎝⎛-=-; (2)()()22222223232323xy y x xy xy y x y x -++-=-++-22xy y x +-=(3)()()ab b b a a b a ab b a 243444423422222222+-+-=--++()()ab b ab b a 224344222+-=+-+-=例2:(1)求多项式23452222--++-x x x x x 的值,其中21=x . (2)求多项式22313313c a c abc a +--+的值,其中3,2,61-==-=c b a . 学生活动:小组合作探究,先完成(1)题,教师评讲完后,再做下一题.师生合作探究:一种方法是直接把x 的值代入多项计算,第二种是把多项式经过合并同类项,再带入x 的值计算,两种方法更简便?教师总结:先化简,再代入求值.(1)()()2245312234522222--=-+-+-+=--++-x x x x x x x x . 当21=x 时,原式25221-=--=. (2)()abc c abc a c a c abc a =⎪⎭⎫ ⎝⎛+-++-=+--+222313133313313. 当3,2,61-==-=c b a 时,原式()13261=-⨯⨯-. 上面的问题使学生进一步熟悉合并同类项法则,也使学生看到将多项式适当化简后可以简化计算.例3:(1)水库水位第一天连续下降了a h ,每小时平均下降到2cm ;第二天连续上升了a h ,每小时平均上升了0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?学生活动:小组合作探究.师生合作探究:(1)水位有升降区别,那么用什么数来表示这种变化?总的水位变化,显然是这两天水位变化的和.(2)大米量变化上午卖出理+下午购进量,这里的卖出与购进怎么表示?教师总结:(1)a a a 5.15.02-=-(cm )(2)x x x x 6435=+-(kg )三、巩固拓展练习1 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”(1)x 3与xm 3是同类项( )(2)ab 2 与ab -是同类项( )(3)22yx 与 y x 23是同类项( )(4)23ab 与c ab 23是同类项( )(5)23与32是同类项( )练习21.若m y x 3-与n x y 221是同类项,则m = ,n = .2.若22252xy y mx y x -=+,则m = .3.当21=x 进,多项式765155222--++-x x x x x 的值为 .参考答案:×,√,√,×,√,2,3,-12.四、课堂总结(1)本节课学了哪些主要内容?(2)你能举例说明同类项的概念吗?(3)举例说明合并同类项的方法.(4)本节课主要运用了什么思想方法研究问题?五、作业教科书第65页练习题第1、2、3、4题板书设计例1 例2 例32.2 整式的加减(第2课时)教学目标:1.理解去括号法则.2.会利用去号法则将整式化简.3.经历类比带有括号的有理浸透的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.教学重点:去括号法则,准确应用法则进行化简.教学难点:去括号法则的理解;括号前面是负号时,去括号后各项符号的变化.教法:互动探究法.学法:小组研讨法.教学过程:复习:1.什么是同类项?2.怎样进行合并同类项?一、情况引入问题:在格尔木到拉萨路段,如果列车通过冻土地段需要u h ,那么它通过非冻土地段的时间是(5.0-u )h.于是冻土地段的路程是u 100km ,非冻土地段的路程是()5.0120-u km.因此,这段铁路的全长(单位:km )是 ,冻土地段与非冻土地段相差(单位:km ) 学生合作探究:先自主完成,小组交流合作教师总结:()5.0120100-+u u ①,②()5.0120100--u u ②,式子①,②都带有括号,类比数的运算,它们应如何化简?这就是我们将要学习的内容——去括号利用分配律,可以去括号,再合并同类项,得()60220601201005.0120100-=-+=-+u u u u u()6020601201005.0120100+-=+-=--u u u u u上面两式中()601205.0120-+=-+u u ③()601205.0120+-=--u u ④比较③,④两式,你能发现骈括号时符号变化的规律吗?学生活动:小组合作探究师生合作探究:去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.特别地,()3-+x 与()3--x 可以看作1与此同时1分别乘()3-x .二、范例学习例4化简下列各式:(1)()b a b a -++528;(2)()()b a b a 23352---.学生活动:自方主完成教师总结:先去括号,再合并同类项解(1)()b a b a b a b a b a +=-++=-++13528528;(2)()()()b a b a b a b a 6335233522---=---b a a b a b a 353633522++-=+--=.