反比例函数经典专题
(完整版)初中数学反比例函数知识点及经典例
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
反比例函数经典例题(有答案)
反比例函数专题复习一、反比例函数的对称性1、直线y=ax(a>0)与双曲线y= 3/x交于A(x1,y1)、B(x2,y2)两点,则4x1y2-3x2y1=2、如图1,直线y=kx(k>0)与双曲线y= 2/x交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()A、-8B、4C、-4D、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-X1,Y2=-Y1双曲线形式可变化为XY=2,即双曲线上点的横纵坐标乘积为2因此X1Y1=2X1Y2+X2Y1=X1(-Y1)+(-X1)Y1=-X1Y1-X1Y1=-4图1 图2 图3 图4二、反比例函数中“K”的求法1、如图2,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数 y=k/x的图象上.那么k的值是()A、3B、6C、12D、 15/4解析:∵BC在直线X=1上,设B(1,M),则C(1,M-3),∴A(5,M-3),又A、B都在双曲线上,∴1*M=5*(M-3),M=15/4 即K=15/42、如图3,已知点A、B在双曲线y= k/x(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=解析:A(x1,k/x1),B(x2,k/x2)AC:x=x1 BD:y=k/x2P(x1,k/x2)k/x2=k/2x1 2x1=x2BP=x2-x1=x1AP=k/x1-k/x2=k/2x1S=x1*k/(2x1)*1/2)=k/4=3 k=123、如图4,双曲线y= k/x(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为()A、y=1/xB、y=2/xC、y=3/xD、y=6/x三、反比例函数“K”与面积的关系1、如图5,已知双曲线 y1=1/x(x>0), y2=4/x(x>0),点P为双曲线y2=4/x上的一点,且PA⊥x轴于点A,PB⊥y轴于点B,PA、PB分别次双曲线y1=1/x于D、C两点,则△PCD的面积为()图5 图6 图7解析:假设P的坐标为(a,b),则C(a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线 y=k/x(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A、S1<S2<S3B、S1>S2>S3C、S1=S2>S3D、S1=S2<S3解析:结合题意可得:AB都在双曲线y=kx上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线 y=k/x交于C、D两点,且S△AOC=S△COD=S△BOD,则k= 。
反比例函数专题知识点归纳 常考(典型)题型 重难点题型(含详细答案)
反比例函数专题知识点归纳+常考(典型)题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.知识结构 (2)2.反比例函数的概念 (2)3.反比例函数的图象 (2)4.反比例函数及其图象的性质 (2)5.实际问题与反比例函数 (4)三、常考题型 (6)1.反比例函数的概念 (6)2.图象和性质 (6)3.函数的增减性 (8)4.解析式的确定 (10)5.面积计算 (12)6.综合应用 (17)三、重难点题型 (22)1.反比例函数的性质拓展 (22)2.性质的应用 (23)1.求解析式 (23)2.求图形的面积 (23)3. 比较大小 (24)4. 求代数式的值 (25)5. 求点的坐标 (25)6. 确定取值范围 (26)7. 确定函数的图象的位置 (26)二、基础知识点1.知识结构2.反比例函数的概念(k≠0)可以写成y=x−1(k≠0)的形式,注意自变量x 1.y=kx的指数为-1,在解决有关自变量指数问题时应特别注意系数k≠0这一限制条件;(k≠0)也可以写成xy=k的形式,用它可以迅速地求出反2.y=kx比例函数解析式中的k,从而得到反比例函数的解析式;的自变量x≠0,故函数图象与x轴、y轴无交点.3.反比例函数y=kx3.反比例函数的图象的图象时,应注意自变量x的取值在用描点法画反比例函数y=kx不能为0,且x应对称取点(关于原点对称).4.反比例函数及其图象的性质1.函数解析式:y=k(k≠0)x2.自变量的取值范围:x≠03.图象:(1)图象的形状:双曲线.|k|越大,图象的弯曲度越小,曲线越平直.|k|越小,图象的弯曲度越大.(2)图象的位置和性质:①与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.②当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;③当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:①图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.②图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(4)k的几何意义图1上任意一点,作PA⊥x①如图1,设点P(a,b)是双曲线y=kx轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO|k|).和三角形PBO的面积都是12图2②如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.(5)说明:①双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.的关系:②直线y=k1x与双曲线y=k2x当k1k2<0时,两图象没有交点;当k1k2>0时,两图象必有两个交点,且这两个交点关于原点成中心对称.5.实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.三、常考题型1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.y-3=2x C.3xy=1 D.y=x2答案:A为正比例函数B为一次函数C变型后为反比例函数D为二次函数(2)下列函数中,y是x的反比例函数的是().A.y=14x B.y=−1x2C.y=1x−1D.y=1+1x答案:A为反比例函数,k为14B、C、D都不是反比例函数2.图象和性质(1)已知函数y=(k+1)x k2+k−3是反比例函数。
专题17 反比例函数篇(解析版)
专题17 反比例函数1. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号>k 0<k 所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。
在一个支上(每一个象限内),y 随x 的增大而增大。
对称性图像关于原点对称2. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
3. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
4. 反比例函数与一次函数的不等式问题:若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
1.(2022•湘西州)如图,一次函数y =ax +1(a ≠0)的图象与x 轴交于点A ,与反比例函数y =xk的图象在第一象限交于点B (1,3),过点B 作BC ⊥x 轴于点C .(1)求一次函数和反比例函数的解析式.(2)求△ABC 的面积.【分析】(1)利用待定系数法解答即可;(2)利用直线的解析式求得点A 坐标,利用坐标表示出线段CA ,BC 的长度,利用三角形的面积公式解答即可.【解答】解:(1)∵一次函数y =ax +1(a ≠0)的图象经过点B (1,3),∴a +1=3,∴a =2.∴一次函数的解析式为y =2x +1,∵反比例函数y =的图象经过点B (1,3),∴k =1×3=3,∴反比例函数的解析式为y =.(2)令y =0,则2x +1=0,∴x =﹣.∴A (﹣,0).∴OA =.∵BC ⊥x 轴于点C ,B (1,3),∴OC =1,BC =3.∴AC =1=.∴△ABC 的面积=×AC •BC =.2.(2022•德州)已知蓄电池的电压为定值,使用该蓄电池时,电流I (单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请求出这个反比例函数的解析式;(2)蓄电池的电压是多少?(3)如果以此蓄电池为电源的用电器限制电流不能超过10A,那么用电器的可变电阻应控制在什么范围?【分析】(1)先由电流I是电阻R的反比例函数,可设I=,将点(8,6)代入I=,利用待定系数法即可求出这个反比例函数的解析式;(2)根据电压=电流×电阻即可求解;(3)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.【解答】解:(1)电流I是电阻R的反比例函数,设I=,∵图象经过(8,6),∴6=,解得k=6×8=48,∴I=;(2)蓄电池的电压是6×8=48;(3)∵I≤10,I=,∴≤10,∴R≥4.8,即用电器可变电阻应控制在4.8欧以上的范围内.3.(2022•大连)密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示,当V =5m 3时,ρ=1.98kg /m 3.(1)求密度ρ关于体积V 的函数解析式;(2)若3≤V ≤9,求二氧化碳密度ρ的变化范围.【分析】(1)设密度ρ关于体积V 的函数解析式为ρ=(k ≠0),利用反比例函数图象上点的坐标特征,即可求出k 值,进而可得出密度ρ关于体积V 的函数解析式;(2)由k =9.9>0,利用反比例函数的性质可得出当V >0时ρ随V 的增大而减小,结合V 的取值范围,即可求出二氧化碳密度ρ的变化范围.【解答】解:(1)设密度ρ关于体积V 的函数解析式为ρ=(k ≠0).∵当V =5m 3时,ρ=1.98kg /m 3,∴1.98=,∴k =9.9,∴密度ρ关于体积V 的函数解析式为ρ=(V >0).(2)∵k =9.9>0,∴当V >0时,ρ随V 的增大而减小,∴当3≤V ≤9时,≤ρ≤,即二氧化碳密度ρ的变化范围为1.1≤ρ≤3.3.4.(2022•淄博)如图,直线y =kx +b 与双曲线y =xm相交于A (1,2),B 两点,与x 轴相交于点C (4,0).(1)分别求直线AC 和双曲线对应的函数表达式;(2)连接OA ,OB ,求△AOB 的面积;(3)直接写出当x >0时,关于x 的不等式kx +b >xm的解集.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC :y =﹣x +与双曲线:y =(x >0)相交于A (1,2),B 两点,联立方程组,求出点B 的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A (1,2),C (4,0)代入y =kx +b ,得,解得:,∴直线AC 的解析式为y =﹣x +,将A (1,2)代入y =(x >0),得m =2,∴双曲线的解析式为y =(x >0);(2)∵直线AC 的解析式为y =﹣x +与y 轴交点D ,∴点D 的坐标为(0,),∵直线AC :y =﹣x +与双曲线:y =(x >0)相交于A (1,2),B 两点,∴,∴,,∴点B 的坐标为(3,),∴△AOB 的面积=4×﹣4×﹣×1=;(3)观察图象,∵A (1,2),B (3,),∴当x >0时,关于x 的不等式kx +b >的解集是1<x <3.5.(2022•镇江)如图,一次函数y =2x +b 与反比例函数y =xk(k ≠0)的图象交于点A (1,4),与y 轴交于点B .(1)k = ,b = ;(2)连接并延长AO ,与反比例函数y =xk(k ≠0)的图象交于点C ,点D 在y 轴上,若以O 、C 、D 为顶点的三角形与△AOB 相似,求点D 的坐标.【分析】(1)将点A (1,4)分别代入反比例函数y =(k ≠0)和一次函数y =2x +b 的解析式中,求解即可;(2)根据题意,需要分类讨论:当点D 落在y 轴的正半轴上,当点D 落在y 轴的负半轴上,△COD ∽△AOB 或△COD ∽△BOA ,依次根据比例关系,求解即可.【解答】解:(1)将点A (1,4)代入反比例函数y =(k ≠0)的解析式中,∴k =1×4=4;将A (1,4)代入一次函数y =2x +b ,∴2×1+b =4,解得b =2.故答案为:4;2.(2)当点D 落在y 轴的正半轴上,则∠COD >∠ABO ,∴△COD 与△ABO 不可能相似.当点D 落在y 轴的负半轴上,若△COD ∽△AOB ,∵CO =AO ,BO =DO =2,∴D (0,﹣2).若△COD ∽△BOA ,则OD :OA =OC :OB ,∵OA =CO =,BO =2,∴DO =,∴D (0,﹣),综上所述:点D 的坐标为(0,﹣2),(0,﹣).6.(2022•宁夏)如图,一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数y =xm(m ≠0,x >0)的图象相交于点A ,OB =1,tan ∠OBC =2,BC :CA =1:2.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当△BDE 面积最大时,求点D 的坐标.【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF ⊥x 轴于点F ,则△ACF ∽△BCO ,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达△BDE 的面积,根据二次函数的性质可得结论.【解答】解:(1)如图,过点A 作AF ⊥x 轴于点F ,∴AF ∥y 轴,∴△ACF ∽△BCO ,∴BC :AC =OB :AF =OC :CF =1:2.∵OB =1,tan ∠OBC =2,∴OC =2,∴AF =2,CF =4,∴OF =OC +CF =6,∴A (6,2).∵点A 在反比例函数y =(m ≠0,x >0)的图象上,∴m =2×6=12.∴反比例函数的表达式为:y =(x >0).(2)由题意可知,B (0,﹣1),∴直线AB 的解析式为:y =x ﹣1.设点D 的横坐标为t ,则D (t ,t ﹣1),E (t ,).∴ED =﹣t +1.∴△BDE 的面积为:(t ﹣0)(﹣t +1)=﹣t 2+t +6=﹣(t ﹣1)2+.∵﹣<0,∴t =1时,△BDE 的面积的最大值为,此时D (1,﹣).7.(2022•鞍山)如图,在平面直角坐标系中,一次函数y =x +2的图象与反比例函数y =xk(x >0)的图象交于点A (1,m ),与x 轴交于点C .(1)求点A 的坐标和反比例函数的解析式;(2)点B 是反比例函数图象上一点且纵坐标是1,连接AB ,CB ,求△ACB 的面积.【分析】(1)由一次函数的解析式求得A 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)作BD ∥x 轴,交直线AC 于点D ,则D 点的纵坐标为1,利用函数解析式求得B 、D 的坐标,然后根据三角形面积公式即可求得.【解答】解:(1)∵一次函数y =x +2的图象过点A (1,m ),∴m =1+2=3,∴A (1,3),∵点A 在反比例函数y =(x >0)的图象上,∴k =1×3=3,∴反比例函数的解析式为y =;(2)∵点B 是反比例函数图象上一点且纵坐标是1,∴B (3,1),作BD ∥x 轴,交直线AC 于点D ,则D 点的纵坐标为1,代入y =x +2得,1=x +2,解得x =﹣1,∴D (﹣1,1),∴BD =3+1=4,∴S △ABC =×4×3=6.8.(2022•菏泽)如图,在平面直角坐标系xOy 中,一次函数y =ax +b 的图象与反比例函数y =xk的图象都经过A (2,﹣4)、B (﹣4,m )两点.