信号处理与数据分析第一章作业答案(B).邱天爽.
通信信号分析与处理知到章节答案智慧树2023年哈尔滨工业大学
通信信号分析与处理知到章节测试答案智慧树2023年最新哈尔滨工业大学第一章测试1.概率是衡量一个事件发生可能性大小的数量指标,其值介于-1和1之间。
()参考答案:错2.随机试验E的可能结果称为样本,不可再分的事件称为基本事件,所有基本事件的集合称为样本空间。
()参考答案:对3.样本空间的完备性是指样本空间必须包含随机试验的所有可能的基本结果。
()参考答案:对4.对随机试验而言,样本空间给出它的所有可能的试验结果,事件描述了所关心的具体情况,而概率给出每一事件发生的概率,则(样本空间,事件,概率)称为概率空间。
()参考答案:错5.如果我们把某事件看成“结果”,把产生这个事件的条件看成是导致这个结果的可能的“原因”,则可以形象地把全概率公式看为“由结果推原因”;而贝叶斯公式则恰好相反,其作用在于“由原因推结果”。
()参考答案:错6.()表示事件发生的频繁程度,而()表示事件发生的可能性,如果试验次数足够多,那么()具有稳定性,且趋近于事件()。
上述内容的空格中依次填入()参考答案:频率,概率,频率,概率7.相应于概率对应的概率空间,条件概率对应()。
参考答案:条件概率空间8.对于随机变量X和Y,存在()参考答案:对于任意常数c和b,有E[cX+bY]=cE[X]+bE[Y]9.有许多随机变量,它们是由()的随机变量的综合影响所形成的,而其中每个因素作用都很小,这种随机变量往往服从或近似服从正态分布,或者说它的极限分布是正态分布。
参考答案:大量的互相独立10.下列说法错误的是()参考答案:两个随机变量的相关系数不能是负数。
第二章测试1.严平稳随机过程一定是宽平稳随机过程,但宽平稳随机过程不一定是严平稳随机过程。
()参考答案:错2.当随机过程同时满足数学期望为常数和自相关函数只与时间间隔有关时,称该随机过程为宽平稳随机过程。
()参考答案:错3.随机过程的自相关函数和协方差函数为偶函数。
()参考答案:错4.相关时间越大,这说明随机过程随时间变化越缓慢。
数字信号处理-第1章习题答案
解:
2 i 14i i 3 , N min 14 (1) N 0 3 / 7 3 (2) i 7, j 4, N min 56 2 j 2 j 14 j N2 0 / 7 2 i 8i N1 0 / 4 2 i
0
20
40
60 n
80
100
120
1 3 绘出如下序列的波形。 1.3
(1) x(n) 3 (n 3) 2 (n 1) 4 (n 1) 2 (n 2) (2) x(n) 0.5n R5 (n)
解 (1)
3
2
1
0 x(n n) -1 -2 2 -3 -4 -4
因此,T[.]为线性系统;
T x( n n1 ) nx ( n n1 ) T x( n n1 ) y ( n n1 ) y ( n n1 ) ( n n1 ) x ( n n1 )
因此 T[.]为时变系统。 因此, 为时变系统
1 16 确定下列系统的因果性与稳定性。 1.16
(2) 收敛区域为|z|>a,即圆|z|=a的外部。
1 0.8 0.6 0.4 Imagina ary Part 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.5 0 Real Part 0.5 1 1.5
j 1 1 2 e a c 1 2 a cos a 1 j (3) H (e ) j 2 e a d a 1 2a cos a
2 i
3 x(n) cos n 4 7
1 0.8 0.6 04 0.4 0.2 x(n) 0 -0.2 -0.4 -0 0.6 6 -0.8 -1
数字信号处理作业答案(参考版-第一章)
1-2习题1-2图所示为一个理想采样—恢复系统,采样频率Ωs =8π,采样后经过理想低通G jΩ 还原。
解:(1)根据余弦函数傅里叶变换知:)]2()2([)]2[cos(πδπδππ-Ω++Ω=t F ,)]6()6([)]6[cos(πδπδππ-Ω++Ω=t F 。
又根据抽样后频谱公式:∑∞-∞=∧Ω-Ω=Ωk s a a jk j X T j X )(1)(,得到14T= ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]82()82([4)(1ππδππδπ∑∞-∞=∧--Ω+-+Ω=Ωk a k k j X )]86()86([4)(2ππδππδπ所以,)(1t x a ∧频谱如下所示)(2t x a ∧频谱如下所示(2))(1t y a 是由)(1t x a ∧经过理想低通滤波器)(Ωj G 得到,)]2()2([)()()]([11πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a ,故)2cos()(1t t y a π=(4π) (4π) (4π)(4π)(4π) (4π) Ω-6π-10π-2π 2π0 6π10π)(1Ω∧j X a Ω10π-10π -6π-2π 0 2π6π-14π 14π(4π)(4π) (4π)(4π) (4π) (4π)(4π) (4π))(2Ω∧j X a同理,)]2()2([)()()]([22πδπδπ-Ω++Ω=ΩΩ=∧j G j X t y F a a 故)2cos()(2t t y a π=(3)由题(2)可知,无失真,有失真。