例5两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h ,水流速度是a km/h .(1)2 h 后两船相距多远?(2)2 h 后甲船比乙船多航行多少km ?学生活动:小组合作交流师生合作探究:顺水速度=静水速度+水流速度=(50+ a )km/h逆水速度=静水速度-水流速度=(50- a )km/h教师总结:2 h 后两船相距2(50+ a )+2(50- a )=200.2 h 后甲船比乙船多航行2(50+ a )-2(50- a )=4 a.三、巩固拓展1.(1)()122-+-+y x = ;(2)()b a +--35= .(3)实数a 、b 、c 数轴上的对应点如下图,化简c c b b a a ----++= . 0c ba2.化简: (1)()5.012-x ; (2)⎪⎭⎫ ⎝⎛--x 5115 (3)()()73235---+-a a a ; (4)()()123931++-y y . 学生活动:先独立完成,后小组合作交流教师总结: 1. 224-+-y x 、b a -+-35、0;2. 612-x 、5-x 、55+-a 、14+y四、课堂总结1.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.注意:去括号规律要准确理解,去括号应考虑括号内的每一项的符号,做到要变都变;要不变都不变;另外,括号内原来有几项,去掉括号后仍有几项.五、作业教科书第70页习题2.2第3、4题板书设计2.2整式的加减第二课时去括号问题例4例52.2整式的加减(第3课时)教学目标:1.让学生从实际问题中去体会进进行整式加减的必要性,掌握并能灵活运用整式加减的运算法则.2.培养学生的观察、分析、归纳、总结以及概括能力.3.认识到数学是解决实际问题和进行交流的重要工具.教学重点:整式加减的运算法则教学难点:概括整式加减的运算法则并灵活、准确地运用法则.教法:互动探究法学法:小组研讨法教学过程:复习:去括号法则教师总结:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.一、情境引入如图,用火柴棍拼成一排正方形图形,如果图形中含有1、2、3或4个正方形,分别需要多少根火柴棍?如果图形中含有n个正方形,需要多少根火柴棍?学生合作探究:小组合作探究师生合作探究:有几种求解方法教师总结:方法一:第一个正方形用4根火柴棍,每增加一个正方形增加3根火柴棍,搭n 个正方形就需要[4+3(n -1)]根火柴棍.方法二:把每一个正方形都看成用4根火柴棍搭成的,然后再减去多算的火柴棍,得到需要[4n -(n -1)]根火柴棍.方法三:第一个正方形可以看成是3根火柴棍加1根火柴棍搭成的,此后每增加一个正方形就增加3根,搭n 个正方形共需要(3n +1)根火柴棍.想一想:这三种方法的结果是否一样?上几节课学习了合并同类项、去括号等内容,它们是进行整式加减运算的基础.二、范例学习例6计算:(1)()()y x y x 4532++-;(2)()()b a b a 5478---学生活动:学生独立完成教师总结:先去括号,再合并同类项解:(1)()()y x y x 4532++- (2)()()b a b a 5478---y x y x 4532++-= b a b a 5478+--=y x +=7 b a 24-=完成课本69页练习第1题例7 笔记本的单价是x 元,圆珠笔的单价是y 元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例
一般地,几个整式相加减,如果有括号
23
= 1 x-2x+ 2 y2- 3 x+ 1 y2
2
3 23
=( 1 -2- 3 )x+( 2 + 1 )y2
22
33
=-3x+y2
当 x=-2,y= 2 时 3
原式=-3×(-2)+( 2 )2=6+ 4 =6
3
9
特别强调:对于条件求值题要先化简,再求值。
(五)小结
本节课我们学习了整式的加减,下面我们一起来回顾一下:
2.2 整式的加减 第三课时 整式的加减
一、教学目标 知识与技能 1. 掌握整式加减的一般步骤,会熟练地进行整式的加减运算。 2. 会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语 言表达能力。 过程与方法 经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力 及综合运用知识进行分析、解决问题的能力. 情感、态度与价值观 培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体 会整式加减的应用价值. 二、学情分析
(多媒体展示)(学生填空)
1.整式的加减实际上就是______________________.
2.整式的加减的步骤,一般分为_____________________.