(1)求反比例函数和一次函数的表达式;(2)过O 、A 两点的直线与反比例函数图象交于另一点C ,连接BC ,求△ABC 的面积.【分析】(1)把A ,B 两点的坐标代入y =中可计算k 和m 的值,确定点B 的坐标,根据待定系数法即可求得反比例函数和一次函数的解析式;(2)如图,设AB 与x 轴交于点D ,证明CD ⊥x 轴于D ,根据S △ABC =S △ACD +S △BCD 即可求得.【解答】解:(1)将A (2,﹣4),B (﹣4,m )两点代入y =中,得k =2×(﹣4)=﹣4m ,解得,k =﹣8,m =2,∴反比例函数的表达式为y =﹣;将A (2,﹣4)和B (﹣4,2)代入y =ax +b 中得,解得,∴一次函数的表达式为:y =﹣x ﹣2;(2)如图,设AB 与x 轴交于点D ,连接CD ,由题意可知,点A 与点C 关于原点对称,∴C (﹣2,4).在y =﹣x ﹣2中,当x =﹣2时,y =0,∴D (﹣2,0),∴CD 垂直x 轴于点D ,∴S △ABC =S △ADC +S △BCD =×4×(2+2)+×4×(4﹣2)=8+4=12.9.(2022•安顺)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在y 轴上,A ,C 两点的坐标分别为(4,0),(4,m ),直线CD :y =ax +b (a ≠0)与反比例函数y =xk (k ≠0)的图象交于C ,P (﹣8,﹣2)两点.(1)求该反比例函数的解析式及m 的值;(2)判断点B 是否在该反比例函数的图象上,并说明理由.【分析】(1)把P (﹣8,﹣2)代入y =可得反比例函数的解析式为y =,即得m ==4;(2)连接AC ,BD 交于H ,由C (4,4),P (﹣8,﹣2)得直线CD 的解析式是y =x +2,即得D (0,2),根据四边形ABCD 是菱形,知H 是AC 中点,也是BD 中点,由A (4,0),C (4,4)可得H(4,2),设B (p ,q ),有,可解得B (8,2),从而可知B 在反比例函数y =的图象上.【解答】解:(1)把P (﹣8,﹣2)代入y =得:﹣2=,解得k =16,∴反比例函数的解析式为y =,∵C (4,m )在反比例函数y =的图象上,∴m ==4;∴反比例函数的解析式为y=,m=4;(2)B在反比例函数y=的图象上,理由如下:连接AC,BD交于H,如图:把C(4,4),P(﹣8,﹣2)代入y=ax+b得:,解得,∴直线CD的解析式是y=x+2,在y=x+2中,令x=0得y=2,∴D(0,2),∵四边形ABCD是菱形,∴H是AC中点,也是BD中点,由A(4,0),C(4,4)可得H(4,2),设B(p,q),∵D(0,2),∴,解得,∴B(8,2),在y=中,令x=8得y=2,∴B在反比例函数y=的图象上.10.(2022•绵阳)如图,一次函数y =k 1x +b 与反比例函数y =xk 2在第一象限交于M (2,8)、N 两点,NA垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使△PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和△PMN面积的最小值.【分析】(1)利用待定系数法求得反比例函数的解析式,进而利用四边形的面积得出(8+)•(m ﹣2)=30,解方程即可求得N 的坐标,然后把M 、N 的坐标代入y =k 1x +b ,进一步求得一次函数的解析式;(2)求出与直线MN 平行且在第三象限内与反比例函数y =有唯一公共点的坐标即为点P 的坐标,此时△PMN 面积的最小,利用三角形、梯形面积以及各个部分面积之间的关系进行计算即可.【解答】解:(1)∵反比例函数y =过点M (2,8),∴k 2=2×8=16,∴反比例函数的解析式为y =,设N (m ,),∵M (2,8),∴S △OMB ==8,∵四边形OANM 的面积为38,∴四边形ABMN 的面积为30,∴(8+)•(m ﹣2)=30,解得m 1=8,m 2=﹣(舍去),∴N (8,2),∵一次函数y =k 1x +b 的图象经过点M 、N ,∴,解得,∴一次函数的解析式为y =﹣x +10;(2)与直线MN 平行,且在第三象限与反比例函数y =有唯一公共点P 时,△PMN 的面积最小,设与直线MN 平行的直线的关系式为y =﹣x +n ,当与y =在第三象限有唯一公共点时,有方程﹣x +n =(x <0)唯一解,即x 2﹣nx +16=0有两个相等的实数根,∴n 2﹣4×1×16=0,解得n =﹣8或x =8(舍去),∴与直线MN 平行的直线的关系式为y =﹣x ﹣8,∴方程﹣x ﹣8=的解为x =﹣4,经检验,x =﹣4是原方程的解,当x =﹣4时,y ==﹣4,∴点P (﹣4,﹣4),如图,过点P 作AN 的垂线,交NA 的延长线于点Q ,交y 轴于点D ,延长MB 交PQ 于点C ,由题意得,PD =4,DQ =8,CD =2,MC =8+4=12,NQ =2+4=6,∴S △PMN =S △MPC +S 梯形MCQN ﹣△=×6×12+(12+6)×6﹣×12×6=36+54﹣36=54,答:点P (﹣4,﹣4),△PMN 面积的最小值为54.11.(2022•巴中)如图,在平面直角坐标系中,直线y =21x +b 与x 轴、y 轴分别交于点A (﹣4,0)、B 两点,与双曲线y =xk (k >0)交于点C 、D 两点,AB :BC =2:1.(1)求b ,k 的值;(2)求D 点坐标并直接写出不等式21x +b ﹣x k ≥0的解集;(3)连接CO 并延长交双曲线于点E ,连接OD 、DE ,求△ODE 的面积.【分析】(1)根据点A在直线上,把点A代入,求出b的值;过C作CF⊥x轴于点F,得△AOB∽△AFC,根据AB:BC=2:1,可求出点F的坐标,可得点C的坐标,代入反比例函数,即可求出k的值;(2)根据交点坐标的性质,可求出点D的坐标,根据,得,根据函数图象,即可得到解集;(3)根据同底同高,得S△ODE =S△COD,S△COD=S△COA+S△ADO即可.【解答】解:(1)∵点A在直线上,A(﹣4,0),∴,解得b=2,过C作CF⊥x轴于点F,∴△AOB∽△AFC,∵AB:BC=2:1,∴,∴AF=6,∴OF=2,在中,令x=2,得y=3,∴C(2,3),∴,∴k=6.(2)∵D点是和交点,∴,解得或,∵D点在第三象限,∴D(﹣6,﹣1),由图象得,当﹣6≤x<0或x≥2时,,∴不等式的解集为﹣6≤x <0或x ≥2.(3)∵△ODE 和△OCD 同底同高,∴S △ODE =S △OCD ,∵S △COD =S △COA +S △ADO ,∴.12.(2022•资阳)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=x6的图象交于点A (1,m )和点B (n ,﹣2).(1)求一次函数的表达式;(2)结合图象,写出当x >0时,满足y 1>y 2的x 的取值范围;(3)将一次函数的图象平移,使其经过坐标原点.直接写出一个反比例函数表达式,使它的图象与平移后的一次函数图象无交点.【分析】(1)将A 、B 两点的坐标解出来,然后利用待定系数法求一次函数的解析式;(2)当x >0,求得一次函数的图像在反比例函数的图像上方对应x 的即可;(3)将一次函数平移后即可得到新的一次函数的解析式,根据一次函数图象即可判断反比例函数的系数k ,进而得到反比例函数的解析式.【解答】解:(1)由题意得:,,∴m =6,n =﹣3,∴A (1,6),B (﹣3,﹣2),由题意得:,解得:,∴一次函数的表达式为:y =2x +4;(2)由图象可知,当x >0时,一次函数的图象在反比例函数的图像上方对应x 的值为x >1,当x >0时,满足y 1>y 2的x 的取值范围为x >1;(3)一次函数y =2x +4的图象平移后为y =2x ,函数图象经过第一、三象限,要使正比例函数y =2x 与反比例函数没有交点,则反比例的函数图象经过第二、四象限,则反比例函数的k <0,∴当k =﹣1时,满足条件,∴反比例函数的解析式为(答案不唯一).13.(2022•徐州)如图,一次函数y =kx +b (k >0)的图象与反比例函数y =x8(x >0)的图象交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD ⊥x 轴于点D ,CB =CD ,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图象上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当|PE ﹣PB |最大时,求点P 的坐标.【分析】(1)设点A 的坐标为(m ,),根据轴对称的性质得到AD ⊥CE ,AD 平分CE ,如图,连接CE交AD 于H ,得到CH =EH ,求得E (2m ,),于是得到点E 在这个反比例函数的图象上;(2)①根据正方形的性质得到AD =CE ,AD 垂直平分CE ,求得CH =AD ,设点A 的坐标为(m ,),得到m =2(负值舍去),求得A (2,4),C (0,2),把A (2,4),C (0,2)代入y =kx +b 得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得|PE ﹣PD |=|PE ﹣PB |,则点P 即为符合条件的点,求得直线DE 的解析式为y =x ﹣2,于是得到结论.【解答】解:(1)点E 在这个反比例函数的图象上,理由:∵一次函数y =kx +b (k >0)的图象与反比例函数y =(x >0)的图象交于点A ,∴设点A 的坐标为(m ,),∵点C 关于直线AD 的对称点为点E ,∴AD⊥CE,AD平分CE,如图.连接CE交AD于H,∴CH=EH,∵BC=CD,OC⊥BD,∴OB=OD,∴OC=AD,∵AD⊥x轴于D,∴CE∥x轴,∴E(2m,),∵2m×=8,∴点E在这个反比例函数的图象上;(2)①∵四边形ACDE为正方形,∴AD=CE,AD垂直平分CE,∴CH=AD,设点A的坐标为(m,),∴CH=m,AD=,∴m=×,∴m=2(负值舍去),∴A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,∴;②延长ED交y轴于P,∵CB=CD,OC⊥BD,∴点B与点D关于y轴对称,∴|PE﹣PD|=|PE﹣PB|,则点P 即为符合条件的点,由①知,A (2,4),C (0,2),∴D (2,0),E (4,2),设直线DE 的解析式为y =ax +n ,∴,∴,∴直线DE 的解析式为y =x ﹣2,当x =0时,y =﹣2,∴P (0,﹣2).故当|PE ﹣PB |最大时,点P 的坐标为(0,﹣2).14.(2022•济南)如图,一次函数y =21x +1的图象与反比例函数y =xk (x >0)的图象交于点A (a ,3),与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.【分析】(1)将点A 的坐标代入y =求得a ,再把点A 坐标代入y =求出k ;(2)先求出A ,B ,C 三点坐标,作CD ⊥x 轴于D ,交AB 于E ,求出点E 坐标,从而求得CE 的长,进而求得三角形ABC的面积;(3)当AB为对角线时,先求出点P的纵坐标,进而代入反比例函数的解析式求得横坐标;当AB为边时,同样先求出点P的纵坐标,再代入y=求得点P的横坐标.【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CD⊥x轴于D,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由y Q′﹣y B=y P′﹣y A得,0﹣1=y P′﹣3,∴y P′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).15.(2022•枣庄)为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天)3569……硫化物的浓度y(mg/L)4.5 2.7 2.25 1.5……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)设AC的函数关系式为:y=kx+b,将A和C代入,从而求得k,b,进而求得的结果;(2)可推出x•y=13.5为定值,所以当x≥3时,y是x的反比例函数,进而求得结果;(3)将x=15代入反比例函数关系式,从而求得y的值,进而根据反比例函数图象性质,从而得出结论.【解答】解:(1)设线段AC的函数表达式为:y=kx+b,∴,∴,∴线段AC的函数表达式为:y 2.5x+12(0≤x<3);(2)∵3×4.5=5×2.7=...=13.5,∴y是x的反比例函数,∴y=(x≥3);(3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L,理由如下:当x=15时,y==0.9,∵13.5>0,∴y随x的增大而减小,∴该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L.。
反比例函数经典的45个题
反比例函数1、设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 2、(2013年临沂)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在第一象限内的图像经过OB 边的中点C ,则点B 的坐标是 (A )( 1, 3). (B )(3, 1 ). (C )( 2 ,32). (D )(32 ,2 ).3、(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y =k 2 x 的图像没有公共点,则 (A) k1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 4、(2013四川南充,8,3分)如图,函数的图象相交于点A (1,2)和点B ,当时,自变量x 的取值范围是( )A. x >1B. -1<x <0C. -1<x <0 或x >1D. x <-1或0<x <15、(2013凉山州)如图,正比例函数y 1与反比例函数y 2相交于点E (﹣1,2),若y 1>y 2>0,则x 的取值范围在数轴上表示正确的是( )A .B .C .D .6、(2013•内江)如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )7、(2013•衢州)若函数y=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值8、(2013•宁夏)函数(a ≠0)与y=a (x ﹣1)(a ≠0)在同一坐标系中的大致图象是( )D9、(2013•苏州)如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数y=(x >0)的图象经过顶点B ,则k 的值为( )10、(2013•娄底)如图,已知A 点是反比例函数的图象上一点,AB ⊥y 轴于B ,且△ABO 的面积为3,则k 的值为 6 .11、(2013年河北)反比例函数y =mx 的图象如图3所示,以下结论:① 常数m <-1;② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ; ④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上. 其中正确的是 A .①② B .②③ C .③④ D .①④ 12、(2013•黔东南州)如图,直线y=2x 与双曲线y=在第一象限的交点为A ,过点A 作AB ⊥x 轴于B ,将△ABO 绕点O 旋转90°,得到△A ′B ′O ,则点A ′的坐标为( )D14、(2013•毕节地区)一次函数y=kx+b (k ≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k 、b 的取值范围是( )15、(2013甘肃兰州4分、11)已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣16、(2013•莱芜)如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=.17、(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=4,S n=.(用含n的代数式表示)18、(2013•铁岭)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是2.19、(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.20、(2013•遵义)如图,已知直线y=x 与双曲线y=(k >0)交于A 、B 两点,点B 的坐标为(﹣4,﹣2),C 为双曲线y=(k >0)上一点,且在第一象限内,若△AOC 的面积为6,则点C 的坐标为 (2,4) .21、(2013年黄石)如右图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图像与反比例函数(0)ky k x=≠的图像交于二、四象限的A 、B 两点,与x 轴交于C 点。
