V对称稳压电源设计

合集下载

利用7805和7905设计一个输出为±(5-9)V,1A的直流可调稳压电源

利用7805和7905设计一个输出为±(5-9)V,1A的直流可调稳压电源

《直流稳压电源电路设计》利用7805和7905设计一个输出为±(5-9)V,1A的直流可调稳压电源学院:信息与控制工程学院专业:电气工程及其自动化班级:姓名:学号:1、课程设计目的 (3)2、课程设计任务及要求 (3)3、设计思路及参数确定 (3)4、设计仪器元件 (5)5、设计内容 (5)6、设计总结 (11)7、参考文献 (11)1、课程设计目的1)结合所学电子电路的理论知识完成直流稳压电源课程设计;2)通过本次设计学会并掌握电子元器件的选择和使用方法;3)通过本次设计熟练掌握multisim仿真软件的使用;4)引导学生自主性学习,研究性学习,加强团队合作,提高创新意识。

2、课程设计任务及要求(1)利用7805和7905设计一个输出为±(5-9)V,1A的直流可调稳压电源(2)设计要求:1、画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形;画出变压器副边电流的波形。

2输入工频220V交流电的情况下,确定变压器变比;3、在满载情况下选择滤波电容大小(取5倍工频半周期);4、求滤波电路的最大输出电压;5、求电路中固定电阻阻值和可调电阻的调节范围3、设计思路及参数确定<1>设计思路交流电源变压器整流电滤波电路稳压可调电路负载要得到±(5-9)V的直流稳压电源,首先应使用变压器,将220V的电压降到合适的值。

再通过整流电路,将正弦波变为较为稳定的直流电压。

再通过滤波及稳压电路,将整流过后的电压进行滤波稳压,最终得到满足要求的直流电源,通过接上负载电阻,满足输出电流为1A的要求。

<2>参数的确定【1】变压器变比选择输出电压要求5-9V,为保证输出电压5-9V稳定可调,稳压管输入输出的电压差取3V,对于稳压电路,输入电路输入应为12V,根据U0=1.2U2,副边电压为10V,电压变比为11:1。

【2】二极管参数的计算1、二极管承受的最高反压Um=1.41U2Um=15V2、流过二极管电流的平均值Id=1/2IL=0.5U2/RLId=0.56A3、负载电阻RL=9Ώ【3】滤波电路电容的选择为得到平滑的直流电压,选择有极性的大电解电容 t=RLC=5*T/2=0.05s C=t/RL=4170uF【4】稳压电路电容为了防止自激振荡,须在输入端加一个C1,C1=0.33uF ; 另外为了改善 输出的瞬时特性,在输出端加一个电容C2,C2=1uF 。

数控稳压电源14830

数控稳压电源14830

数控稳压电源南通职业大学数控稳压电源实验报告学院:电子信息工程学院班级:电子112姓名:张欣学号:110202227指导老师:陈卫兵目录一、摘要 (3)二、作品介绍 (3)三、芯片和部分模块介绍 (4)1.TLC1543简介及其应用 (4)2.TLC5615 器件的引脚图及各引脚功能 (4)3.功能框图 (5)四、作品功能 (7)五、作品结构 (9)六、原理图和pcb图的绘制 (11)七、心得体会 (12)一、摘要本系统由单片机控制模块、按键、液晶、LM324系列芯片、TLC1543,TLC5615,集成运放搭建构成,放大器、交流变压器来提供稳定电压输出;在以单片机为主控芯片、运算放大器及外围电路的部分,用按键控制步进可调电压输出,液晶显示输出电压值。

