信号与系统期末试题与答案
信号及系统期末考试试题及答案
信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
2套《信号与系统》期末模拟试卷+参考答案
注意:本试题共九道大题,满分150分,答题时间为3小时,所有答案均应写在由考场发给的专用答题纸上,答在其它地方为无效。
一.(共15分,每小题1分)判断对错(正确:T ,错误:F ) (1)不满足绝对可积条件的信号不存在傅立叶变换。
( ) (2)信号平移,其幅度谱保持不变。
( )(3)若信号时域是实奇函数,则其傅立叶变换一定是实奇函数。
( ) (4)周期信号的傅立叶变换全部由冲激函数组成。
( ) (5)卷积的方法不适用于非线性或时变系统的分析。
( ) (6)自由响应是零输入响应的一部分。
( )(7)周期矩形信号的频带宽度仅与其脉冲宽度有关。
( )(8)偶函数的傅立叶级数不含余弦分量,奇函数的傅立叶级数不含正弦分量。
( )(9)理想低通滤波器在物理上是不可实现的,是非因果系统。
( ) (10)s 平面的左半平面映射到Z 平面是单位圆外区域。
( ) (11)周期信号的n 次谐波分量不一定大于n+1次谐波分量。
( ) (12)正弦序列sin(ωn)的周期为2π/ω 。
( )(13) 单位冲激响应仅与系统特性有关,与输入信号无关。
( ) (14)频响特性是指系统在正弦信号激励之下完全响应随信号频率的变化情况。
( )(15)左边序列的z 变换收敛域一定是圆外域。
( )二.(共15分)已知连续信号 12()(2)(2);()[(2)(2)];f t t t f t t u t u t δδ=--+=+--(1)分别画出1()f t 和2()f t 波形图。
(6分)(2)求卷积函数12()()*()f t f t f t =并画出波形图。
(9分) 三.(共30分,每小题5分) 计算 (1)1[()(1)]*()n n a u n a u n u n --- (2)2(cos )(1)t t e t dt πδ∞--∞+-⎰(3)求信号(80)(120)Sa t Sa t +的最低抽样频率和奈奎斯特间隔题图八 系统的幅频特性)对差分方程求z 变换,得)()(25121z F z Y z z =⎪⎭⎫⎝⎛+--- ---2。
信号与系统期末考试复习题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
《信号与系统》期末测验试题及答案
5.下列信号中为周期信号的是 D
。
f1 (t) sin 3t sin 5t
f 2 (t) cos 2t cost
f3
(k)
sin
6
k
sin
2
k
f
4
(k
)
1 2
k
(k
)
A f1 (t) 和 f2 (t)
c f1 (t), f 2 (t) 和 f3 (k)
所以:
(+2 分)
f (k) 10 [0.5k (k 1) 0.2k (k)] 3
(+2 分)
7.已知 f1 (t) 和 f2 (t) 的波形如下图所示,画出 f (t) f1 (t) f 2 (t) 的的波形图 解: 8.已知 f (t) 的波形如下图所示。请画出 f(-2t+1)的图形
(t
1)
d r(t) dt
de(t) dt
e(t)
描述的系统是:
A
。
(A)线性时变系统; (B)线性时不变系统;
(C)非线性时变系统;(D)非线性时不变系统
13.如图所示周期为 8 的信号 f (t) 中,下列对其含有的谐波分量的描述中最准确的是
D。 A 只有直流、正弦项 C 只有奇次余弦项
(z 0.5)(z 2)
B。
(A)|z|<0.5 (B)|z|>2 (C)0.5<|z|<2 (D)以上答案都不对
4. 下面关于离散信号的描述正确的是 B
。
(A) 有限个点上有非零值,其他点为零值的信号。
(B) 仅在离散时刻上有定义的信号。 (C) 在时间 t 为整数的点上有非零值的信号。
信号和系统试题及答案
信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。
答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。
答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。
答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。
答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。
答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。
答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。
信号与系统 期末复习试卷1
, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________
信号与系统期末试题及答案(第一套)
信号与系统期末试题及答案(第一套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 矩形脉冲波形(高度为A,宽度为b )的信号能量为_____________。
2. 序列的自相关是一个偶对称函数,它满足关系式_____________。
3. 线性时不变连续稳定的因果系统,其传输函数的极点位于_____全部位于左半开复平面 ______。
4. 某线性时不变系统的单位冲激响应若为,则系统是___五阶________系统。
(几阶系统)5. 的傅立叶反变换为_____________。
6. 已知周期信号的第三次谐波的幅度等于3,则信号的第三次谐波的幅度等于___3__________。
7. 令,,如果,试求其和__8______。
8. 卷积____________。
9. 信号,a>0的傅立叶变换为______;_____。
10. 已知,,则。
二、计算题(共50分,每小题10分)1.某理想低通滤波器,其频率响应为当基波周期为,其傅里叶级数系数为的信号输入到滤波器时,滤波器的输出为,且。
问对于什么样的值,才保证?1、解:信号的基波角频率为:。
信号通过理想低通滤波器后,输出是其本身,这意味着信号所有频率分量均在低通滤波器的通带内。
由于周期)sgn(t )(t δ)(k δ)(t ε)(k εb A E 2=()k x )(k r xx )0()(xx xx r k r ≤)(s H )()2cos()()(t t t t e t h tεε⋅⋅+=-9)5(3)(2++=ωωj j F )(t f )()3sin(5t t e tε⋅-)(t f )2(t f kk x 2)(=)3()(-=k k y δ)()()(k y k x k z ==∑)(k z =-)(*)(t e t t εε)()1(t e tε--ta en x -=)(222ω+a a111)(--=az z X a z >=)(k x )()(k a k x k ε=⎩⎨⎧>≤=100,0100,1)(ωωωj H 6π=T n a )(t f )(t y )()(t f t y =n 0=n a )(t f ==T πω2012s rad /)(t f )(t f信号含有丰富的高次谐波分量,只有当高次谐波分量的幅度非常小时,对的贡献才忽略不计。
信号与系统试题及答案(大学期末考试题)
信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
(完整word版)信号与系统期末考试试题(有答案的)
信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
(完整版)《信号与系统》期末试卷与答案
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。
《信号与系统》考试试题及参考答案
《信号与系统》期末考试姓名 学号 班级 成绩一、选择及填空(20分 每题2分):1. 以下系统,哪个可进行无失真传输_B _ωωϕωωωδωωωωωωωω-6)( )1()(H )( )()(H )( 3)(H )( )1()1()(H )( 33=-===--=-且;;;D ej C e j B e j A j j j U答:(B)2. 下列哪一项是理想低通滤波器的系统函数_C _⎩⎨⎧<>=⎩⎨⎧><==--=-20 020 )(H )( 20 020 )(H )( 3)(H )( )1()1()(H )(3 33ωωωωωωωωωωωωωωj j j j e j D e j C e j B e j A ;;;U答:(C )3. 对于一个LTI ,如果激励f 1(t)对应响应是)(3t U e t -, 激励f 2(t)对应响应是t 3sin ,则激励f 1(t)+5f 2(t)对应响应是_tt U e t 3sin 5)(3+-__;则激励3f 1(t+1)+5f 2(t-3)对应响应是_)3 (3sin 5)1(33-++--t t U e t __。
4. 已知},2,2,2,2{01)( --=n f ,}32,8,4,2,1{)(2↑=n f ,则=+)2()1(21f f _10_,用)(n δ表示)3(32)2(8)1(4)(2)1()(2-+-+-+++=n n n n n n f δδδδδ________________________。
5. }2,8,4{}3,1,2,3{11----*=_{12,32,14,-8,-26,-6}-2__,}2,1,0{}5,3,6{00*=_{0,6,15,11,10}0__ 6. (课本P152 例4-17)已知)(t f 的象函数ss s s s F 5323)(23+++=,则)0(+f =__0_;)(∞f =_2/5__。