反比例函数经典例题
反比例函数经典例题1.(北京模拟)如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P 为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC =x ,四边形OCPD 的面积为S .(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式;(2)若已知A (a ,0),B (0,b ),且当x = 时,S 有最大值,求直线AB 的解析式;3498(3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N 在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点2.(北京模拟)已知点A 是双曲线y = (k 1>0)上一点,点A 的横坐标为1,过点A 作k 1x 平行于y 轴的直线,与x 轴交于点B ,与双曲线y =(k 2<0)交于点C .点D (m ,0)k 2x 是x 轴上一点,且位于直线AC 右侧,E 是AD 的中点.(1)如图1,当m =4时,求△ACD 的面积(用含k 1、k 2的代数式表示);(2)如图2,若点E 恰好在双曲线y =(k 1>0)上,求m 的值;k 1x (3)如图3,设线段EB 的延长线与y 轴的负半轴交于点F ,当m =2时,若△BDF 的面积为1,且CF ∥AD ,求k 1的值,并直接写出线段CF 的长.图1图2图33.(上海模拟)Rt △ABC 在直角坐标系中的位置如图所示,tan ∠BAC =,反比例函数12y =(k ≠0)在第一象限内的图象与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),k x △BDE 的面积为2.(1)求反比例函数和直线AB 的解析式;(2)设直线AB 与y 轴交于点F ,点P 是射线FD 上一动点,是否存在点P 使以E 、F 、P 为顶点的三角形与△AEO 相似?若存在,求点P4.(安徽某校自主招生)如图,直角梯形OABC 的腰OC 在y 轴的正半轴上,点A (5n ,0)在x 轴的负半轴上,OA : AB : OC =5 : 5 :3.点D 是线段OC 上一点,且OD =BD .(1)若直线y =kx +m (k ≠0)过B 、D 两点,求k 的值;(2)在(1)的条件下,反比例函数y = 的图象经过点B .mx ①求证:反比例函数y =的图象与直线AB 必有两个不同的交点;mx ②已知点P (p ,-n -1),Q (q ,-n -2)在线段AB 上,当点E 落在线段PQ 上时,求n 的取值范围.5.(浙江杭州)在平面直角坐标系中,反比例函数与二次函数y =k ( x 2+x -1)的图象交于点A (1,k )和点B (-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.6.(浙江义乌)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数y =在第一象限内的图象经过点k x D 、E ,且tan ∠BOA = .12(1)求反比例函数的解析式;(2)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正轴交于点H 、G ,求线段OG 的长.7.(浙江某校自主招生)已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 重合),以PQ 为边,∠PQM =60°作菱形PQMN ,使点M 落在反比例函数y =- 的图象上.(1)如图所示,若点P 的坐标为(1,0),图中已经画出一个符合条件的菱形PQMN ,若另一个菱形为PQ 1M 1N 1,求点M 1的坐标;(2)探究发现,当符合上述条件的菱形只有两个时,一个菱形的顶点M 在第四象限,另一个菱形的顶点M 1在第二象限.通过改变P 点坐标,对直线MM 1的解析式y =kx +b 进行探究可得k =__________,若点P 的坐标为(m ,0),则k =__________(用含m 的代数式表示);(3)继续探究:①若点P 的坐标为(m ,0),则m 在什么范围时,符合上述条件的菱形分别为两个、三个、四个?8.(浙江模拟)如图,在平面直角坐标系中,△AOB 的顶点O 是坐标原点,点A 坐标为(1,3),A 、B 两点关于直线y =x 对称,反比例函数y =(x >0)图象经过点A ,点P k x 是直线y =x 上一动点.(1)填空:B 点的坐标为(______,______);(2)若点C 是反比例函数图象上一点,是否存在这样的点C ,使得以A 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,求出点C 坐标;若不存在,请说明理由;(3)若点Q 是线段OP 上一点(Q 不与O 、P 重合),当四边形AOBP 为菱形时,过点Q 分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,当QE +QF +QB 的值最小时,求出Q 点坐标.9.(浙江模拟)已知点P (m ,n )是反比例函数y =(x >0)图象上的动点,PA ∥x 轴,6x PB ∥y 轴,分别交反比例函数y =(x >0)的图象于点A 、B ,点C 是直线y =2x 上的一3x 点.(1)请用含m 的代数式分别表示P 、A 、B 三点的坐标;(2)在点P 运动过程中,连接AB ,△PAB 的面积是否变化,若不变,请求出△PAB 的面积;若改变,请说明理由;(3)在点P 运动过程中,以点P 、A 、B 、C 为顶点的四边形能否为平行四边形,若能,请求出此时m的值;若不能,请说明理由.备用图11.(江苏泰州)如图,已知一次函数y 1=kx +b 的图象与x 轴相交于点A ,与反比例函数y 2= 的图象相交于B (-1,5)、C (,d )两点.点P (m ,n )是一次函数y 1=kx +b 的c x 52图象上的动点.(1)求k 、b 的值;(2)设-1<m < ,过点P 作x 轴的平行线与函数y 2=的图象相交于点D .试问△PAD 32c x 的面积是否存在最大值?若存在,请求出面积的最大值及此时点P 的坐标;若不存在,请说明理由;(3)设m =1-a ,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,求实数a 的取值范围.12.(江苏模拟)如图,双曲线y =(x >0)与过A (1,0)、B (0,1)的直线交于316x P 、Q 两点,连接OP 、OQ .(1)求证△OAQ ≌△OBP ;(2)若点C 是线段OA 上一点(不与O 、A 重合),CD ⊥AB 于D ,DE ⊥OB 于E .设CA =a .①当a 为何值时,CE =AC ?②是否存在这样的点C ,使得CE ∥AB ?若存在,求出点C 的坐标;若不存在,说明理由.13.(河北)如图,四边形ABCD 是平行四边形,点A (1,0),B (3,1),C (3,3).反比例函数y =(x >0)的图象经过点D ,点P 是一次函数m x y =kx +3-3k (k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k (k ≠0)的图象一定过点C ;(3)对于一次函数y =kx +3-3k (k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围(不必写出过程).14.(山东济南)如图,已知双曲线y = 经过点D (6,1),点C 是双曲线第三象限分支k x 上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;(3)判断AB 与CD 的位置关系,并说明理由.15.(山东淄博)如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线y =-x +b 12点F ,求点F 的坐标;(3)连接OF ,OE ,探究∠AOF 与∠EOC 的数量关系,并证明.16.(湖北某校自主招生)在直角坐标系中,O 为坐标原点,A 是双曲线y =(k >0)在k x 第一象限图象上的一点,直线OA 交双曲线于另一点C .(1)如图1,当OA 在第一象限的角平分线上时,将OA 向上平移 个单位后与双曲线在32第一象限的图象交于点M ,交y 轴于点N ,若 =,求k 的值;MN OA 12(2)如图2,若k =1,点B 在双曲线的第一象限的图象上运动,点D 在双曲线的第三象17.2=0,直线y =(1)求反比例函数的解析式;(2)将线段BC 绕坐标平面内的某点M 旋转180°后B 、C 两点恰好都落在反比例函数的图象上,求点M 的坐标;(3)在反比例函数的图象上是否存在点P ,使以PB 为直径的圆恰好过点C ?若存在,求点P18.(广西北海)如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2).(1)求d 的值;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B ′、C ′ 正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B ′C ′ 的解析式;(3)在(2)的条件下,设直线B ′C ′ 交y 轴于点G .问是否存在x 轴上的点M 和反比例函数图象上的点P ,使得四边形PGMC ′是平行四边形.如果存在,请求出点M 和点P 的坐标;如果不存在,请说明理由.19.(广西玉林、防城港)如图,在平面直角坐标系xO y 中,梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,过点A 的双曲线y =的一支在第一象限交梯形对角线OC k x 于点D ,交边BC 于点E .(1)填空:双曲线的另一支在第_________象限,k 的取值范围是_______________(2)若点C 的坐标为(2,2),当点E 在什么位置时,阴影部分面积S 最小?(3)若 = ,S △OAC =2,求双曲线的解析式.OD OC 1220.(福建厦门)已知点A (1,c )和点B (3,d )是直线y =k 1x +b 与双曲线y = (k 2>0)的交点.k 2x (1)过点A 作AM ⊥x 轴,垂足为M ,连接BM .若AM =BM ,求点B 的坐标;(2)设点P 在线段AB 上,过点P 作PE ⊥x 轴,垂足为E ,并交双曲线y =(k 2>0)k 2x 于点N .当 取最大值时,有PN =,求此时双曲线的解析式.PN NE 1221.(福建莆田)如图,一次函数y =k 1x +b 的图象过点A (0,3),且与反比例函数y = (x >0)的图象相交于B 、C 两点.k 2x (1)若B (1,2),求k 1·k 2的值;(2)若AB =BC ,则k 1·k 2的值是否为定值?若是,请求出该定值;若不是,请说明理由.22.(福建某校自主招生)如图1,已知直线y =- x +m 与反比例函数y =的图象在第一12k x 象限内交于A 、B 两点(点A 在点B 的左侧),分别与x 、y 轴交于点C 、D ,AE ⊥x 轴于E .(1)若OE ·CE =12,求k 的值;(2)如图2,作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,EF =,AB =2,P 是x 轴正半轴上一点,且△PAB 是以55P 为直角顶点的等腰直角三角形,求P 点的坐标.。
中考数学反比例函数综合经典题附答案
中考数学反比例函数综合经典题附答案一、反比例函数1.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.2.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,∴xy=﹣3,又∵y= ,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.3.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,∴CE=BE•tan∠ABO=6× =3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y= 的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,∴OA=OB•tan∠ABO=4× =2.∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO= ×|﹣6|=3.∵S△BAF=4S△DFO,∴4+ =4×3,解得:n= ,经验证,n= 是分式方程4+ =4×3的解,∴点D的坐标为(,﹣4).【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.4.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
反比例函数十大经典题型
反比例函数十大经典题型(原创实用版)目录1.反比例函数的定义与性质2.反比例函数的图像与画法3.待定系数法在反比例函数中的应用4.反比例函数的比较大小问题5.反比例函数与直线的交点问题6.反比例函数的中点问题7.反比例函数的平行线问题8.反比例函数的内插法问题9.反比例函数的外插法问题10.反比例函数的实际应用问题正文一、反比例函数的定义与性质反比例函数是指两个变量之间的关系,当一个变量的值增大时,另一个变量的值会减小,而且它们的乘积保持不变。
反比例函数的一般形式为y=k/x,其中 k 是常数。
二、反比例函数的图像与画法反比例函数的图像是一条双曲线,它有两条渐近线,当 x 趋近于 0 时,y 趋近于无穷大;当 x 趋近于无穷大时,y 趋近于 0。
画反比例函数的图像时,可以先确定渐近线,然后在渐近线之间取一个点,以此点为起点,画出双曲线。
三、待定系数法在反比例函数中的应用待定系数法是求解反比例函数的常用方法,它的一般步骤是:先设反比例函数的关系式,然后根据题目的条件,列出方程组,解方程组得到 k 值,最后代入关系式求得函数的解析式。
四、反比例函数的比较大小问题比较反比例函数的大小问题通常是通过比较函数值的大小来解决的。
例如,若点 A(1, y1) 和点 B(2, y2) 在反比例函数 y=k/x 的图像上,则可以通过比较 y1 和 y2 的大小来判断 k 的取值范围。
五、反比例函数与直线的交点问题反比例函数与直线的交点问题可以通过解方程组来解决。
设反比例函数为 y=k/x,直线的解析式为 y=ax+b,将两个方程联立,解得 x 和 y 的值,即可得到交点。
六、反比例函数的中点问题反比例函数的中点问题通常是通过求解中点坐标来解决的。
设反比例函数为 y=k/x,已知两点 A(x1, y1) 和 B(x2, y2),则中点 M 的坐标为 ((x1+x2)/2, (y1+y2)/2)。
七、反比例函数的平行线问题反比例函数的平行线问题可以通过比较函数的斜率来解决。
中考《反比例函数》经典例题及解析