原因是根据采样定理,采样频率满足信号)(1t x a 的采样率,而不满足)(2t x a 的,发生了频谱混叠。
1-3判断下列序列是否为周期序列,对周期序列确定其周期。
(1)()5cos 86x n A ππ⎛⎫=+ ⎪⎝⎭(2)()8n j x n eπ⎛⎫- ⎪⎝⎭=(3)()3sin 43x n A ππ⎛⎫=+ ⎪⎝⎭解:(1)85πω=,5162=ωπ为有理数,是周期序列,.16=N (2)πωπω162,81==,为无理数,是非周期序列; (3)382,43==ωππω,为有理数,是周期序列,8=N 。
信号处理与数据分析 邱天爽作业答案第二章(Part2)
3.
出 A 的值。 解:我们知道 H ( j)
1 j 1 j 1 2 1 2 1 ,因此 A 1 。
X (e j )
n 0
x ne
j n
n
1 2
n 1
e j n 1 2
n 1
n 1
eቤተ መጻሕፍቲ ባይዱ j n
1 1 1 e j j 2 1 1 2 e 1 1 2 e j 0.75e j 1.25 cos 3e j 5 4cos
1.
(书稿 2.22)计算下列各式的离散时间傅里叶变换:
1 (1) x ( n) 2
n 1
u ( n 1) ;
1 (2) x ( n) 2
| n 1|
;
(3) x(n) (n 1) (n 1)
解:
(1) x(n) 的离散时间变换为:
X (e j )
n
x(n)e
j n
因此,
FT x(n) X (e j )
由本题(1)可知:
FT x (n) X (e j )
所以,
FT x (n) X (e j )
如若为实信号则有: X (e j )=X (e j ) (书稿 2.31) 一因果稳定 LTI 系统的频率响应为: H j 1 j 。试证明 H j A ,并求
* (2) x ( n)
解: (1)因为
X (e j )
n
x(n)e
j n
我们可以写成:
X (e j )
4_连续信号的离散化与离散信号的连续化
p(t )
1
0
T
t
x(t )
x p (t )
h0 (t )
x0 ( t )
– 零阶保持采样系统实质上是一个单位冲激序列采样系统 与一个零阶保持滤波器的级联。
2016/6/2
大连理工大学
18
• 零阶保持采样系统
• 说明:
• 系统前端为一理想冲激 序列采样系统; • 系统后端级联一个零阶 保持系统,即平滑滤波器;
• 连续时间信号经理想冲
激序列采样后,再经平滑 滤波器保持。
2016/6/2
大连理工大学
19
• (3)零阶保持采样的信号恢复
– 零阶保持采样的信号恢复
p(t )
x(t )
H ( j)
x p (t )
h0 (t )
x0 ( t )
r (t )
hr (t )
– 若虚线框中的 H ( j) 为理想低通滤波器, 则可无失真 恢复原始信号。
1 1 X j * ( k s ) X j ( k s ) T k T k
– 上式说明: – X p j 包含 X j 。
– X p j 是一个关于
X j 的周期性频谱。
2016/6/2
大连理工大学
22
4.3.1
离散时间信号的插值
• (1)信号插值的概念与分类
– 所谓信号的插值(interpolation),是指在离散时 间信号(或称为数据)样本点的基础上补充连续曲 线,使得这条连续曲线通过全部给定的离散数据点, 进而估算出曲线在其他点处的近似值。插值是离散 函数逼近的重要方法,也是离散时间信号连续化的 一种常用的重要手段。 – 常用的插值方法:多项式插值、埃尔米特插值、分 段插值与样条插值、三角函数插值等。
《数字信号处理》第二版课后答案
————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。
为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。
1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。
例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。
掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。