信号与系统期末考试试卷(有详细答案).doc
格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。
dt(是否线性、时不变、因果?)2 的值为 5。
2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截止频率成反比。
.若信号的F(s)=3s j37。
,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。
1。
9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。
2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。
(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。
信与系统期末考试试题
期末试题一、选择题每小题可能有一个或几个正确答案,将正确的题号填入 内 1.f 5-2t 是如下运算的结果———————— A f -2t 右移5 B f -2t 左移5 C f -2t 右移25 D f -2t 左移252.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ————— A1-at e - B at e -C )1(1at e a --D at e a-13.线性系统响应满足以下规律————————————A 若起始状态为零,则零输入响应为零;B 若起始状态为零,则零状态响应为零;C 若系统的零状态响应为零,则强迫响应也为零;D 若激励信号为零,零输入响应就是自由响应;4.若对ft 进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为————————A3f s Bs f 31 C3f s -2 D )2(31-s f 5.理想不失真传输系统的传输函数Hjω是 ————————A 0j tKe ω- B 0t j Keω- C 0t j Keω-[]()()c c u u ωωωω+--D 00j t Keω- 00,,,c t k ωω为常数6.已知Z 变换Z 1311)]([--=zn x ,收敛域3z >,则逆变换xn 为—— A )(3n u n C 3(1)nu n -B )(3n u n -- D )1(3----n u n二.15分已知ft 和ht 波形如下图所示,请计算卷积ftht,并画出ftht 波形;三、15分四.20分已知连续时间系统函数Hs,请画出三种系统模拟框图直接型/级联型/并联型;.五.20分某因果离散时间系统由两个子系统级联而成,如题图所示,若描述两个子系统的差分方程分别为:)()1(31)()1(6.0)(4.0)(11n y n y n y n x n x n y =---+=x (n )y 1(n )(n )H 1(z )H 2(z )1.求每个子系统的系统函数H 1z 和H 2z ; 2.求整个系统的单位样值响应hn ;3.粗略画出子系统H 2z 的幅频特性曲线;ss s s s H 10755)(23+++=信号与系统试题一标准答案说明:考虑的学生现场答题情况,由于时间问题,时间考试分数进行如下变化:1第六题改为选做题,不计成绩,答对可适当加分;2第五题改为20分;一、1.C 2. C 3. AD 4. B二、三、四.20分已知连续时间系统函数Hs,请画出三种系统模拟框图直接型/级联型/并联型;.ss s s s H 10755)(23+++=五、答案:1. 1123()52()0.40.60z H z z z z-+=+=>2111()113133zH z z z z -==>-- 2. 121312111()()(1)()(1)53531553nn nh n u n u n n u n δ-⎛⎫⎛⎫⎛⎫=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭3.Re zj Im z0 ⨯132()j H e Ω32 34π2πΩ期末试题2 一、选择题2分/题,共20分1) 信号xn , n=0,1,2,3,…是能量有限的意思是a xn 有限;b |xn |有界;c()2n x n ∞=<∞∑; d()01Nn x n N=<∞∑; c2) 一个实信号xt 的偶部是a xt+x-t ;b xt+x-t ;c |xt |-|x-t |;d xt-x-t; b 3) LTI 连续时间系统输入为(),0ate u t a ->,冲击响应为ht=ut , 则输出为a()11at e a --; b ()()11at e t a δ--; c ()()11ate u t a --; d ()()11at e t aδ---; c 