整个系统结构紧凑,电路简单。

二、作品介绍学校实验室使用的直流稳压电源,大多是通过电位器来调整输出电压,使用并不方便,并且步进幅度大难以精确调整。

而我们制作的这款数控稳压电源,可以实现步进调整电压,预设值快捷调整电压,使用更为方便、准确。

其次,在学生做实验的过程中,往往有人随意调整电压,稍不注意,就会造成实验失败、器件损毁。

为此,我们制作了“锁定输出电压”功能,“锁定输出电压”后需要按键解锁后才能改变输出电压,否则无法改变,以此来避免同学的误操作。

我们以单片机作为主控芯片,将数电、模电有效的结合起来运用,使用按键作为输入,用数码管和LED灯显示电源工作状态和模式,实现良好的人机界面效果。

技术指标:输出电压:3~12V。

电压调整方法:1.普通调整,步进=0.1V;2.快捷调整,按预设电压值快速切换。

限流:当输出过电流超过0.1秒后,切断输出,同时过流指示灯点亮。

开机模式:开机时调出预设电压,但不输出,需要按下输出键后才输出。

精度:输出与真实输出不高于5%。

锁定模式:在不锁定输出,可以自由调整输出电压;在锁定输出后,则输出电压不可调整,需要重修按下锁定键才可以重新调整电压。

LM317和LM337可调电源

LM317和LM337可调电源

摘要:设计并制作了一款适合物理和电子实验室使用的直流稳压电源。

该电源利用三端稳压器件LM317、LM337实现3~37V输出可调的正负直流电压,输出电流可达1.5A;使用LM7805、LM7905、ASM1117实现+5V、-5V、+3.3V的直流稳压输出。

整个电源主要由变压器、整流电路、滤波电路,以及稳压电路几部分组成,采用Altium Designer软件设计了电路PCB,用热转印技术和化学腐蚀方法进行了PCB板制作,其体积小,稳定性好且性价比较高。

实测数据和实验结果表明该电源可调性灵活、精度高、正负电源对称性好,具有极高的实用性及经济性。

该电源除了可用于物理、电子实验室外,还可给各类电子设计提供稳定、可靠和廉价的电源,具有广泛的实用价值。

关键词:稳压电源;正负可调;PCB设计;Altium Designer;热转印;化学腐蚀Abstract: DC power supply is designed and fabricated in order to adapt to the use in a physical and electronic laboratory. The power supply device makes use of a three terminal regulator LM317, LM337 to achieve positive and negative output adjustable DC power supply between 3V and 40V, and puts to use LM7805, LM7905, ASM1117 to achieve DC power supply of +5 V, -5V, +3.3V, whose output current can come up to 1.5A. The whole power supply is mainly made of the power transformer, rectifier, filter circuit and voltage regulator circuit, designed by adopting Altium Designer software of the circuit PCB. PCB boards are fabricated in the power supply by using the methods of thermal transfer technology and chemical corrosion methods because of owing to small sizes, good stability and higher cost-effective. Measured data and experimental results show that the power adjustable is flexible and has high precision and good symmetry of positive and negative power, which is highly practical and economical. The power supply can be used not only in physical and electronic laboratories, but also to provide stable, reliable and affordable power supply for all types of electronic design, with a wide range of practical value.Keywords: Power supply; Positive and negative adjustable; PCB design; Altium Designer; Heat transfer; Chemical corrosion0 引言在电子线路的相关应用中,电源是其必不可少的部分,电源系统质量的优劣和性能的可靠性直接决定着整个电子设备的质量。

电源设计原理之整流滤波稳压电源

电源设计原理之整流滤波稳压电源
(动画10-1) (动画10-2)
(2)参数计算
根据图1.02(b)可知,输出电压是单相脉动电压。 通常用它的平均值与直流电压等效。输出平均电压为
1π 2 2 VO VL 2V2 sin td t V2 0.9V2 π0 π
流过负载的平均电流为 流过二极管的平均电流为
IL
即: U O(AV)
T 2U 2 ( 1 ) 4RLC
Io(AV)= Uo(AV)/RL
脉动系数S:采用近似波形计算。 以(Uomax-Uomin)为基波峰-峰值,则
U Omax U Omin T U Omax 2 4RLC T U Omax T 1 4RLC S T 4RLC 4R C T L U Omax ( 1 ) 1 4RLC T
C
RL
uo
2 U2
0.9U2
0