3.整式加减的结果是__________或__________(单项式或多项式)。
七、板书 展示
2.2.3 整式的加减
整式加减的运算法则:
1/5
六、教学过程 (一)、导入新课 活动一:一种笔记本的单价是 x(元),圆珠笔的单价是 y(元),小红买这 种笔记本 3 本,买圆珠笔 2 枝;小明买这种笔记本 4 个,买圆珠笔 3 枝,买 这些笔记本和圆珠笔,小红和小明共花费多少钱? 教师操作多媒体,展示问题,启发、•引导学生用不同方法列式表示小红和小 明共花费的钱.学生独立思考,然后与同伴交流. 思考点拨:方法一:小红买 3 本笔记本,花去 3x 元,2 支圆珠笔花去 2y 元, •小红共花去(3x+2y)元;小明买 4 本笔记本,花去 4x 元,3 枝圆珠笔花去 3y 元,小明共花去(•4x+3y)元,所以他们一共花去[(3x+2y)+(4x+3y)] 元.方法二,小红和小明买笔记本共花去(3x+4x)元,买圆珠笔共花去(2y+3y) 元.买笔记本和圆珠笔共花去[(3x+4x)+(•2y+3y)]元.方法三,小红和 小明共买了(3+4)本笔记本,(2+3)支圆珠笔,•因此他们共花费[(3+4) x+(2+3)y]元. 对上面的式子进行化简得出小红和小明共花费的钱数,从而引出课题——整 式的加减。(板书课题) (二).整式的和差 活动二:问题 1:求整式 2a2+ab+3b2 与 a2-2ab+b2 的差 学生活动:在练习本(或投影胶片)上用数学式子表示出来,然后用投影仪 显示出部分胶片来,正确的师生给予掌声,不对的则由自己或他人找出错在 何处,并及时改正. 师做相应的板书: 学生活动:学生在练习本上接着计算(或在投影胶片上计算),一个学生接着 老师板书继续完成以下过程.把不同层次学生的胶片显示在投影上,师生给 予肯定或纠正. 师提问题:在这几个整式相加时,为什么 2a2+ab+3b2 与 a2-2ab+b2 要加上括号 (学生讨论后回答,师做必要的强调). 问题 2:l.说出下列单项式的和(口答) (1)-3x,-2x,-5x2,5x2;(2)-2n,3n2,-5n2.
3/5
(四)范例学习
活动三: 例.求 1 x-2(x- 1 y2)+(- 3 x+ 1 y2)的值,其中 x=-2,y= 2 .
2
3
23
3
思路点拨:先去括号,合并同类项化简后,再代入数值进行计算比较简便,
去括号时,特别注意符号问题.
解: 1 x-2(x- 1 y2)+(- 3 x+ 1 y2)
2
3
解:(1)(2ab+2ac+2bc)+(6ab+6ac+8bc) =2ab+2ac+2bc+6ab+6ac+8bc) =8ab+8ac+10bc
(2)(6ab+6ac+8bc)-(2ab+2ac+2bc) =6ab+6ac+8bc-2ab-2ac-2bc =4ab+4ac+6bc
因此做这两个纸盒共用料(8ab+8ac+10bc)平方厘米,做大纸盒比小纸盒多 用料(4ab+4ac+6bc)平方厘米. 通过上面的学习,你能得到整式加减的运算法则吗? 教学策略:让学生自己归纳整式加减运算法则,发展归纳、表达能力. 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
2/5
2.写出下列第一个式子减去第二个式子的差 (1)3ab,-2ab;(2)-4x2,3x;(3)-5ax2,-4x2a. 学生活动:1 题学生在练习本上完成后口答.2 题直接观察回答(先答所列式 子,再回答结果). (三).整式的加减 问题 3:做大小两个长方体纸盒,尺寸如下(单位:厘米).
长 宽高 小纸盒 a b c 大纸盒 1.5a 2b 2c (1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比小纸盒多用料多少平方厘米? 教师操作投影仪,展示问题 3,学生小组学习,讨论解题方法. 思路点拨:长方体有 6 个面,相对的两个面是完全相同.如图所示,上、下 底面积都是 ab,前后两面面积都是 ac,左右两侧面积都是 bc,所以小纸盒 的 表 面 积 为 2ab+2ac+2bc , 同 样 , 大 纸 盒 的 表 面 积 为 2×1.5a×2b+2×1.5a+2c+2×2b×2c=6ab+6ac+8bc.