4) 设两个LTI 系统的冲击响应为ht 和h 1t ,则这两个系统互为逆系统的条件是 a ()()()1h t h t t δ*=; b ()()()1h t h t u t *=; a c ()()()1h t h t u t *=-; d ()()10h t h t *=;5) 一个LTI 系统稳定指的是a) 对于周期信号输入,输出也是周期信号;b 对于有界的输入信号,输出信号趋向于零;c 对于有界输入信号,输出信号为常数信号;d 对于有界输入信号,输出信号也有界 d6) 离散信号的频谱一定是a 有界的;b 连续时间的;c 非负的;d 连续时间且周期的; d 7) 对于系统()()()dy t y t x t dtτ+=,其阶跃响应为 a ()/1t eu t τ-⎡⎤-⎣⎦; b ()/1t e t τδ-⎡⎤-⎣⎦; c ()/1t e u t τ-⎡⎤+⎣⎦; d ()/1t e t τδ-⎡⎤+⎣⎦. a8) 离散时间LTI 因果系统的系统函数的ROC 一定是a 在一个圆的外部且包括无穷远点;b 一个圆环区域;c 一个包含原点的圆盘;d 一个去掉原点的圆盘; a 9) 因果系统的系统函数为11,01a az ->-,则a 当a>2时,系统是稳定的;b 当a<1 时,系统是稳定的;c 当a=3时,系统是稳定的;d 当a 不等于无穷大时,系统是稳定的; b10) 信号的傅立叶变换可以看成是拉普拉斯变换的特例,如果 a 拉普拉斯变换的收敛域不包含虚轴;b 拉普拉斯变换的收敛域包含单位圆;c 拉普拉斯变换的收敛域包含虚轴;d 拉普拉斯变换的收敛域不包含单位圆; c二、填空题 3分/题,共24分1. 信号()()()2cos 101sin 41x t t t =+--的基波周期是 π2.信号()1, 380, n x n ≤≤⎧=⎨⎩其它和()1, 4150, n h n ≤≤⎧=⎨⎩其它的卷积为 ()6, 7116, 121824, 19230,n n n y n n n -≤≤⎧⎪≤≤⎪=⎨-≤≤⎪⎪⎩其它3.信号()252cos 4sin 33x t t t ππ⎛⎫⎛⎫=++⎪ ⎪⎝⎭⎝⎭的傅立叶系数为*0225512,,22a a a a a j --=====-4.因果LTI 系统差分方程()()()1y n ay n x n --=,1a <,则该系统的单位冲击响应为 hn=a nun5.信号()1112n u n -⎛⎫- ⎪⎝⎭的傅立叶变换为 12j j e e ωω---6.连续时间LTI 系统的系统函数是()0j t H j e ωω-=,则系统的增益和相位是 1和0t ω-7.理想低通滤波器()01,0,H j ωωωωω⎧≤⎪=⎨>⎪⎩的冲击响应是 ()sin c t h t t ωπ=8.系统函数()32221148z z zH z z z -+=++表示的系统的因果特性为回答因果或非因果 非因果三、简答题 6分/题,共24分1. 试给出拉普拉斯变换、Z 变换与傅立叶变换的定义并简述它们间的关系; 拉普拉斯变换()()st X s x t e dt +∞--∞=⎰Z 变换()()nn X z x n z+∞-=-∞=∑傅立叶变换()X如果拉普拉斯变换的收敛域包含j ω轴,当s j ω=时,拉普拉斯变换就是连续时间傅立叶变换;如果Z 变换的收敛域包含复平面单位圆,当Z=expj ω时,Z 变换就是离散时间傅立叶变换; 当上述条件不成立时傅立叶变换不存在,但是拉普拉斯变换或Z 变换可能存在,这说明这两种变换确实是傅立叶变换的推广;2. 试回答什么是奈奎斯特率,求信号()()2sin 4000t x t t ππ⎛⎫= ⎪⎝⎭的奈奎斯特率;带限信号xt 当Max ωω>时,对应的傅立叶变换()0X j ω=,则有当采样频率22sampling Max Tπωω=>时,信号xt 可以由样本(),0,1,2,...x nT n =±±唯一确定,而2Max ω即为奈奎斯特率;16000pi3. 试叙述离散时间信号卷积的性质,求出信号()()()122nn x n u n u n ⎛⎫=+- ⎪⎝⎭和()()h n u n =卷积;离散或连续卷积运算具有以下性质:交换率,分配律,结合率()()()()()()122nn x n h n u n u n u n u n ⎛⎫*=*+-* ⎪⎝⎭=()11112, 0212, 012n n n u n n ++⎛⎫⎛⎫- ⎪ ⎪≥⎧⎝⎭ ⎪+⎨ ⎪<⎩- ⎪⎝⎭4. 试回答什么是线性时不变系统,判定系统()()21y t t x t =-是否为线性的,是否为时不变的;系统满足线性性,即()()12ay t by t +是()()12ax t bx t +的响应同时满足是不变性,即()x t 的输出为()y t 则()0x t t -的输出为()0y t t - 该系统是线性的,但不是时不变的四、计算题 8分/题,32分1. 