2
3
t
0.45U2
0
UDR
半波整流电容滤波 Io 电路的外特性
名 称 半波整流 全波整流 电容滤波 桥式整流 电容滤波 桥式整流 电感滤波
VL(空载)
VL(带载)
二极管反向 最大电压
2V 2 2 2V 2Fra bibliotek每管平均 电流 IL 0.5IL 0.5IL 0.5IL
2V2
2V 2
0.45V2
1.2V2* 1.2V2* 0.9V2
2V 2
2V 2
2V 2
2V 2
*使用条件:
T d RLC (3 ~ 5) 2
整流滤波电路设计举例
例 设计一个桥式整流电容滤波电路,用 220V、50Hz交流 供电,要求输出直流电压Uo=45V,负载电流IL=200mA。

7812和7912

7812和7912

W7812为三端固定正12V输入的集成稳压器,7812引脚图如下图所示.7812主要参数有:输出直流电压 U0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R0=0.15Ω,输入电压UI的范围15~17V 。

因为一般UI 要比 U大3~5V ,才能保证集成稳压器工作在线性区。

图1 三端稳压器7812引脚图及外形图图2 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。

其中整流部分采用了由四个二极管组成的桥式整流器成品(也叫整流堆,型号为2W06),当然也可以自已用四个速流二极管(如,IN4001)组成。

滤波电容C1、C2一般选取几百~几千微法。

当稳压器距离整流滤波电路比较远时,在输入端必须接入电容器C3(数值为0.33μF ),以抵消线路的电感效应,防止产生自激振荡。

输出端电容C4(0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。

由7812构成的串联型稳压电源负12V,1A三端稳压器LM7912中文资料(引脚图,电气特性参数,应用电路)LM7912引脚图及外形图:图1 LM7912外形引脚排列图管脚图LM7912内部电路图:图2 79XX内部电路图LM7912电气特性参数:Electrical Characteristics 电气特性(MC7912)三端稳压集成电路极限参数:图3 输出电压图4 负载调节率曲线图图5 电压差曲线图图6 静态电流曲线图图7 短路电流曲线图LM7912应用电路:图8 LM7912典型应用电路图9 与78XX系列三端稳压构成的正负对称输出电压应用电路图12正负12V稳压电源_电路图7812/7912正负12V稳压电源_电路图7812和7912三端稳压器是电子设备中常用的线性稳压集成电路,最大输出电流1.5A (需加散热器)。

下面是用这两种稳压IC制作的正负稳压电源典型电路,供大家参考。

初学者特别应注意7812正电源稳压IC与7912负电源稳压IC的引脚功能是不一样的,有关详细说明见:三端稳压器7912引脚功能,电路接法7812/7912正负12V稳压电源从电路中可以看到,7812/7912的输入输出端都接有电容,而且是一大一小,大容量电容是低频滤波作用,小容量电容是高频滤波用。

开关电源制作设计(电路原理图+PCB)

开关电源制作设计(电路原理图+PCB)

一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。

1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。

这样对开机时的浪涌电流起到有效的缓冲作用。

电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。

采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。

图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。

3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。

一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。

C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。

直流稳压电源设计

直流稳压电源设计

_新疆大学课程设计报告所属院系:电气工程学院专业:自动化课程名称:电子技术基础A设计题目:直流稳压电源的设计班级:自动化091学生姓名:xx x学生学号:2009xxxxxxx指导老师: xxxx完成日期:2011.7.7直流稳压电源的设计直流稳压电源的设计要求是比较基本的设计,设计要求电源输出三档可调直流电压。