一、反比例函数的概念1.反比例函数的概念:一般地,函数成1y kx -=的形式.自变量x 的取值范围2.反比例函数ky x=(k 是常数,k 自变量x 和函数值y 的取值范围都是不等于二、反比例函数的图象和性质 1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线于反比例函数中自变量x ≠0,函数y ≠0,标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分当k <0时,函数图象的两个分支分别在第二2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中3.注意(1)画反比例函数图象应多取一些点,(2)随着|x |的增大,双曲线逐渐向坐标轴(3)反比例函数的图象不是连续的,因此时,在每一象限(第一、三象限)内y 当k <0时,也不能笼统地说y 随x 的增大而三、反比例函数解析式的确定反比例函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比值范围是x ≠0的一切实数,函数的取值范围也是一切非≠0)中x ,y 的取值范围 不等于0的任意实数. 曲线,它有两个分支,这两个分支分别位于第一、三象,所以,它的图象与x 轴、y 轴都没有交点,即双曲两个分支分别在第一、三象限,在每个象限内,y 随在第二、四象限,在每个象限内,y 随x 的增大而增又是中心对称图形,其对称轴为直线y =x 和y =-x ,,描点越多,图象越准确,连线时,要注意用平滑的坐标轴靠近,但永不与坐标轴相交,因为反比例函数因此在谈到反比例函数的增减性时,都是在各自象随x 的增大而减小,但不能笼统地说当k >0时,y 增大而增大. 反比例函数的解析式也可以写一切非零实数. 三象限,或第二、四象限.由即双曲线的两个分支无限接近坐x 的增大而减小. 大而增大.,对称中心为原点. 平滑的曲线连接各点. 函数ky x=中x ≠0且y ≠0. 各自象限内的增减情况.当k >0随x 的增大而减小.同样,1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数ky x=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式. 2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x ,y 的值代入解析式,得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式. 四、反比例函数中|k|的几何意义 1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数12y y >时自变量x 的取值范围,只需观察下图,当12y y >时,x 的取值范围为x .2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数①k 值同号,两个函数必有两个交点;②(2)从计算上看,一次函数与反比例函数六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数.1.下列函数:①y =2x ﹣1;②;▲ (填序号) 【答案】②⑤.【解析】反比例函数的定义.【分析】根据反比例函数的定义逐一作出判③y=x 2+8x ﹣2是二次函数,不是反比例函时,是反比例函数,没有此条件则不是反比2.已知电压U 、电流I 、电阻R 三者之间的因此会有不同的可能图象,图象不可能是A . B .【答案】A【分析】在实际生活中,电压U、电流5y=x-22k y x=相交时,联立两个解析式,构造方程组,需观察一次函数的图象高于反比例函数图象的部分所对A x >或0B x x <<;同理,当12y y <时,x 的取值范坐标例函数的交点由k 值的符号来决定.②k 值异号,两个函数可无交点,可有一个交点,例函数的交点主要取决于两函数所组成的方程组的解的定函数解析式,再利用图象找出解决问题的方案,经典例题 反比例函数的定义;③y =x 2+8x ﹣2;④;⑤;⑥中作出判断:①y=2x ﹣1是一次函数,不是反比例函数比例函数;④不是反比例函数;⑤是反比是反比例函数.故答案为②⑤. 之间的关系式为:(或者),实际生活中能是( )C .D .流I 、电阻R 三者之中任何一个不能为负,依此可得22y=x1y=2x a y=x 22y=x 1y=2x U IR =U I R=,然后求出交点坐标.针对分所对应的x 的范围.例如,如取值范围为0A x x<<或B x x <,可有两个交点; 的解的情况. ,特别注意自变量的取值范围中,y 是x 的反比例函数的有函数;②是反比例函数;是反比例函数;⑥中,a≠0生活中,由于给定已知量不同,此可得结果.5y=x-ay=x【解析】A 图象反映的是,但自变量选:A .【点睛】此题主要考查了现实生活中函数图1. 2019年10月,《长沙晚报》对外发布长开的美丽姿态,该高铁站建设初期需要运送运输公司平均运送土石方的速度(单位是( )A .B .【答案】A【分析】由总量=vt ,求出v 即可.【解析】解(1)∵vt=106,∴v=,【点睛】本题考查了反比例函数的应用,经典1.从,,,这四个数中任取两例函数中,其图象在二、四象限的概率是【答案】【分析】从,,,中任取两个数础事件数,按照概率公式求解即可.【解析】从,,,中任取两个数其中积为负值的共有:8种, ∴其概率为【点睛】本题结合反比例函数图象的性质件数,是解题的关键.2.一次函数与反比例函数UI R=v 610v t=610v =610t1-23-4231-23-41-23-4y ax a =-自变量R 的取值为负值,故选项A 错误;B 、C 、D 函数图象的确立,注意自变量取值不能为负是解答此外发布长沙高铁两站设计方案,该方案以三湘四水,要运送大量的土石方,某运输公司承担了运送总量为单位:天)与完成运送任务所需的时间t (单位C . D .,故选:A . ,熟练掌握反比例函数的性质是解题的关键. 经典例题反比例函数的图象和性质 任取两个不同的数分别作为,的值,得到反比例函率是______. 两个数值作为,的值,表示出基本事件的总数两个数值作为,的值,其基本事件总数有:共计12种;概率为:故答案为:. 性质,考查了概率的计算,能准确写出基本事件的总在同一坐标系中的图象可能是( 3/m 26110v t =6210v t =a b a b a b 82123=23(0)ay a x=≠选项正确,不符合题意.故解答此题的关键.,杜鹃花开 ,塑造出杜鹃花总量为土石方的任务,该单位:天)之间的函数关系式比例函数,则这些反比总数,再表示出其积为负值的基件的总数,和满足条件的基本事) 6310m aby x=A .B .【答案】D【分析】根据一次函数与反比例函数图象的【解析】当时,,则一次函数三象限,故排除A ,C 选项;当时,,则一次函数排除B 选项,故选:D .【点睛】本题主要考查了一次函数与反比例键.3.已知点(-2,a ),(2,b ),(3,c )A .a <b <c B .b <a <c【答案】C【分析】根据反比例函数的性质得到函数减小,则,. 【解析】解:,函数,,【点睛】本题考查了反比例函数图象上点的1.反比例函数经过点,则下列A .C .当时,随的增大而增大【答案】C 【解析】【分析】将点(2,1)代入中求出0a >0a -<0a <0a ->y 0b c >>0a <0k >Q ∴ky =2023-<<<Q 0b c ∴>>0a <ky x=(2,1)2k =0x >y x ky x=C .D .图象的性质进行判断即可得解.次函数经过一、三、四象限,反比例函数经过一、二、四象限,反比例函数反比例函数图像的性质,熟练掌握相关性质与函数图在函数的图象上,则下列判断正确的是C .a <c <bD .c <b <a函数的图象分布在第一、三象限,在每的图象分布在第一、三象限,在每一象限,.故选:.上点的坐标特征,熟练掌握反比例函数的性质是解题则下列说法错误..的是( ) B .函数图象分布在第一、三象限 D .当时,随的增大而减小求出k 值,再根据反比例函数的性质对四个选项逐一分y ax a =-ax a =-ay =()0ky k x=>(0)ky k x=>(0)k x>a c b ∴<<C 0x >y x例函数经过一 、经过二、四象限,故函数图像的关系是解决本题的关确的是( ) 在每一象限,随的增大而象限,随的增大而减小, 是解题的关键.逐一分析即可. (0)ay a x=≠(0)a x≠y x y x【解析】将点(2,1)代入中,解得B .k=2﹥0,反比例函数图象分布在第一、C .k=2﹥0且x ﹥0,函数图象位于第一象D .k=2﹥0且x ﹥0,函数图象位于第一象【点睛】本题考查了反比例函数的性质,的关键.2.若点,在反比A .B .【答案】B【分析】由反比例函数,三种情况①若点A 、点B 在同在第二或第且点B 在第二象限讨论即可. 【解析】解:∵反比例函数①若点A 、点B 同在第二或第四象限,②若点A 在第二象限且点B 在第四象限③由y 1>y 2,可知点A 在第四象限且点综上,的取值范围是.故选【点睛】本题考查反比例函数的图象和性质不要遗漏. 3.反比例函数y =(x <0)的图象如图的增大而增大;③该函数图象关于直线也在该函数的图象上.其中正确结论的个数【答案】3【分析】观察反比例函数y =(x <0)性质即可进行判断.ky x=()11,A a y -()21,B a y +1a <-11a -<<(0)ky k x=<(ky k x=a 11a -<<kxkx解得:k=2,A .k=2,此说法正确,不符合题意;、三象限,此书说法正确,不符合题意;第一象限,且y 随x 的增大而减小,此说法错误,符第一象限,且y 随x 的增大而减小,此说法正确,不符,熟练掌握反比例函数的性质,理解函数图象上的在反比例函数的图象上,且,C .D .或,可知图象经过第二、四象限,在每个象限内,y 二或第四象限;②若点A 在第二象限且点B 在第四象,∴图象经过第二、四象限,在每个象限内,,∵,∴a-1>a+1,此不等式无解;象限,∵,∴,解得:且点B 在第二象限这种情况不可能. 故选:B .和性质,熟练掌握反比例函数的图象和性质是解题的关象如图所示,下列关于该函数图象的四个结论:①k 线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图的个数有_____个.)的图象可得,图象过第二象限,可得k <0,然后(0)ky k x=<12y y >1a >1a <-1a >0)<12y y >12y y >1010a a -⎧⎨+⎩<>1a -<; 符合题意;不符合题意;故选:C . 象上的点与解析式的关系是解答,则的取值范围是( ) 随x 的增大而增大,由此分四象限;③若点A 在第四象限,y 随x 的增大而增大, ; 题的关键,注意要分情况讨论,>0;②当x <0时,y 随x 函数图象上,则点(﹣1,6)然后根据反比例函数的图象和a 1<【解析】观察反比例函数y =(x <0)的图象可知:图象过第二象限,∴k <0,所以①错误; 因为当x <0时,y 随x 的增大而增大,所以②正确;因为该函数图象关于直线y =﹣x 对称,所以③正确; 因为点(﹣2,3)在该反比例函数图象上,所以k =﹣6,则点(﹣1,6)也在该函数的图象上,所以④正确.所以其中正确结论的个数为3个.故答案为:3.【分析】本题考查了反比例函数的图象和性质,熟练掌握图象和性质是解题的关键.经典例题 反比例函数解析式的确定1.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =(k ≠0)的图象经过其中两点,则m 的值为_____. 【答案】-1.【分析】根据已知条件得到点在第二象限,求得点一定在第三象限,由于反比例函数的图象经过其中两点,于是得到反比例函数的图象经过,,于是得到结论. 【解析】解:点,,分别在三个不同的象限,点在第二象限,点一定在第三象限,在第一象限,反比例函数的图象经过其中两点, 反比例函数的图象经过,, ,,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.2.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________. 【答案】 【分析】利用正比例函数解析式求出交点的横坐标,再将交点的坐标代入反比例函数解析式中求出k 即可得到答案.【解析】令y=2x 中y=2,得到2x=2,解得x=1,∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2),设反比例函数解析式为,将点(1,2)代入,得, kxkx(2,1)A -(6,)C m -(0)ky k x=≠(0)ky k x=≠(3,2)B (6,)C m -Q (2,1)A -(3,2)B (6,)C m -(2,1)A -∴(6,)C m -(3,2)B Q (0)ky k x=≠∴(0)ky k x=≠(3,2)B (6,)C m -326m ∴⨯=-1m ∴=-1-2y x =2y x=ky x=2y x =ky x=122k =⨯=∴反比例函数的解析式为,故答案为【点睛】此题考查函数图象上点的坐标,问题.1.已知反比例函数的图象经过点(2A .y=B .y =﹣【答案】D【分析】设解析式y =,代入点(2,-4)【解析】设反比例函数解析式为y =,解得:k =-8,所以这个反比例函数解析式为【点睛】本题主要考查待定系数法求反比例2.已知反比例函数的图像经过点【答案】﹣12【分析】直接将点代入反比例函数【解析】依题意,将点代入【点睛】本题主要考查反比例函数图象上的经典例1.如图,将一把矩形直尺ABCD 和一块含A 重合,点F 在AD 上,三角板的直角边直尺的宽CD =3,三角板的斜边FG =【答案】2y x =2x2xkxk x ky x=()3,4-()3,4-答案为:. ,函数图象的交点坐标,待定系数法求反比例函数,﹣4),那么这个反比例函数的解析式是( ) C .y =D .y =﹣求出即可. ,将(2,-4)代入,得:-4=,析式为y =-.故选:D .反比例函数解析式,求反比例函数解析式只需要知道其过点,则的值是_________. 例函数解析式中,解之即可. ,得:,解得:=﹣12,故答案为:﹣象上的点的坐标特征,熟练掌握图象上的坐标与解析经典例题 反比例函数与平面几何综合 一块含30°角的三角板EFG 摆放在平面直角坐标系中角边EF 交BC 于点M ,反比例函数y =(x >0)的图,则k =_____.2y x=8x8xk 2k8x()3,4-k k y x=43k =-k kx例函数的解析式,正确计算解答 知道其图像上一点的坐标即可. :﹣12.与解析式的关系是解答的关键.系中,AB 在x 轴上,点G 与点的图象恰好经过点F ,M .若【分析】通过作辅助线,构造直角三角形比例函数k 的意义,确定点F 的坐标,进而【解析】解:过点M 作MN ⊥AD ,垂足为在Rt △FMN 中,∠MFN =30°,∴FN设OA =x,则OB =x +3,∴F(x ,解得,x =5,∴F(5,,∴k【点睛】考查反比例函数的图象上点的坐标2.如图,平行四边形的顶点的图像经过、A .B .【答案】B【分析】根据题意求出反比例函数解析式示求出OA ,再利用平行四边形的面【解析】解:如图,分别过点D 、B∵四边形是平行四边形∴易得CH=OABC A ()0,0k y k x x =>>C 84,3⎛⎫ ⎪⎝⎭9,32⎛⎫ ⎪⎝⎭OABC OABC 角形,求出MN ,FN ,进而求出AN 、MB ,表示出点进而确定k 的值即可. 垂足为N ,则MN =AD =3,MN AN =MB =83,M (x +3,,∴=(x +3)=40的坐标特征,把点的坐标代入函数关系式是常用的方在轴的正半轴上,点在对角线上两点.已知平行四边形的面积是,则点C .D . 析式,设出点C 坐标,得到点B 纵坐标,利用的面积是构造方程求即可. 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交CH=AFx ()3,2D OB D OABC 152105,3⎛⎫⎪⎝⎭2416,55⎛⎫⎪⎝⎭6,a a ⎛⎫⎪⎝⎭152a 示出点F 、点M 的坐标,利用反用的方法. 上,反比例函数则点的坐标为( ) 利用相似三角形性质,用表y 轴于点HB a∵点在对角线上,反比例函数∴ 即反比例函数解析式为∵ ∴∴∴∵平行四边形的面积是∴∴点B 坐标为故应选:B 【点睛】本题是反比例函数与几何图形的综根据题意构造方程求解.1.