连续时间LTI 系统的系统函数为()2KH s s =+,采用几何分析法画出其幅频相应图,说明该系统对应的滤波器是何种频率选择性滤波器;解:2)(+=s Ks H ,2->σ 当jwes =,即取纵坐标轴上的值,)()(ωj es e H s H jw==AK e H j =|)(|ω讨论A 随着Ω的变化而发生的变化:0=Ω,A=2, 2|)(|Ke H j =ω,2=Ω,A=22, 22|)(|K e H j =ω,∞→Ω,A ∞→, 0|)(|→ωj e H 则频率响应的模特性大概如图:2.利用傅立叶级数的解析公式计算连续时间周期信号基波频率为0ωπ=() 1.5,011.5,12t x t t ≤<⎧=⎨-≤<⎩的系数;该傅立叶级数系数为/20,03sin 2,0k jk k k a e k k πππ-=⎧⎪⎪⎛⎫=⎨⎪⎝⎭⎪≠⎪⎩3. 对于()2132X s s s =++求出当Re{s}<-2和-2<Re{s}<-1时对应的时域信号()x t ; 分别是()()[]2,Re 2t tx t e e u t s --⎡⎤=-+-<-⎣⎦和()()()2t t x t e u t e u t --=---,[]2Re 1s -<<4.求系统函数()12111148H z z z --=+-对应的时域中的差分方程系统,并画出其并联型系统方框图; 差分方程为()()()()111248y n y n y n x n +---=信号与系统期末考试试题3课程名称: 信号与系统一、选择题共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的1、 卷积f 1k+5f 2k-3 等于 ;Af 1kf 2k Bf 1kf 2k-8Cf 1kf 2k+8Df 1k+3f 2k-32、 积分dt t t ⎰∞∞--+)21()2(δ等于 ;ABC3D53、 序列fk=-u-k 的z 变换等于 ;A1-z z B-1-z zC 11-zD 11--z4、 若yt=ftht,则f2th2t 等于 ;A)2(41t y B )2(21t y C )4(41t y D )4(21t y 5、 已知一个线性时不变系统的阶跃相应gt=2e -2tut+)(t δ,当输入ft=3e —tut 时,系统的零状态响应y f t 等于A-9e -t +12e -2t ut B3-9e -t +12e -2t utC )(t δ+-6e -t +8e -2t ut D3)(t δ +-9e -t +12e -2t ut6、 连续周期信号的频谱具有(A ) 连续性、周期性 B 连续性、收敛性 C 离散性、周期性 D 离散性、收敛性x nyn7、 周期序列2)455.1(0+k COS π的 周期N 等于(A )1B2C3D4 8、序列和()∑∞-∞=-k k 1δ等于A1 B ∞ C ()1-k u D ()1-k ku9、单边拉普拉斯变换()se ss s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s ()()()2323++-s se C s ()()332++-s s e D s二、填空题共9小题,每空3分,共30分1、卷积和k+1uk+1)1(k -δ=________________________2、单边z 变换Fz=12-z z的原序列fk=______________________ 3、已知函数ft 的单边拉普拉斯变换Fs=1+s s,则函数yt=3e -2t ·f3t 的单边拉普拉斯变换Ys=_________________________4、频谱函数Fj ω=2u1-ω的傅里叶逆变换ft=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数ft=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应hk=_______________________7、已知信号ft 的单边拉氏变换是Fs,则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Ys=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应ht=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、8分已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数 ()(),dt t df t s =求⎪⎭⎫⎝⎛2ωs 的傅里叶逆变换;四、10分如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求1 ()0F 2()⎰∞∞-dw jw F五、12分别求出像函数()25232+-=z z zz F 在下列三种收敛域下所对应的序列12〉z 2 