设计中包括电源变压器、整流电路、滤波电路、稳压电路四个部分。

通过四部分的组合将220V交流电压转变为设计要求直流电压。

并且用仿真软件进行仿真分析。

一、设计方案1.拟定系统方案框图直流稳压电源由四部分组成。

四部分分别为:电源变压器,整流电路,滤波电路,稳压电路。

系统方框图如下图1。

图1 稳压电源的系统组成框图图2 直流稳压电源的方框图采用LM7812和LM7912固定式三端稳压器共同组成稳压电路。

固定式三端稳压器LM7812和LM7912组装电路可对称输出±12v,其电路图如图所示。

该电路的特点是它们共用一组整流、滤波电路,且有共同的公共端,可以同时输出正、负电压,使用十分方便。

图3直流稳压电源电路二、单元电路的设计和计算1.单元电路的设计1.1.电源变压器图4 电源变压器电源变压器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。

变压器副边与原边的功率比为P2/ P1=η。

电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。

根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率。

如图4电源变压器将220V,50HZ交流电压降压后输出到副边,变成整流电路要求的交流电压值,然后通过整流电路将交流电压变成动脉的直流电压。

得到的电源变压器的工作波形如图5。

图5 电源变压器输出波形1.2 整流电路的设计整流电路的任务是将交流电变换成直流电。

基于TMS320F28027的DC-DC开关电源设计附源程序

基于TMS320F28027的DC-DC开关电源设计附源程序

“DSP系统设计与创新实践”课程论文论文名称:基于TMS320F28027的DC-DC开关电源学生姓名:学号:专业: 电子科学与技术班级:2013年6月16日基于TMS320F28027的DC-DC开关电源摘要开关电源作为线性稳压电源的一种替代产物,在现代电子产品中已被广泛应用。

因此作为学习电子科学与技术专业的当代大学生,相当有必要对开关电源进行相应的研究。

本设计就是以TMS320F28027为核心控制芯片,采用脉宽调制(PWM)方式的降压型开关电源。

我们利用7805和AMS1117的线性降压稳压芯片对12V的电源适配器进行双级降压,形成TMS320F28027专用的3.3V稳定电源;并通过TMS320F28027对输出电压进行实时AD采样,然后和根据GPIO 3的状态来设定输出不同电压时计算的AD的标准值进行比较,以调节输出为50KHZ的ePWM 的占空比,并把该ePWM的矩形波信号经三级管9013初步放大之后,再经过三极管8050和8550构成的互补推挽放大器放大后来驱动功率场效应管(IRF4905);从而利用BUCK型降压电路实现了稳定的5V或3.3V的电压输出。

之后,我们对制作完成的开关电源进行了ePWM放大波形,输出电压和输出纹波的测试,对遇到的问题进行反复分析,并解决了部分问题。

最后的通过实际测试,本设计基本上满足的当初的设计要求。

关键词:开关电源;TMS320F28027;互补推挽放大器;BUCK型降压器引言现在的开关电源具有转换效率高,体积小,工作频率高的特点,已经被广泛用于电子计算机、通信、航天、家电和国防等领域中。

国内开关电源技术的发展,基本上起源于20世纪70年代末和80年代初,经过20多年的不断发展,开关电源技术有了重大进步和突破。

新型功率器件的开发促进了开关电源的高频化,功率MOSFET和IGBT可使小型开关电源的工作频率达到400kHz(AC/DC)或1MHz(DC/DC);软开关技术使高频开关电源的实现有了可能,它不仅可以减少电源的体积和重量,而且提高了电源的效率(国产6kW通信开关电源采用软开关技术,效率可达93%);控制技术的发展以及专用控制芯片的生产,不仅使电源电路大幅度简化,而且使开关电源的动态性能和可靠性大大提高;有源功率因数校正技术(APFC)的开发,提高了AC/DC开关电源的功率因数,既治理了电网的谐波污染,又提高了开关电源的整体效率。