如图,在平面直角坐标系中,直线的圆上一动点,连结,为的中A .B . 【答案】A【分析】连接BP ,证得OQ 是△ABP 的中标为(x ,-x ),根据点,可利用勾股【解析】解:连接BP , ∵直线与双曲线的图形均关∵点Q 是AP 的中点,点O 是AB 的中点()3,2D OB 236k =⨯=DE BF P ODE OBF :△△DE 9OA OF AF OF HC a =-=-=OABC 1529,32⎛⎫⎪⎝⎭AP Q AP 12-32-(2,2)C y x =-ky x=例函数的图像经过、两点式为∴设点C 坐标为 ∴∴ ,点B 坐标为 解得(舍去) 形的综合问题,涉及到相似三角形的的性质、反比例与双曲线交于、两点,是以点的中点.若线段长度的最大值为,则的值为C .D . 的中位线,当P 、C 、B 三点共线时PB 长度最大,用勾股定理求出B 点坐标,代入反比例函数关系式即形均关于直线y=x 对称,∴OA=OB , 中点∴OQ 是△ABP 的中位线,()0,0ky k x x=>>C D 6y x =6,a a ⎛⎫ ⎪⎝⎭OE BF OF=236OF a=6392a OF a ⨯==a -96,a a ⎛⎫⎪⎝⎭96152a a a ⎛⎫-⋅= ⎪⎝⎭122,2a a ==-y x =-ky x=A B P OQ 2k 2-14-两点 反比例函数的性质,解答关键是为圆心,半径长的值为( ),PB=2OQ=4,设 B 点的坐系式即可求出k 的值. (2,2)C 1当OQ 的长度最大时,即PB 的长度最大∵PB≤PC+BC ,当三点共线时PB 长度最大∵PC=1,∴BC=3,设B 点的坐标为(解得代入中可得:,故答案为【点睛】本题考查三角形中位线的应用和正2.如图,在平面直角坐标系中,矩形ABC AD 平分,反比例函数18,则k 的值为()A .6B .12 【答案】B【分析】先证明OB ∥AE ,得出S △ABE △OAE=×3a ×=18,求解即可. 【解析】解:如图,连接BD ,∵四边形又∵AD 为∠DAE 的平分线,∴∠OAD=∵S △ABE =18,∴S △OAE =18,设A 的坐标为12x x ==k y x=12k =-OAE ∠(ky x=12k a最大,度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,x ,-x ),则,B 点坐标为, 案为:A .用和正比例函数、反比例函数的性质,结合题意作出ABCD 的对角线AC 的中点与坐标原点重合,点E 的图象经过AE 上的两点A ,F ,且C .18 D .24=S △OAE =18,设A 的坐标为(a ,),求出F 点的坐边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠AD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE , 坐标为(a ,), 3=⎝⎭0,0)k x >>k aka意作出辅助线是解题的关键. 是x 轴上一点,连接AE .若,的面积为点的坐标和E 点的坐标,可得S ∴∠ODA=∠OAD , AF EF =ABE △∵AF=EF ,∴F 点的纵坐标为,代入反∴E 点的坐标为(3a,0),S △OAE =【点睛】本题考查了反比例函数和几何综合经典例1.如图,点,点都在反比点,.连接,,.若四A .B .【答案】C【分析】过点P 分别向x 轴、y 轴作垂线−2),根据反比例函数系数k 的几何意义求S 2=4:3.【解析】解:点P (m ,1),点Q (−2∴m×1=−2n =4,∴m =4,n =−2,∵P (4,1),Q (−2,−2),∵过点P 分别作QK ⊥PN ,交PN 的延长线于K ,则2k a 12(,1)P m (-2,)Q n M N OP OQ PQ 12:2:3S S =12:S S =代入反比例函数解析式可得F 点的坐标为(2a ,×3a ×=18,解得k=12,故选:B . 何综合,矩形的性质,平行线的判定,得出S △ABE 经典例题 反比例函数中k 的几何意义在反比例函数的图象上,过点分别向轴、若四边形的面积记作,的面积记 C . D .垂线,垂足分别为点M ,N ,根据图象上点的坐标特征意义求得S 1=4,然后根据S 2=S △PQK −S △PON −S 梯形ONKQ ,n )都在反比例函数y =的图象上, 分别向x 轴、y 轴作垂线,垂足分别为点M ,N ,PN =4,ON =1,PK =6,KQ =3,k a4y x=P x OMPN 1S POQ △1:112:4:3S S =12:5:3S S =4x), BE =S △OAE =18是解题关键.意义、轴作垂线,垂足分别为面积记作,则( )标特征得到P (4,1),Q (−2,NKQ 求得S 2=3,即可求得S 1:,∴S 1=4,2k ay 2S∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−【点睛】本题考查了反比例函数图象上点的的关键.2.如图,在平面直角坐标系中,▱ABCD =(k <0,x <0)与▱ABCD 的边AB 所在直线翻折,使原点O 落在点G 处,【答案】【分析】将点F 坐标代入解析式,可求双曲股定理可求EG 的长,由勾股定理可求【解析】解:∵双曲线 y =(k <0,∵▱ABCD 的顶点A 的纵坐标为10,∴∴点E 的横坐标为﹣6,即BE =6.∵△BOC 和△BGC 关于BC 对称,∴∵EG ∥y 轴,在Rt △BEG 中,BE =6,延长EG 交x 轴于点H ,∵EG ∥y 轴,∴∠GHC 是直角,在Rt 则有CH =OH ﹣OC =BE ﹣GC =6﹣m ∴m=,∴GC ==OC ,∴S △BOC【点睛】本题考查反比例函数系数k 的几何12kx503k x 1031036×3−×4×1−(1+3)×2=3,∴S 1:S 2=4:3,上点的坐标特征,反比例函数系数k 的几何意义,CD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣,连接EG ,若EG ∥y 轴,则△BOC 的面积是_____求双曲线解析式为y =−,由平行四边形的性质可CO 的长,即可求解.x <0)经过点F (﹣12,5),∴k =﹣60,∴双曲线BO =10,点E 的纵坐标为10,且在双曲线y =BG =BO =10,GC =OC .BG =10,∴EG =8. △GHC 中,设GC =m ,,GH =EH ﹣EG =10﹣8=2,则有m 2=22+(6﹣=××10=,故答案为:.的几何意义,折叠的性质,平行四边形的性质,正确的121260x12103503503,故选:C . ,分别求得S 1、S 2的值是解题x 轴的负半轴上,双曲线y 12,5),把△BOC 沿着BC .性质可得OB=10,BE=6,由勾双曲线解析式为 y =. 上,m )2,正确的作出辅助线是解题关键.60x-60x-1.如图,已知在平面直角坐标系xOy 中数y =(x >0)的图象经过OA 的中点【答案】【分析】作辅助线,构建直角三角形,利用利用△OCE ∽△OAB 得到面积比为1【解析】解:连接OD ,过C 作CE ∥∵∠ABO =90°,反比例函数y =(x ∴S △COE =S △BOD =,S △ACD =S △OCD ∵CE ∥AB ,∴△OCE ∽△OAB ,∴∴4×k =2+2+k ,∴k =,故答案为【点睛】本题考查了反比例函数比例系数和y 轴分别作垂线,与坐标轴围成的矩形的一点和垂足以及坐标原点所构成的三角形的2.(2020·内蒙古赤峰·中考真题)如图,()的图象上,且轴,A .3B .4 kx83kx12k OCS △1212830x >//BC y 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点中点C .交AB 于点D ,连结CD .若△ACD 的面积是利用反比例函数k 的几何意义得到S △OCE =S △OBD :4,代入可得结论. AB ,交x 轴于E ,>0)的图象经过OA 的中点C , =2, ,∴4S △OCE =S △OAB , 答案为:. 系数k 的几何意义:在反比例函数y=图象中任取一矩形的面积是定值|k|.在反比例函数的图象上任意一角形的面积是|k|,且保持不变.也考查了相似三,点B 在反比例函数()的图象上,,垂足为点C ,交y 轴于点A ,则C .5 D .614OCE S =△△OAB 83kx126y x =0x >AC BC ⊥V 点A 在第一象限,反比例函面积是2,则k 的值是_____. BD =k ,根据OA 的中点C ,任取一点,过这一个点向x 轴任意一点向坐标轴作垂线,这相似三角形的判定与性质. ,点C 在反比例函数的面积为 ( )122y x=-ABC【答案】B【分析】作BD ⊥BC 交y 轴于D ,可证四积,进而由矩形的性质可求的面积【解析】作BD ⊥BC 交y 轴于D ,∵∴S 矩形ACBD =6+2=8,∴的面积为【点睛】本题考查了反比例函数比例系数的点P ,向x 轴和y 轴作垂线你,以点P P 的一个垂足和坐标原点为顶点的三角形的经典例1.如图,函数与函数的图A .或B .或【答案】D【分析】根据图象可知函数数图象之上的x 的取值范围.【解析】解:如图所示,直线图象在反比例故本题答案为:或.故选ABC V ABC V 1y x=+22y x=2x <-01x <<2x <-1y x =+20x -<<1x >可证四边形ACBD 是矩形,根据反比例函数k 的几何意的面积.轴,,∴四边形ACBD 是矩形,积为4.故选B .系数的几何意义,一般的,从反比例函数(及点P 的两个垂足和坐标原点为顶点的矩形的面积等角形的面积等于.也考查了矩形的性质. 经典例题 反比例函数与一次函数的综合的图象相交于点.若, C .或 D .与函数的图象相交于点M 、N ,若,反比例函数图象之上的x 的取值范围为故选:D//BC y AC BC ⊥ky x=12k ()()1,,2,M m N n -12y y >1x >20x -<<01x <<2-22y x=12y y >2x -<几何意义求出矩形ACBD 的面, k 为常数,k ≠0)图象上任一的面积等于常数,以点P 及点综合,则x 的取值范围是( )或 ,即观察直线图象在反比例函或, k 0x <<1x >0<1x >【点睛】本题主要考查了反比例函数图象与题的关键.2.如图,在平面直角坐标系中,直线y 平移b 个单位长度,交y 轴于点B ,交反比A .1B .2 【答案】C【分析】解析式联立,解方程求得的横坐的坐标,代入即可求得的值【解析】解:直线与反比例函数解求得,的横坐标为OA//BC ,∴,∴,∴,∴把代入得,,将直线沿轴向上平移个单位长把的坐标代入得,求得【点睛】本题考查了反比例函数与一次函数式等知识,求得交点坐标是解题的关键.3.如图,直线与反比例函数8.(1)填空:反比例函数的关系式为____A C y x b =+b Q y x =∴4x x=2x =±A ∴Q CBG AOH ∠=∠2OA BC =Q 2OA AH BC GC ==1x =4y x=4y =C ∴Q y x =y b ∴C 41b =+AB ky =图象与一次函数图象的交点问题,能利用数形结合求=x 与反比例函数y =(x >0)的图象交于点交反比例函数图象于点C .若OA =2BC ,则b 的值为C .3 D .4的横坐标,根据定义求得的横坐标,把横坐标代入的值. 函数的图象交于点, 坐标为2,如图,过C 点、A 点作y 轴垂线, ,,解得=1,的横坐标为1,, 单位长度,得到直线, ,故选:.次函数的综合问题,涉及函数的交点、一次函数平移. 的图象交于A ,B 两点,已知点A 的坐标为_________________;(2)求直线的函数关系式4xC 4(0)y x x=>A OHA BGC ~V V 22BC BC GC=GC C ∴(1,4)y x b =+3b =C (0)x x>AB 结合求出不等式的解集是解答此于点A ,将直线y =x 沿y 轴向上的值为( )标代入反比例函数的解析式求得, 数平移、待定系数法求函数解析坐标为,的面积为关系式;(3)动点P 在y 轴上运()6,1AOB V动,当线段与之差最大时,求点【答案】(1);(2)【分析】(1)把点代入解析式,即可(2)过点A 作轴于点C ,过点点B 的坐标为,表示出△ABE 的面积到解析式;(3)根据“三角形两边之差小于,代入即可求值.【解析】解:(1)把点代入(2)如图,过点A 作轴于点形.设点B 的坐标为,∴∵点A 的坐标为,∴∴∵A ,B 两点均在双曲线上∴∵的面积为8,∴,∴.解得设直线的函数关系式为∴直线的函数关系式为PAPB 6y x =12y =-()6,1AC x ⊥(),m n AB ()6,1A AC x ⊥(),m n mn ()6,1BE DE=11(1)(622ABE S AE BE n =⋅=-V 6(0)y x x =>AOB AOC BOD OCED S S S S =--V V V 矩形AOB V 132n m -23830n n --=123,n n =AB (y kx =+AB 12y =-求点P 的坐标.;(3) 即可得到结果;过点B 作轴于点D ,交于点E ,则四的面积,根据△AOB 得面积可得,得到点差小于第三边”可知,当点P 为直线与y 轴的交点可得,∴反比例函数的解析式为C ,过点B 作轴于点D ,交于点.. . 上,∴. ,整理得.(舍去).∴.∴点B 的坐标为.,则.解得.. 4x +()0,4BD y ⊥,CA DB 616m n =-AB (0)ky x x =>6k =BD y ⊥,CA DB 6=6,1E BD m AE CE AC n -=-=-=-)m -16132BOD AOC S S ==⨯⨯=V V ABE S -V 1633(1)(6)32n n m n =-----=-8=616m n =-13=-2m =(2,3)0)b k ≠6123k b k b +=⎧⎨+=⎩124k b =-=⎧⎪⎨⎪⎩4x +则四边形为矩形,设得到点B 的坐标,代入即可的的交点时,有最大值为; 于点E ,则四边形为矩.OCED PA PB -6y x=OCED 12m(3)如上图,根据“三角形两边之差小于第当点P 为直线与y 轴的交点时,∴点P 的坐标为.【点睛】本题主要考查了反比例函数与一次1.如图,在平面直角坐标系中,一次是第一象限内反比例函数图象上一点,且【答案】2.【分析】联立方程组求出A 过A 作轴,交BF 于F 点,交根据的面积是的面积的【解析】联立方程组,解得,轴,过B 作轴,过AAB ()0,4xOy 12y x y x =+⎧⎪⎨=⎪⎩//AE x ABP △AOB V 12y x y x =+⎧⎪⎨=⎪⎩PE x ⊥BF x ⊥小于第三边”可知,有最大值为,把代入与一次函数的综合,准确分析题意是解题的关键.一次函数的图象与反比例函数的图象且的面积是的面积的2倍,则点,B 两点坐标,设,过P 作PE 于点E ,分别求出梯形BFEP 、△APE 、△ABF 的2倍列方程求解即可.,,,, 作轴,交BF 于F 点,交PE 于点E ,如图PA PB -AB 0x =1y =-1y x =+2y x=ABP △AOB V 2,(0)P x x x ⎛⎫⎪⎝⎭>PE1112x y =⎧⎨=⎩2221x y =-⎧⎨=-⎩(2,1)A ∴--(1,2)B //AE x ,得. .的图象交于A ,B 两点,若点P 则点P 的横坐标...为________. 轴,过B 作轴,、△AOB 、△ABP 的面积,设,过P 作如图, 42x +4y =E x ⊥BF x ⊥2,(0)P x x x ⎛⎫⎪⎝⎭>。
反比例函数经典大题(有详细答案)
反比例函数1. 如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小.2、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.3、若反比例函数x ky =与一次函数42-=x y 的图象都经过点A (a ,2) (1)求反比例函数x ky =的解析式;(2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.ABOCxyO Mx A(第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 .(1)求k 和m 的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0)。