5.0〈z 325.0〈〈z六、10分某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应;信号与系统期末考试参考答案一、选择题共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的1、D2、A3、C4、B5、D6、D7、D8、A9、B 10、A二、填空题共9小题,每空3分,共30分1、()()k u k5.0 2、)()5.0(1k u k + 3、52++s s 4、()tj e t jt πδ+5、)()()(t u e t u t t -++δ6、()[]()k u k 15.01+-+ 7、 ()s F s e s2-8、()()t u t e t 2cos - 9、s66, 22k/S k+1 三、8分解: 由于()()()()()ωωωF j dtt df t s F t f ↔=↔ 利用对称性得()()ωπ-↔S jt F jt 2 利用尺度变换a=-1得()()ωπS jt F jt 2↔-- 由()jt F 为偶函数得 ()()ωπS jt F jt↔-2 利用尺度变换a=2得 ()⎪⎭⎫⎝⎛↔-221222ωπS t j F t j()⎪⎪⎩⎪⎪⎨⎧>〈=↔⎪⎭⎫⎝⎛∴21,12,021,12,2222t t t t j tt j F j t S 即即ππω四、10分 解:12)()0()()(==∴=⎰⎰∞∞--∞∞-dt t f F dte tf F t j ωω2ωωπωd e F t f t j ⎰∞∞-=)(21)(ππωω4)0(2)(==∴⎰∞∞-f d F五、12分 解:()()21221223125232---=⎪⎭⎫ ⎝⎛--•=⎪⎭⎫ ⎝⎛+-=z zz z z z z z z z z F1) 右边 ()()()k u k u k f kk⎪⎭⎫⎝⎛-=2122) 左边 ()()1221--⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=k u k f kk3) 双边 ()()()1221---⎪⎭⎫⎝⎛-=k u k u k f k k六、10分 解:由)(S H 得微分方程为)()()(2)(t f t y t y t y ''=+'+'')()()0(2)(2)0()0()(22S F S S Y y S SY y Sy S Y S =+-+'-----12)0()0()2()(12)(222++'+++++=∴--S S y y S S F S S S S Y将SS F y y 1)(),0(),0(='--代入上式得 222)1(1)1(1)1(2)(+-++++=S S S S S Y11)1(12+++=S S )()()(t u e t u te t y t t --+=∴。
信号与系统期末考试题库及答案
信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2。
下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y (t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y (t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y (t )是周期信号.D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y (t )是周期信号.3。
下列说法不正确的是( D ). A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4。
将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (—t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换. A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6。
下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D ).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
信号与系统_北京邮电大学中国大学mooc课后章节答案期末考试题库2023年
信号与系统_北京邮电大学中国大学mooc课后章节答案期末考试题库2023年1.关于信号【图片】描述正确的是()。
参考答案:该信号的基波角频率是1 rad/s。
2.以频谱分割的方式进行频道划分,多路信号混合在一起传输,但每一信号占据着有限的不同频率区间,此区间不被其他信号占用。
这种复用方式称为频分复用。