7815 7805稳压电源.doc1

7815 7805稳压电源.doc1

7815稳压电源电路图连续可调的双电源(正负对称电源)。

此电路由一块7815和一块7915三端稳压器对称连接,即可获得一组正负对称的稳压电源,而且输出电压值可各自单独调节,也可同步调节。

电路如附图所示,由变压器输出的交流双18V电压经D1~D4整流,C1、C2滤波得到一直流电压,其中变压器双电源的中心抽头作为公共接地端,然后分别把该直流电压正负极接入7815的①脚和7915的③脚。

7815的③脚接到电位器W2的滑动触片“d”上,7915的①脚接到电位器W1的滑动触片“C”上。

当将触片“C”滑到“0”端接地时,调节W2,即可从“a”端得到“+6~+15V”的正向可变电压;若将触片“d”滑到“0”端接地,调节W1,在“b”端就可得到“-6~-15V”的负向可变电压,将W1、W2换成同轴电位器,将获得正负对称的可调电源,输出电压值在±6V~±15V之间连续可调,可达到同步调节的目的。

本电路的7815、7915三端稳压块上应加装散热片,做散热用。

7815和7805的区别:7815输入电压在+7V~-+40V 输出电压为+15V7805输入电压在+17V~-+40V 输出电压为+5V7805应用电路图7805管脚图7805典型应用电路图:78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。

IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。

当输出电较大时,7805应配上散热板。

下图为提高输出电压的应用电路。

稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo 得到一定的提高,输出电压Uo为78XX稳压器输出电压与稳压二极管VC1稳压值之和。

VD2是输出保护二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。

下图为输出电压可在一定范围内调节的应用电路。

由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于RP与R1的比值。

7812和7912

7812和7912

W7812为三端固定正12V输入的集成稳压器,7812引脚图如下图所示.7812主要参数有:输出直流电压 U0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R0=0.15Ω,输入电压UI的范围15~17V 。

因为一般UI 要比 U大3~5V ,才能保证集成稳压器工作在线性区。

图1 三端稳压器7812引脚图及外形图图2 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。

其中整流部分采用了由四个二极管组成的桥式整流器成品(也叫整流堆,型号为2W06),当然也可以自已用四个速流二极管(如,IN4001)组成。

滤波电容C1、C2一般选取几百~几千微法。

当稳压器距离整流滤波电路比较远时,在输入端必须接入电容器C3(数值为0.33μF ),以抵消线路的电感效应,防止产生自激振荡。

输出端电容C4(0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。

由7812构成的串联型稳压电源负12V,1A三端稳压器LM7912中文资料(引脚图,电气特性参数,应用电路)LM7912引脚图及外形图:图1 LM7912外形引脚排列图管脚图LM7912内部电路图:图2 79XX内部电路图LM7912电气特性参数:Electrical Characteristics 电气特性(MC7912)三端稳压集成电路极限参数:图3 输出电压图4 负载调节率曲线图图5 电压差曲线图图6 静态电流曲线图图7 短路电流曲线图LM7912应用电路:图8 LM7912典型应用电路图9 与78XX系列三端稳压构成的正负对称输出电压应用电路图12正负12V稳压电源_电路图7812/7912正负12V稳压电源_电路图7812和7912三端稳压器是电子设备中常用的线性稳压集成电路,最大输出电流1.5A (需加散热器)。

下面是用这两种稳压IC制作的正负稳压电源典型电路,供大家参考。

初学者特别应注意7812正电源稳压IC与7912负电源稳压IC的引脚功能是不一样的,有关详细说明见:三端稳压器7912引脚功能,电路接法7812/7912正负12V稳压电源从电路中可以看到,7812/7912的输入输出端都接有电容,而且是一大一小,大容量电容是低频滤波作用,小容量电容是高频滤波用。