1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。
()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。
要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。
当≠n 整数时,()n x 无定义,但不能理解为零。
当()()nT x n x a =时,这一点容易理解。
当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。
在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。
例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。
2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。
1_医学信号分析与处理绪论
7
• 最早的电池是伏特发明的 • 电池电压的单位为伏特; • 简写为“伏”或“V”; • “伏”也作为通用的电压单位,不局限于描述
电池的电压; • <36V为人体的安全电压; • 市电为220V(美国为110V)交流电;
2019/12/20
大连理工大学
8
• 生物电(池)的发现早于伏特电池的发明
– 1786年Galvani的实验:伽伐尼,贾凡尼,伽尔伐尼
2019/12/20
大连理工大学
16
• 噪声干扰强
– 信噪比的概念: SNR Ps ;
Pn
– 噪声干扰的来源:
SNR (dB)
10 log10
Ps Pn
(dB)
• 肢体动作;精神紧张;工频干扰; • 自发脑电对诱发电位的干扰;母体对胎儿心电的干扰
• ……
• 频率特别低
– 心电:0.01—35Hz;
2019/12/20
大连理工大学
20
§1.2 医学电信号及其产生机制
• 细胞生物电现象
– 在人体各个部位采集的电信号反映了附近器官的行为; – 采集的电信号所具有的特征决定于单个细胞产生电信号
• 信号的分类(按信号的形式分)
– 模拟信号; – 离散时间信号; – 数字信号;
• 信号的分类(按信号的性质分)
– 确定性信号; – 非确定性信号
• 随机信号(random signal)
2019/12/20
大连理工大学
15
生物医学信号的特点
• 信号特别弱
– 最强的心电信号为mV量级; – 脑干诱发电位<1uV; – 特别弱的离子通道电流信号pA量级; – 要求模拟放大器有很高的增益;
《信号与系统分析基础》第一章课后作业解答
第一章课后作业解答1-3粗略画出下列各序列的图形。
(5)1()2(1)n x n u n −=−解:因为11,12,1(1)()0,10,1n n n u n x n n n −≥⎧≥⎧−=⇒=⎨⎨<<⎩⎩,其图形如下所示1-5 说明下列函数的信号是周期信号还是非周期信号?若是周期信号,求周期T 。
(1) asint-bsin3t (3)asin4t+bcos7t判断准则:两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
有理数:也即分数,包括:正、负整数;正、负分数;零。
怎么求分数的最小公倍数:先通分,然后求两个分子的最小公倍数,然后通分后的分母做最小公倍数的分母,分子的最小公倍数做分子,所得的分数就是要求的最小公倍数了。
比如:22626[,][,]213333===, 127428[,][,]227141414=== 解:(1)asint 是周期信号,周期为: T1= 2π/1=2π,bcos3t 也是周期信号,其周期为: T2= 2π/3,由于T1/T2=3为有理数,故为asint-bsin3t 周期信号,其周期为T1和T2的最小公倍数2π。
(3)asin4t 是周期信号,周期为: T1= 2π/4=π/2bcos7t 也是周期信号,其周期为: T2= 2π/7由于T1/T2=7/4为有理数,故为asint-bsin3t 周期信号,其周期为T1和T2的最小公倍数2π。
1-6:判断下示各序列是否是周期性的?如果是周期性的,试确定其周期。
(1)3x(n)=Acos()78n π−, (2) 8x(n)=j n e π−, (3) ()8x(n)=n j e π−−对于连续的正弦/余弦信号,抽样得到的离散序列信号未必是周期序列,对于形如0()sin()x n A w n φ=+,0()cos()x n A w n φ=+和0()()j w n x n e ϕ+=的离散序列而言,其周期性判断准则如下: (1)当02Pw Qπ=为有理数时(P 、Q 为互素的整数),x(n) 为周期性且周期为P. (2)当02Pw Qπ=为无理数时,x(n)为非周期性序列 解:(1)022143/73w πππ==为无理数,x(n)为非周期性序列 (2)02216/8w πππ==为有理数,x(n)为周期性序列,其周期为16 (3)022161/8w πππ==为无理数,x(n)为非周期性序列 1-10应用冲激信号的筛选特性(又称抽样特性),求下列各表达式的函数值。