参考答案:正确3.【图片】上图所示的周期矩形脉冲信号,其直流分量为【图片】。
参考答案:错误4.【图片】的能量是()。
参考答案:55.对于具有矩形幅度特性和线性相位特性的理性低通滤波器,【图片】是其截止频率,其阶跃响应【图片】波形如下图所示。
下面说法中不正确的是()【图片】参考答案:阶跃响应的上升时间为。
6.【图片】的收敛域是全s平面。
参考答案:正确7.因果信号【图片】的拉普拉斯变换为【图片】,则【图片】。
参考答案:正确8.【图片】的z变换为【图片】,收敛域为【图片】。
参考答案:正确9.线性时不变因果系统的单位阶跃响应【图片】与其单位冲激响应【图片】之间关系是【图片】。
参考答案:错误10.周期为T的冲激序列信号【图片】,有关该信号描述不正确的是()。
参考答案:该信号的频谱满足离散性、谐波性和收敛性。
11.在区间【图片】余弦信号【图片】与正弦信号【图片】相互正交。
参考答案:正确12.已知某离散时间线性时不变系统的单位样值响应为【图片】,则当输入信号为【图片】时,系统的零状态响应为【图片】。
参考答案:正确13.某系统的信号流图如下图所示。
则该系统的系统函数可表示为【图片】。
【图片】参考答案:正确14.某连续系统的系统函数为【图片】,该系统可以既是因果的,又是稳定的。
参考答案:正确15.因果系统的系统函数为【图片】,R>0,C>0,则该系统属于( )网络。
参考答案:高通滤波网络16.下图所示反馈系统,已知子系统的系统函数【图片】,关于系统函数及稳定性说法正确的是()。
【图片】参考答案:系统函数为,当时,系统稳定。
信号与系统期末复习试题附答案
一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( ) A.)(t δ B.)2(t δ C. )(t f D.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae2--+,则其2个特征根为( ) A 。
信号与系统中国大学mooc课后章节答案期末考试题库2023年
信号与系统中国大学mooc课后章节答案期末考试题库2023年1.已知系统的输入x(t)和输出y(t)的关系为:y(t)=x(2-t),则该系统为()参考答案:线性时变系统2.已知系统的输入x(t)和输出y(t)的关系为:y(t)=tx(t),则该系统为()参考答案:线性时变系统3.已知系统的输入x(t)和输出y(t)的关系为:y(t)=【图片】,则该系统为()参考答案:因果稳定系统4.零输入响应等于自然响应()参考答案:错误5.系统时域特性可以由系统冲激响应h(t)来表征()参考答案:正确6.阶跃响应可以由冲激响应的积分求得。
()参考答案:正确7.已知系统的输入x(t)和输出y(t)的关系为:y(t)=x(4t),则该系统为()参考答案:非因果稳定时变系统8.若f(t)是已录制在磁带的声音信号,则下列表述错误的是()参考答案:f (2t)表示将磁带速度降低一半播放的信号9.设:两信号f1(t)和f2(t)如图。
则:f1(t)和f2(t)间的关系为()【图片】参考答案:f2(t)=f1(2-t)ε(2-t)10.所有非周期信号都是能量信号()参考答案:错误11.数字信号一定是离散时间信号()参考答案:正确12.若【图片】,则【图片】.( )参考答案:正确13.周期性非正弦连续时间信号的频谱,其特点为( )。
参考答案:频谱是离散的,谐波的,收敛的14.如某一因果线性时不变系统的系统函数H(S)的所有极点的实部都小于零,则( )参考答案:|h(t)|<∞15.信号【图片】的带宽为20KHz,则信号【图片】的带宽为( )参考答案:40KHz16.实偶函数信号的傅里叶变换也是实偶函数()参考答案:正确17.周期矩形脉冲信号频谱的谱线间隔只与脉冲的周期有关。
()参考答案:正确18.信号【图片】是下列哪类信号?()参考答案:能量信号19.已知系统的输入x(t)和输出y(t)之间的关系为【图片】,则该系统为()参考答案:非线性时不变系统。
信号与系统期末试卷及答案
读书破万卷下笔如有神实验二利用DFT分析离散信号频谱一、实验目的应用离散傅里叶变换(DFT),分析离散信号的频谱。
深刻理解DFT分析离散信号频谱的原理,掌握改善分析过程中产生的误差的方法。
二、实验原理根据信号傅里叶变换建立的时域与频域之间的对应关系,可以得到有限长序列的离散傅里叶变换(DFT)与四种确定信号傅里叶变换之间的关系(见教材),实现由DFT分析其频谱。
三、实验内容?3的频谱;1.利用FFT分析信号x(310),nn?,1,...,n)?cos(8(1)、确定DFT计算的参数;N=32;n=0:N-1;x=cos(3*pi/8*n);X=fft(x,N);subplot(2,1,1);stem(n,abs(fftshift(X)));ylabel('Magnitude');xlabel('Frequency (rad)');title('朱艺星杨婕婕'); subplot(2,1,2);stem(n,angle(fftshift(X)));ylabel('Phase');xlabel('Frequency(rad)');读书破万卷下笔如有神进行理论值与计算值比较,讨论信号频谱分析过程中误差原因及改善2)(方法。