⑴求点D 的坐标;⑵求经过点C 的反比例函数解析式.6、如图,一次函数3y kx =+的图象与反比例函数my x=(x>0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。
(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?xkxk B O A21xyA O PBC D7、已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式; (3)写出当x 取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。
26.26(6)专题:反比例函数与三角形
26.26(6)专题:反比例函数与三角形一.【知识要点】1.反比例函数与三角形二.【经典例题】1.如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.(3)点E在线段CD上,且AEB是直角三角形,求点E的坐标.2.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则P点的横坐标为()A.5 B.6 C.7 D.83.如图,P1是反比例函数y=(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?(2)若△P1OA1与△P2A1A2均为等边三角形,求此反比例函数的解析式及A2点的坐标.三.【题库】【A】1.(2021绵阳期末第17题)如图,反比例函数y=(k>0)在第一象限的图象过点A(1,3),点B(点B在点A的右边),连接AB,AC与BC分别平行x轴、y轴,△ABC的面积为,则点C的坐标为.【B】【C】1.(本题满分12分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于一、三象限内的A(2,m)、B(﹣4,﹣2)两点,与x轴交于C点.(1)求该反比例函数和一次函数的解析式;(2)P是x轴上的点,且△PAC的面积与△BOC的面积相等,求P点的坐标.2.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(﹣3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()A.-36B.-48C.-49D.-64【D】1.(本题满分12分)如图,直线y=x+2与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,BC⊥x轴于点C,且S△ABC=9.(1)求反比例函数的表达式;(2)若点P是反比例函数图象上的一动点,且位于直线BC的右侧,过点P作y轴的平行线,交直线AB于点M,交x轴于点N.①当∠BPM=∠CPN时,求点P的坐标;②是否存在点P,使△BPM与△BPC全等?若存在,求点P的坐标;若不存在,说明理由.2.如图,直线y=kx+2与双曲线y=相交于点A、B,已知点A的横坐标为1.(1)求直线y=kx+2的解析式及点B的坐标;(2)以线段AB为斜边在直线AB的上方作等腰直角三角形ABC.求经过点C的双曲线的解析式.。
反比例函数50道经典题
P ABDCE 1. (2011甘肃兰州,15)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。
若点A 的坐标为(-2,-2),则k 的值为 ( )A .1B .-3C .4D .1或-32. (2010广东广州)23.已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6).(1)求m 的值;(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.3、(门头沟)8. 如图,在矩形ABCD 中,AB =4,BC =3,点P 在CD 边上运动,联结AP ,过点B 作BE ⊥AP ,垂足为E ,设AP =x ,BE =y , 则能反映y 与x 之间函数关系的图象大致是4、(丰台)8.如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=1,AB=23, BC=2,点P 是BC 边上的一个动点(点P 与点B 不重合),DE ⊥AP于点E .设AP=x,DE=y .在下列图象中,能正确反映y 与x 的函数 关系的是BxyO ABCD B AOCy xABCDP E yx512 4 53 512 y x4 53y x512 4 53y x0 4 5312 5A .B .C .D .5、(顺义)16 .(5分) 如图,E 为矩形ABCD 的边CD 上的一个动点, BF ⊥AE 于F, AB=2 , BC=4, 设AE=x ,BF=y ,求y 与x 之间的关系式,并写出x 的取值范围.6、 (西城南)18.已知正比例函数和反比例函数的图象都经过点(2,2)A .(1)求这两个函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点(4,)B m ,求平移后直线的解析式. 7、(石景山)8.已知:点()m m A ,在反比例函数xy 4=的图象上,点B 与点A 关于坐标轴对称,以AB 为边作正方形,则满足条件的正方形的个数是A . 4B . 5C . 3D .8(8、顺义)17. (5分) 已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan 422ABO OB OE ∠===,,.求该反比例函数及直线AB 的解析式.9、(平谷)23. 如图,四边形OABC 是面积为4的正方形,函数)0x (xky >=的图象经过点B .(1) 求k 的值;(2)将正方形OABC 分别沿直线AB ,BC 翻折,得到正方形MABC ′和NA′BC .设线段M C ′,NA′分别与函数)0x (xky >=的图象交于点F ,E . 求线段EF 所在直线的解析式.10、(丰台)18.已知:反比例函数my x=(m ≠0)的图象经过点A (-2,6). (1)求m 的值;(2)如图,过点A 作直线AC 与函数my x=的图象交于点B ,与x 轴交于点C , 且BC 1=AC 3,求点B 的坐标.FDCABEOx y ACB ED11、(石景山)16.如图,已知:双曲线(0)ky x x=>经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为)4,8(-,求点C 的坐标.12、(西城南) 23. 反比例函数xky =(0>x )的图象过点A (2,3). (1)如图,OBC Rt ∆的OC 边在x 轴上,该反比例函数的图象经过OBC Rt ∆的斜 边OB 的中点D ,与BC 边交于E .过D 做DF ⊥x 轴,垂足为F .直接写出∆ODF 和∆OBE 的面积;(2)设M (n m ,)是该反比例函数图象上异于点A 的一点,过M 作平行于y 轴 的直线1l ,过A 作平行于x 轴的直线2l ,1l 与2l 交于点G .顺次连结OA ,AG , GM ,MO .设由它们围成的图形的面积为S ,求S 与m 的函数关系式.13. (2011甘肃兰州,15)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。
九年级数学下册第二十六章反比例函数经典大题例题(带答案)
九年级数学下册第二十六章反比例函数经典大题例题单选题1、春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开⁄)与药物在空气中的持续时间x(min)之间的函数关系,在门窗进行通风,室内每立方米空气中含药量y(mg m3打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内答案:C分析:利用图中信息一一判断即可.解∶由图象可知,经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3,故A选项正确.不符合题意.设0<x<5时函数解析式为y1=k1x,把(5,10)代入得,k1=2,∴y1=2x,∴y1=8时,x=4,15-4=11,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,故B选项正确,不符合题意;由图象可知,y=5时,x<5或x>15,,设反比例函数解析式为y2=k2x,把(15,8)代入得:8=k215解得:k2=120,∴y2=120,x当y1=5时,x1=2.5,当y2=5时,x2=24,24-2.5=21.5<35,故C选项错误,符合题意;当y1=2时,x1=1,当y2=2时,x2=60,60-1=59,故D选项正确.不符合题意,故选:C.小提示:本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,2、如图,正比例函数y=kx与反比例函数y=4x连接BC,则ΔABC的面积等于()A.8B.6C.4D.2答案:C分析:由于点A、C位于反比例函数图象上且关于原点对称,则SΔOBA=SΔOBC,再根据反比例函数系数k的几何意义作答即可.解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S =12|k|. 所以ΔABC 的面积等于2×12|k|=|k|=4. 故选C .小提示:考查了反比例函数y =k x 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S =12|k |.3、某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .y =x +50B .y =50xC .y =50x D .y =x 50 答案:C分析:根据:平均每人拥有绿地y =总面积总人数,列式求解.解:依题意,得:平均每人拥有绿地y =50x. 故选:C 小提示:本题考查了反比例函数,解题的关键是掌握题目中数量之间的相互关系.4、一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m ,-2m )、B (m ,1),则△OAB 的面积( )A .3B .134C .72D .154 答案:D分析:将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可. 解:∵A (-1m ,-2m )在反比例函数y =m x 的图像上,∴m =(-1m ) • ( -2m )=2,∴反比例函数的解析式为y =2x , ∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD=12×3×2+12×3×12 =154.故选:D . .小提示:本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.5、为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元答案:C分析:直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.A、设反比例函数的解析式为y=kx,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=200x,当x=4时,y=50,∴4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则100=200x,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D、设一次函数解析式为:y=kx+b,则{4k+b=506k+b=110,解得:{k=30b=−70,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x =9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C .小提示:此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.6、如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1答案:B分析:先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD +AC )•CD =12×(1+2)×2=3,从而得出S △AOB =3.∵A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A (2,2),当x =4时,y =1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =12×4=2,∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD +AC )•CD =12×(1+2)×2=3, ∴S △AOB =3,故选B .小提示:本题考查了反比例函数y =k x (k ≠0)中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S =12|k |是解题的关键. 7、如图,点A 在反比例函数y =k x (x >0)图象上,AB ⊥x 轴于点B ,C 是OB 的中点,连接AO ,AC ,若△AOC 的面积为2,则k =( )A .4B .8C .12D .16答案:B分析:根据三角形中线的性质得出S △AOB =4,然后根据反比例函数k 的几何意义得解.解:∵点C 是OB 的中点,△AOC 的面积为2,∴S △AOB =4,∵AB ⊥x 轴于点B ,∴12AB ⋅OB =4,∴AB ⋅OB =8,∴k =8,故选:B.小提示:本题考查了反比例函数k的几何意义以及三角形中线的性质,熟知反比例函数k的几何意义是解本题的关键.8、学校的自动饮水机,通电加热时水温每分钟上升10°C,加热到100°C时,自动停止加热,水温开始下降.此时水温y(°C)与通电时间x(min)成反比例关系.当水温降至20°C时,饮水机再自动加热,若水温在20°C 时接通电源,水温y与通电时间x之间的关系如图所示,则水温要从20°C加热到100°C,所需要的时间为()A.6min B.7min C.8min D.10min答案:C分析:由图像知加热时水温y(°C)与通电时间x(min)成正比例关系,通电加热时水温每分钟上升10°C,所以关系式为y=10x+20,进而可求得水温要从20°C加热到100°C所需要的时间.解:由图可知水温要从20°C加热到100°C,水温y(°C)与通电时间x(min)成正比例关系,关系式为y=10x+ 20,当y=100时,x=8.故选:C.小提示:本题考查一次函数的实际应用,熟练掌握相关知识是解题的关键.9、已知电压U、电流I、电阻R三者之间的关系式为:U=IR(或者I=U),实际生活中,由于给定已知量R不同,因此会有不同的可能图象,图象不可能是()A.B.C.D.答案:A分析:在实际生活中,电压U、电流I、电阻R三者之中任何一个不能为负,依此可得结果.,但自变量R的取值为负值,故选项A错误;B、C、D选项正确,不符合题意.A图象反映的是I=UR故选:A.小提示:此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键.10、已知点(-2,a)(2,b)(3,c)在函数y=k2+2(k为常数)的图像上,则下列判断正确的是()xA.a<c<b B.b<a<c C.a<b<c D.c<b<a答案:A(k为常数)的图象分布在第一、三象限,在每一象限,y随分析:根据反比例函数的性质得到函数y=k2+2xx的增大而减小,则b>c>0,a<0.∵k2+2>0,∴函数y=k2+2(k为常数)的图像分布在第一、三象限,在每一象限,y随x的增大而减小,x∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:A.小提示:本题考查反比例函数的增减性比较大小,熟记函数性质,判断每个象限内的特点是解题关键.填空题11、每年春季为预防流感,某校利用休息日对教室进行药熏消毒,已知药物燃烧过程及燃烧完后空气中的含药量y(mg/m3)与时间x(h)之间的关系如图所示,根据消毒要求,空气中的含药量不低于3mg/m3且持续时间不能低于10h.