信号处理与数据分析第十章作业答案(A).邱天爽.
习题10.5试说明周期图谱估计方法。
解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。
当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。
周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。
此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。
习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。
偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。
由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。
数字信号处理课后习题答案(全)1-7章PPT课件
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
T[ax1(n)+bx2(n)]=ax1(n) sin(ωn)+bx2(n) sin(ωn) =aT[x1(n)]+bT[x2(n)]
故系统是线性系统。
第 1 章 时域离散信号和时域离散系统
6. 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明 理由。
(1) y(n)=
1 x(Nn-1 k)
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
信号分析与处理答案
2.3 10
已知信号
x(t)
=
sin(t)
×
(u(t)
−
u(t
−
π)),求(1) x1(t)
=
d2 dt2
x(t)
+
x(t);
(2)
x2
(t)
=
∫t
−∞
x(τ )dτ 。
答:(1)
dx(t) dt
=
cos(t) × (u(t) − u(t − π)) + sin(t) × (δ(t) − δ(t − π))
6 第五章
24
6.1 补 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 补 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1+cos(2t) 2
,
E
= ∞, P
= 1/2.
(4) E = 4/3, P = 0;
(5) E = ∞, P = 1;
(6) E = ∞, P = 1/2.
2 第二章 P. 23
2.1 1
应用∫冲∞激信号的抽样特性,求下列表达式的函数值
(1) f (t − t0) · δ(t)dt = f (−t0) ∫−∞∞
x2(t)
=
1
− cos(t) ∞
, ,
if (t ∈ (0, π]) if (t > π)
信号分析与处理第一章答案
习题11.1 判断题1.1图所示各信号的波形是连续时间信号还是离散时间信号?若是连续时间信号是否为模拟信号?若是离散时间信号是否为数字信号?(1)(2)(3) (4)题1.1图 信号波形解:(1)时间连续函数值连续,连续时间信号,模拟信号(2)时间连续函数值离散,连续时间信号,不是模拟信号 (3)时间离散函数值离散量化,离散时间信号,数字信号 (4)时间离散函数值非量化,离散时间信号,不是数字信号1.2 判断以下各信号是能量信号还是功率信号?是周期信号还是非周期信号?若是周期信号,试求出其周期T 。
(1)sin()atet ω-()t ε (2)cos(10)cos(30)t t + (3)cos(2)sin()t t π+(4)25sin (8)t (5)()(10)t t εε-- (6)10()()200n n x n n ⎧≥⎪=⎨<⎪⎩解:(1)只在大于零的时间段内有信号,非周期信号;判断能量值若0a >则为指数衰减信号为能量信号。