在频谱分析过程中由于取样频率过低或者由于信号的截取长度不当将会答:产生误差。
可以适当提高取样率,增加样点数,可能会产生混频现象,取样频率过低,来减少混叠对频谱分析所造成的误差。
对于连续周期信号,其时域取样必须kfo,即(其中K≥2*N+1N为最高谐波分量)其取样点数满足时域取样定理:2fm+fo。
≥≥2Nfo+fo;fs截取信号长度不当,会产生功率泄露,对周期序列进行频谱分析时,为避免泄露应做到:截取的长度应取一个基本周期或基本周期的整数倍,若待分析的周期信号事先不知道其确切的周期,则可截取较长时间长度的样点进行分析,以减少功率泄露误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称 信号与线性系统A 考试学期
08-07 得分 适用专业 微电、物理、 考试形式 闭卷 考试时间
120分钟
姓名
班级
学号
一、选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果————————( C ) (A )f (-2t )右移5 (B )f (-2t )左移5 (C )f (-2t )右移
2
5 (D )f (-2t )左移25
2.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f —————( C ) (A )1-at e - (B )at e -
(C ))1(1at e a -- (D )at e a
-1
3.线性系统响应满足以下规律————————————(AD )
(A )若起始状态为零,则零输入响应为零。
(B )若起始状态为零,则零状态响应为零。
(C )若系统的零状态响应为零,则强迫响应也为零。
(D )若激励信号为零,零输入响应就是自由响应。
4.若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)23
1
(-t f 进行取
样,其奈奎斯特取样频率为————————(B )
(A )3f s (B )
s f 31 (C )3(f s -2) (D ))2(3
1
-s f 5.理想不失真传输系统的传输函数H (jω)是 ————————(B )
(A )0j t
Ke ω- (B )0
t j Ke
ω- (C )0
t j Ke
ω-[]()()c c u u ωωωω+--
(D )00
j t Ke
ω- (00,,,c t k ωω为常数)
6.已知Z 变换Z 1
311
)]([--=
z
n x ,收敛域3z >,则逆变换x (n )为——( A ) (A ))(3n u n (C )3(1)n
u n -
(B ))(3n u n -- (D ))1(3----n u n
二.(15分)
已知f(t)和h(t)波形如下图所示,请计算卷积f(t)*h(t),并画出f(t)*h(t)波形。
三、(15分)
四.(20分)
已知连续时间系统函数H(s),请画出三种系统模拟框图(直接型/级联型/并联型)。
. 五.(20分)
某因果离散时间系统由两个子系统级联而成,如题图所示,若描述两个子系统的差分方程分别为:
)
()1(3
1
)()
1(6.0)(4.0)(11n y n y n y n x n x n y =---+=
x (n )
y 1(n )
(n )
H 1(z )
H 2(z )
1.求每个子系统的系统函数H 1(z )和H 2(z ); 2.求整个系统的单位样值响应h (n );
3.粗略画出子系统H 2(z )的幅频特性曲线;
s
s s s s H 1075
5)(23+++=
《信号与系统》试题一标准答案
说明:考虑的学生现场答题情况,由于时间问题,时间考试分数进行如下变化:1)第六题改为选做题,不计成绩,答对可适当加分;2)第五题改为20分。
一、
1.C 2. C 3. AD 4. B 5.B 6.A
二、
三、
四.(20分)
已知连续时间系统函数H(s),请画出三种系统模拟框图(直接型/级联型/并联型)。
.
s
s s s s H 10755)(23+++=
五、答案:
1. 1123()
52()0.40.60z H z z z z
-+=+=>
2111
()113
133
z
H z z z z -=
=>
-- 2. 1
21312111()()(1)()(1)53531553n
n n
h n u n u n n u n δ-⎛⎫⎛⎫
⎛⎫
=+-=+- ⎪ ⎪
⎪⎝⎭⎝⎭⎝⎭
3.
Re(z )
j Im(z )
⨯
13
2()j H e Ω
32 34
π
2π
Ω。