请你帮助计算一下,当空气中的含药量不低于3mg/m3时,持续时间可以达到__h.答案:12分析:利用待定系数法求出反比例函数,利用y=6求出两函数交点坐标,再求正比例函数,利用y=3,求出两函数自变量值作差即可解:∵反比例函数经过点(24,2),∴k=xy=24×2=48,∴反比例函数的解析式为y=48,x令y=6,解得:x=8,∴直线与双曲线的交点坐标为(8,6),∴正比例函数的解析式为y=3x,4=3,解得:x=16,令y=48xx=3,解得:x=4,令y=34∴当空气中的含药量不低于3mg/m3时,持续时间可以达到16﹣4=12h,所以答案是:12.小提示:本题考查正比例函数与反比例函数的联合应用,会用待定系数法求反比例函数解析式与正比例函数解析式,会求函数值是解题关键.12、如图,等腰ΔABC的两个顶点A(−1,−4)、B(−4,−1)在反比例函数y=k1(x<0)的图象上,AC=xBC.过点C作边AB的垂线交反比例函数y=k1(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动x3√2个单位长度,到达反比例函数y=k2(x>0)图象上一点,则k2=__________.x答案:1分析:由AC=BC,CD⊥AB,得到△ABC是等腰三角形,CD是AB的垂直平分线,即CD是反比例函数y=k1 x 的对称轴,直线CD的关系式是y=x,根据A点的坐标是A(−1,−4),代入反比例函数y=k1x,得反比例函数关系式为y=4x ,在根据直线CD与反比例函数y=4x(x<0)的图象于点D,求得D点的坐标是(-2,-2),则OD=2√2,根据点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x图象上,得到OP=√2,则P点的坐标是(1,1),将P(1,1)代入反比例函数y=k2x,得k2=1.解:如图示,AB与CD相交于E点,P在反比例函数y=k2x(x>0)图象上,∵AC=BC,CD⊥AB,∴△ABC是等腰三角形,CD是AB的垂直平分线,∴CD是反比例函数y=k1x的对称轴,则直线CD的关系式是y=x,∵A点的坐标是A(−1,−4),代入反比例函数y=k1x,得k1=xy=(−1)×(−4)=4则反比例函数关系式为y=4x又∵直线CD与反比例函数y=4x(x<0)的图象于点D,则有{y=xy=4x,解之得:{x=−2y=−2(D点在第三象限),∴D点的坐标是(-2,-2),∴OD=2√2,∵点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x图象上,∴OP=√2,则P点的坐标是(1,1)(P点在第一象限),将P(1,1)代入反比例函数y=k2x,得k2=xy=1×1=1,所以答案是:1.小提示:本题考查了用待定系数法求出反比例函数,反比例函数的对称性和解二元一次方程组的应用,熟悉相关性质是解此题的关键.13、如图,直线y=−x+3与y轴交于点A,与反比例函数y=kx(x<0)的图象交于点C,过点C作CB⊥x轴于点B,若AO=3BO,则k的值为________.答案:-4分析:先求出点A的坐标,然后表示出AO、BO的长度,根据AO=3BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.解:∵直线y=−x+3与y轴的交点A的坐标为(0,3),∴AO=3.∵AO=3BO,∴BO=1,∵CB⊥x轴∴点C的横坐标为−1.把x=−1代入y=−x+3,得y=−(−1)+3=4,∴点C的坐标为(−1,4),把C(−1,4)代入y=kx,得k=−4.故答案是:-4.小提示:本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.14、如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=8x (x>0)和y=kx(x>0)的图象交于P、Q两点,若S∥POQ=13,则k的值为___________.答案:-18分析:根据反比例函数系数k的几何意义,则∥OPM和∥OMQ的面积都可求得(或用k表示),根据∥POQ的面积,即可得到一个关于k的方程,进而求解.解:由反比例函数的性质可知S∥OPM=12×8=4,S∥OMQ=12×|k|=-12k,∵S∥POQ=13,∴4-12k=13,解得k=-18,故答案是:-18.小提示:本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,熟练掌握k的几何意义是解题的关键.15、已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y= 3的图象上,则m的值为________.x答案:52分析:根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)∵△ABC某一边中点落在反比例函数上∴2(-1+m)=3或-1×(-2+m)=3m=2.5或-1(舍去).故答案是:5.2小提示:考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.解答题(x>0)的图像交于点A(a,4).点B为x轴正半轴上一16、如图,正比例函数y=kx的图像与反比例函数y=8x点,过B作x轴的垂线交反比例函数的图像于点C,交正比例函数的图像于点D.(1)求a 的值及正比例函数y =kx 的表达式; (2)若BD =10,求△ACD 的面积. 答案:(1)a=2;y=2x ;(2)635分析:(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.(1)已知反比例函数解析式为y=8x ,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x . 故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b )、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,S △ACD =12×(10−85)×(5−2)=635.故△ACD 的面积为635.小提示:(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.17、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?.(3)教师能在学生注意力达到所需要求状态下讲完这道题.答案:(1)5;(2)y AB=2x+30;y CD=1000x分析:(1)(2)利用待定系数法分别求出AB和CD的函数表达式,得出第五分钟和第三十分钟的注意力指数,最后比较判断;(3)分别求出注意力指数为40时的两个时间,再将两时间之差和18比较,大于18则能讲完,否则不能.(1)(2)设线段AB所在的直线的解析式为y1=k1x+30,把B(10,50)代入得,k1=2,∴AB解析式为:y1=2x+30(0≤x≤10).设C、D所在双曲线的解析式为y2=k2,x把C(20,50)代入得,k2=1000,∴曲线CD的解析式为:y2=1000(x≥20);x当x1=5时,y1=2×5+30=40,,当x2=30时,y2=100030∴y1>y2∴第5分钟注意力更集中.所以答案是:5;(3)当y=40时,2x+30=40,x=5.1000=40,x=25.x∴25−5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.小提示:此题主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.18、反比例函数y=k与一次函数y=2x−4的图像都过A(n,4).x(1)求A点坐标;(2)求反比例函数解析式.答案:(1)点A的坐标为(4,4)(2)y=16x分析:(1)把点A(n,4)代入一次函数y=2x-4求出n的值即可得出A点的坐标;求出k的值即可.(2)再把点A的坐标代入反比例函数y=kx(1)解:将点A(n,4)代入y=2x﹣4得:2n﹣4=4,解得:n=4,∴点A的坐标为(4,4).(2)解:将点A(4,4)代入y=k得:k=16,x∴反比例函数解析式为y=16.x小提示:本题主要考查的是一次函数及反比例函数图像上点的坐标特点,掌握函数图像的交点坐标即为函数解析式组成的方程组的解是解答本题的关键.。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
(专题精选)初中数学反比例函数全集汇编含答案解析
(专题精选)初中数学反比例函数全集汇编含答案解析一、选择题1.已知1122(,),,)A x y Bx y (均在反比例函数2y x=的图像上,若120x x <<,则12,y y 的大小关系是( ) A .120y y << B .210y y <<C .120y y <<D .210y y <<【答案】D 【解析】 【分析】先根据反比例函数的性质判断出函数图象所在的象限,再根据反比例函数的性质即可作出判断. 【详解】解:∵反比例函数2y x=中k=2>0, ∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小, ∵0<x l <x 2,∴点A (x 1,y 1),B (x 2,y 2)均在第一象限, ∴0<y 2<y l . 故选:D . 【点睛】此题考查反比例函数图象上点的坐标特点,熟知反比例函数图象的增减性是解题的关键.2.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x=的图象上,且﹣2<a <0,则( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【答案】D 【解析】 【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可. 【详解】 ∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限, ∵-2<a <0, ∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0, ∴213y y y <<, 故选D . 【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.3.如图,点A 在双曲线4y x=上,点B 在双曲线(0)k y k x =≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D 【解析】 【分析】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值. 【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E , ∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形, ∵AB=2AC , ∴BC=3AC , ∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4, 同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12, ∴k=12, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.4.如图,点P 是反比例函数(0)ky k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A 【解析】 【分析】利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值. 【详解】解:∵△POM 的面积等于2.5, ∴12|k|=2.5, 而k <0, ∴k=-5, 故选:A . 【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.5.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣5x(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF ⊥x轴于点F.下列说法正确的是()A.b=5B.BC=ADC.五边形CDFOE的面积为35D.当x<﹣2时,y1>y2【答案】B【解析】【分析】根据函数值与相应自变量的关系,可得C点坐标,根据待定系数法,可得一次函数解析式,可判断A选项;根据解方程组,可得C、D点的坐标,根据全等三角形的判定与性质,可判断B选项;根据图形的分割,可得梯形、矩形,根据面积的和差,可判断C选项;根据函数与不等式的关系:函数图象在上方的函数值大,可判断D选项.【详解】解:由反比例函数y2=﹣5x(x<0)经过C,点C的横坐标为﹣1,得y=﹣51-=5,即C(﹣1,5).反比例函数与一次函数交于C、D点,5=﹣1+b,解得b=6,故A错误;CE⊥y轴于E点,E(0,﹣5),BE=6﹣5=1.反比例函数与一次函数交于C、D点,联立65y xyx=+⎧⎪⎨=-⎪⎩,x2+6x+5=0解得x1=﹣5,x2=﹣1,当x =﹣5时,y =﹣5+6=1, 即D (﹣5,1),即DF =1, 在△ADF 和△CBE 中,DAF BCE AFD CEB DF BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, △ADF ≌△CBE (AAS ), AD =BC ,故B 正确; 作CG ⊥x 轴,S △CDFOE =S 梯形DFGC +S 矩形CGOE =()(15)422DF CG FG OG CG ++⨯+g +1×5=17,故C 错误;由一次函数图象在反比例函数图象上方的部分, 得﹣5<x <﹣1,即当﹣5<x <﹣1时,y 1>y 2,故D 错误; 故选:B . 【点睛】本题考查了反比例函数综合题,利用了自变量与函数值的对应关系,点的坐标与函数解析式的关系,全等三角形的判定与性质,图形分割法求图形的面积,函数图象与不等式的关系.6.如图,四边形OABF 中,∠OAB =∠B =90°,点A 在x 轴上,双曲线ky x=过点F ,交AB 于点E ,连接EF .若BF 2OA 3=,S △BEF =4,则k 的值为( )A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA=,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.7.如图,,A B是双曲线kyx=上两点,且,A B两点的横坐标分别是1-和5,ABO-∆的面积为12,则k 的值为( )A .3-B .4-C .5-D .6-【答案】C 【解析】 【分析】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,根据S △AOB =S 梯形ABED +S △AOD - S △BOE =12,故可得出k 的值. 【详解】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线ky x=的图象的一支在第二象限 ∴k<0,∵A ,B 两点在双曲线ky x =的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k-)∴S △AOB =S 梯形ABED +S △AOD - S △BOE=1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5 故选:C . 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.8.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.9.如图,是反比例函数3yx=和7yx=-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点,A B,点P在x轴上.则点P从左到右的运动过程中,APB△的面积是()A .10B .4C .5D .