()()()()22-022001cos 2sin d d 21d cos 2d 2at atat at t W e t t t e t e t e t t ωωεω∞∞--∞∞∞---==⎡⎤=-⎢⎥⎣⎦⎰⎰⎰⎰22011d 022at ate t e aa ∞--∞-==⎰()()()()()()()()()()()2222220002200222211cos 2d d +d 2211122212142a j t a j t at at j t j ta j t a j t e t t e e e t e e t e e a j a j a a a a ωωωωωωωωωωω∞∞∞---+------+∞∞=+=⎡⎤=+⎢⎥---+⎣⎦-=-=++⎰⎰⎰()()()22002222221d cos 2d 21122224atat W e t e t t a a a a a a ωωωω∞∞--⎡⎤=-⎢⎥⎣⎦⎡⎤+⎢⎥=-=++⎢⎥⎣⎦⎰⎰ (2)cos(10)cos(30)t t +15T π=215T π=则为周期信号5T π=时间上无限延续,则判断功率[]T dt t t t t dtt t t t dt t x p T T T T T T =⎥⎦⎤⎢⎣⎡+++++=++==⎰⎰⎰---222222222121)60cos()20cos()40cos(21)20cos()30(cos )30cos()10cos(2)10(cos )(余弦信号在一个周期内积分为零。
信号分析与处理第一章答案坤生二版
1第一章习题参考解答1.1 绘出下列函数波形草图。
(1) ||3)(t e t x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x nn(3) )(2sin )(t t t x επ=(4) )(4sin )(n n n x επ=(5) )]4()([4cos )(--=-t t t e t x t εεπ)]4()1([3)(---=n n n x n εε2(7) t t t t x cos )]2()([)(πδδ--=(8) )]1()3([)(--+=n n n n x δδ(9) )2()1(2)()(-+--=t t t t x εεε(10) )5(5)]5()([)(-+--=n n n n n x εεε(11) )]1()1([)(--+=t t dtd t x εε(12) )()5()(n n n x --+-=εε(13) ⎰∞--=t d t x ττδ)1()((14) )()(n n n x --=ε31.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。
(1) ||3)(t e t x -=解 能量有限信号。
信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t x E ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x nn解 能量有限信号。
信号能量为: ()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n x E(3) t t x π2sin )(=解 功率有限信号。
周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。
214cos 2124cos 1)2(sin )2(sin 121212121212121212222=-=-===⎰⎰⎰⎰⎰-----tdt dt dt t dt t dt t TP T T ππππ(4) n n x 4sin )(π=解 功率有限信号。
信号处理与数据分析邱天爽作业答案Part
时不变性;(3)线性;(4)因果性;(5)稳定性。
(a) y(t) x(t -2) +x(1- t) (c) y(t) sin2t x(t)
(e) y(n) (n 1)x(n)
解: (a)记忆,时变,线性,非因果性,稳定性;
1
1α 1+α
所以
t,0 t 1
y (t )
1,1 1
t t,
t
(1
)
0, otherwise
同理可以得到当 1 与 1 0 时的结果,这里不再详细给出。
(b)通过 y(t) 的图形可以看出, dy(t) 在 0, ,1,1 处不连续,为保证有三个连续点,
dt
又: y(t t0) xt t0 2 +x1 t t0 =x(t t0 2) +x1 t +t0
显然: T g t y(t t0) ,故为时变系统。
又注:对于 T g t ,信号先经过系统再做时移; y(t t0) ,信号先做时移动再经过系统。 如果还不理解,做题可以这样判断:只要信号 x(t) 中 t 的系数不为 1,则该系统必定为时变系
(c)无记忆,时变,线性,因果性,稳定性;
(e)无记忆,时变,线性,因果性,不稳定性;
备注:本题中关于时变与时不变系统的判定,错误率较高,故特以(a)为例,时变性质解答如下:
设: gt x(t t0) ,且有 T xt x(t 2) +x(1 t) ,则:
T g t g(t 2) +g(1 t) xt 2 t0 +x1 t t0 =x(t 2 t0) +x(1 t t0)