从小变大再变小【答案】C 【解析】 【分析】连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解. 【详解】连接AO 、BO ,设AB 与y 轴交于点C . ∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5. 故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.10.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.函数y =1-k x 与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0B .k<1C .k>0D .k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围.【详解】 令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k <0,即k >1. 故选D .【点睛】 函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )A .气压P 与体积V 的关系式为(0)P kV k =>B .当气压70P =时,体积V 的取值范围为70<V<80C .当体积V 变为原来的一半时,对应的气压P 也变为原来的一半D .当60100V 剟时,气压P 随着体积V 的增大而减小 【答案】D【解析】【分析】A .气压P 与体积V 表达式为P=k V ,k >0,即可求解; B .当P=70时,600070V =,即可求解; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,即可求解;D.当60≤V≤100时,气压P随着体积V的增大而减小,即可求解.【详解】解:当V=60时,P=100,则PV=6000,A.气压P与体积V表达式为P= kV,k>0,故本选项不符合题意;B.当P=70时,V=600070>80,故本选项不符合题意;C.当体积V变为原来的一半时,对应的气压P变为原来的两倍,本选项不符合题意;D.当60≤V≤100时,气压P随着体积V的增大而减小,本选项符合题意;故选:D.【点睛】本题考查的是反比例函数综合运用.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,进而根据字母代表的意思求解.13.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=kx(k>0)的图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=kx(k>0)的图象在一、三象限,∴在每个象限内y随x的增大而减小,∵A(-3,y1)、B(-1,y2)在第三象限双曲线上,∴y2<y1<0,∵C(1,y3)在第一象限双曲线上,∴y3>0,∴y3>y1>y2,故选:B.【点睛】此题考查反比例函数的图象和性质,解题关键在于当k>0,时,在每个象限内y随x的增大而减小;当k<0时,y随x的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.14.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.15.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a =+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0, ∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.16.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A.1 B.32C.2 D.23【答案】B【解析】【分析】设OA为4a,则根据题干中的比例关系,可得AD=3a,CE=2a,BE=a,从而得出点D和点E 的坐标(用a表示),代入反比例函数可求得a的值,进而得出BC长.【详解】设OA=4a根据2CEBE=,34ADOA=得:AD=3a,CE=2a,BE=a∴D(4a,3a),E(4a+4,a)将这两点代入解析得;3444kaakaa⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D、E的坐标,然后代入解析式求解.17.如图,平行于x轴的直线与函数y=1kx(k1>0,x>0),y=2kx(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为()A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.18.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】 本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.19.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,22OA OB ∴==,2AC =, ∴点C 的坐标为222⎛ ⎝,Q 点C 在函数()0k y x x=>的图象上,12k ∴==, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.20.在函数2y x=,3y x =+,2y x =的图象中,是中心对称图形,且对称中心是原点的图象共有( )A .0个B .1个C .2个D .3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】 y=x+3的图象是中心对称图形,但对称中心不是原点;y=x 2图象不是中心对称图形;只有函数2y x=符合条件. 故选:B .【点睛】 本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.。
反比例函数十大经典题型
反比例函数十大经典题型摘要:一、反比例函数的定义和性质二、反比例函数的图像和解析式三、反比例函数的性质和应用四、反比例函数与一次函数、二次函数的关系五、反比例函数的恒等变换六、反比例函数的求导和积分七、反比例函数的不定积分和原函数八、反比例函数的微分方程九、反比例函数的偏导数和梯度十、反比例函数的数值计算和计算机模拟正文:一、反比例函数的定义和性质反比例函数是指两个变量之间的关系可以表示为y = k/x 的函数,其中k 为常数。
反比例函数的性质包括:当x > 0 时,y > 0;当x < 0 时,y < 0;当x = 0 时,y 没有定义。
反比例函数的图像通常在第一象限和第三象限为正,第二象限和第四象限为负。
二、反比例函数的图像和解析式反比例函数的图像可以通过解析式y = k/x 进行绘制。
在坐标系中,当x 变化时,y 会按照反比例关系变化。
反比例函数的图像通常为一个双曲线。
三、反比例函数的性质和应用反比例函数的性质包括:当x > 0 时,y > 0;当x < 0 时,y < 0;当x = 0 时,y 没有定义。
反比例函数的应用包括:描述两种量之间的关系、计算面积和体积等。
四、反比例函数与一次函数、二次函数的关系反比例函数与一次函数、二次函数可以通过代数方法进行联系和转换。
例如,将反比例函数y = k/x 转换为一次函数y = kx + b 和二次函数y =kx^2 + bx + c 等形式。
五、反比例函数的恒等变换反比例函数的恒等变换包括:y = k/x 和y = kx^2 + bx + c 等形式的转换。
通过恒等变换,可以将反比例函数转换为更容易处理的形式。
六、反比例函数的求导和积分反比例函数的求导和积分可以通过代数方法进行计算。
例如,反比例函数y = k/x 的导数为y" = -k/x^2,积分为∫y = k/x dx = ln|x| + C。
反比例函数经典大题(有详细答案)
1 反比例函数1. 如图,函数b x k y +=11的图象与函数xk y22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小. 2、如图,正比例函数12y x =的图象与反比例函数k y x =(0)k ¹在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM D 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小最小. .3、若反比例函数xk y =与一次函数42-=x y 的图象都经过点A (a ,2)(1)求反比例函数xky =的解析式;(2) 当反比例函数xk y =的值大于一次函数42-=x y 的值时,求自变量x的取值范围.ABOCxy OMxyA (第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为的面积为 . (1)求k 和m 的值;的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0)。
⑴求点D 的坐标;的坐标;⑵求经过点C 的反比例函数解析式. 6、如图,一次函数3y kx =+的图象与反比例函数m y x=(x>0)的图象交于点P ,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。
(1)求点D 的坐标;的坐标;(2)求一次函数与反比例函数的表达式;)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?取何值时,一次函数的值小于反比例函数的值?xkx k B O A21xyAO PBC D7、已知一次函数y =kx +b 的图象交反比例函数42m y x-=(x>0)图象于点A 、B ,交x 轴于点C .(1)求m 的取值范围;的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;的值和一次函数的解析式;(3)写出当x 取何值时,一次函数的值小于反比例函数的值?取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。
反比例函数经典例题(含详细解答)
反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数经典专题
知识点回顾
由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进行考察。
这种考察方式既能考查函数、反比例函数本身的基础知识内容,又能充分体现数形结合的思想方法,考查的题型广泛,考查方法灵活,可以较好地将知识与能力融合在一起。
下面就反比例函数中与面积有关的问题的四种类型归纳如下:
一、利用反比例函数中|k|的几何意义求解与面积有关的问题
设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|
∴xy=k 故S=|k| 从而得
结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k|
对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:
结论2:在直角三角形ABO中,面积S=
结论3:在直角三角形ACB中,面积为S=2|k|
结论4:在三角形AMB中,面积为S=|k|
1.如右图,已知△P10A1,△P2A1A2都是等腰直角三角形,点P1、P2都在函数y=4
x(x>0)
的图象上,斜边OA1、A1A2都
在x轴上.则点A2的坐标为 .
2.如例1图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数y=4
x
(x
>0)的图象上,斜边OA1、A1A2、A2A3…A n-1A n都在x轴上.则点A10的坐标为
3、已知点A(0,2)和点B(0,-2),点P在函数y=
1
x
的图像上,如果△PAB的面积为6,求P点的坐标。
如右图,已知点(1,3)在函数y=k
x
(x>0)的图像上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=
k
x
(k>0)的图象又经过A,E两点,点E的横坐标为m,解答下列各题
1.求k的值
2.求点C的横坐标(用m表示)
3.当∠ABD=45°时,求m的值112
4、已知:如图,矩形ABCD的边BC在x轴上,E是对角线AC、BD的交点,反比例函数y=2
x
(x>0)的图象经过A,E
两点,点E的纵坐标为m.
(1)求点A坐标(用m表示)
(2)是否存在实数m,使四边形ABCD为正方形,若存在,请求出m的值;若不存在,请说明理由
5、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=k
x
的图
象上.
(1)求AB的长;
(2)当矩形ABCD是正方形时,将反比例函数y=k
x
的图象沿y轴翻折,得到反比例函数y=1
k
x
的图象(如图2),求
k1的值;
(3)直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交在条件(2)下,第一象限内的双曲线y=k
x
于点H、
P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.
6.在平面直角坐标系中,已知A(1,0),B(0,1),矩形OMPN的相邻两边OM,ON分别在x,y轴的正半轴上,O为原点,线段AB与矩形OMPN的两边MP,NP的交点分别为E,F,△AOF∽△BOE(顶点依次对应)
(1)求∠FOE;
(2)求证:矩形OPMN的顶点P必在某个反比例函数图像上,并写出该函数的解析式。
7.如图,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于A,B两点,点P(a,b)是反比例函数y=1
2x
在第一
象限内的任意一点,过点P分别作PM⊥x轴于点M,PN⊥y 轴于点N,PM,PN分别交直线AB于E,F,有下列结论:①
AF=BE;②图中的等腰直角三角形有4个;③S△OEF=1
2
(a+b-1);④∠EOF=45°.其中结论正确的序号是
8.在平面直角坐标系中,已知A(1,0),B(0,1),矩形OMPN的相邻两边OM,ON分别在x,y轴的正半轴上,O为原点,线段AB与矩形OMPN的两边MP,NP的交点分别为E,F,△AOF∽△BOE(顶点依次对应)
(1)求∠FOE;
(2)求证:矩形OPMN的顶点P必在某个反比例函数图像上,并写出该函数的解析式。
9.如图,在平面直角坐标系中,直线y=-x+1分别交x 轴、y 轴于A ,B 两点,点P (a ,b )是反比例函数y=12x
在第一象限内的任意一点,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,PM ,PN 分别交直线AB 于E ,F ,有下列结论:①AF=BE ;②图中的等腰直角三角形有4个;③S △OEF =12
(a+b-1);④∠EOF=45°.其中结论正确的序号是②③④
10、已知反比例函数y=
k x
图象过第二象限内的点A (-2,m ),作AB ⊥x 轴于B ,Rt △AOB 面积为3;若直 线y=ax+b 经过点A ,并且经过反比例函数y=k x 的图象上另一点C (n ,-1). (1)反比例函数的解析式为y=-6x
,m=3,n=6; (2)求直线y=ax+b 的解析式;
(3)设直线y=ax+b 与x 轴交于M ,求AM 的长;
(4)根据图象写出使反比例函数y=k x
值大于一次函数y=ax+b 的值的x 的取值范围。
11、已知反比例函数y=2k x
和一次函数y=2x-1,其中一次函数的图象经过(a ,b )、(a+1,b+k )两点. (1)求反比例函数的解析式;
(2)若两个函数图象在第一象限内的交点为A (1,m ),请问:在x 轴上是否存在点B ,使△AOB 为直角三角形?若存在,求出所有符合条件的点B 的坐标;
(3)若直线y=-x+12交x 轴于C ,交y 轴于D ,点P 为反比例函数y=2k x
(x >0)的图象上一点,过P 作y 轴的平行线交直线CD 于E ,过P 作x 轴的平行线交直线CD 于F ,求证:DE •CF 为定值.。