5v转±2.5v电路 -回复

5v转±2.5v电路 -回复

5v转±2.5v电路-回复在电子设备中,我们常常需要将5V电压转换为±2.5V的电压。

这种转换通常用于提供对称的电压供应以驱动一些特定的电路或器件。

本文将详细介绍如何设计一个将5V电压转换为±2.5V电压的电路,并解释其工作原理。

第一步:电路需求分析在开始设计之前,我们首先需要了解电路的需求。

在这个案例中,我们要将5V的直流电压转换为±2.5V的交流电压。

我们需要确保转换后的电压能够稳定地提供给特定设备或电路,并且具有合适的功率输出能力。

第二步:设计电路拓扑在设计电路拓扑时,我们可以选择使用运算放大器(Operational Amplifier,OP-AMP)来实现电压转换功能。

运算放大器是一种用于放大和处理信号的电子设备,它可以将输入信号放大到所需的输出电平。

我们可以选择一个带有双电源的运算放大器,以提供对称的电压供应。

这种放大器通常有一个正电源(+V)和一个负电源(-V),它们可以提供所需的±2.5V电压。

第三步:选择电路元件在电路的设计过程中,我们需要选择合适的电路元件来实现所需的功能。

以下是我们需要选择的一些关键元件:1. 运算放大器:我们需要选择一个具有足够增益和功率输出能力的运算放大器。

常见的运算放大器型号有LM741、AD741等。

我们可以查阅相关资料或询问专业人员来选择合适的型号。

2. 电阻:我们需要使用一些电阻来构建电路的反馈网络。

具体所需的电阻值将根据电路的需求进行计算,并根据所选的运算放大器的输入和输出阻抗来确定。

3. 电容:在一些情况下,我们可能需要使用一些电容来实现电路的滤波和稳压功能。

选择适当的电容值可以确保所输出的电压在变化和噪声方面具有稳定性。

第四步:电路连接和测试在电路连接和测试之前,我们需要先进行一些理论上的计算和仿真。

根据所选的电路拓扑和元件数值,我们可以使用电路仿真软件来模拟电路的性能,并对其进行优化。

一旦我们满意所设计的电路和仿真结果,我们可以开始连接实际的电路并进行测试。

直流稳压电源5v

直流稳压电源5v

直流稳压电源直流稳压电源5v直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成其中:①电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变化由变压器的副边电压确定。

②整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。

③常用的整流电路有:方案一:单相半波整流电路:单相半波整流简单,使用器件少,它只对交流电的一半波形整流,只要横轴上面的半波或者只要下面的半波。

但由于只利用了交流电的一半波形,所以整流效率不高,而且整流电压的脉动较大,无滤波电路时,整流电压的直流分量较小,V o=0.45Vi,变压器的利用率低。

方案二:单相全波整流电路:使用的整流器件较半波整流时多一倍,整流电压脉动较小,比半波整流小一半。

无滤波电路时的输出电压Vo=0.9Vi,变压器的利用率比半波整流时高。

变压器二次绕组需中心抽头。

整流器件所承受的反向电压较高.方案三:单相桥式整流电路:使用的整流器件较全波整流时多一倍,整流电压脉动与全波整流相同,每个器件所承受的反向电压为电源电压峰值,变压器利用率较全波整流电路高。

综合3种方案的优缺点:决定选用方案三整流电路整流电路常采用二极管单相全波整流电路,电路如图3.4所示。

在U2的正半周内,二极管D1、D2导通,D3、D4截止;U2的负半周内,D3、D4导通,D1、D2截止。

正负半周内部都有电流流过的负载电阻RL,且方向是一致的。

电路的输出波形如图在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半。

电路中的每只二极管承受的最大反向电压约为反向击穿电压的一半或三分之二(U2是变压器副边电压有效值)。

经过变压器变压后的仍然是交流电,需要转换成直流电才能提供给后级电路,这个转换电路就是整流电路。

在直流稳压电源中利用二极管的单向导电特性,将方向变化的交流电整流为直流电半波整流见图5.21.其中B1是电源变压器,D1是整流二极管,R1是负载。

±12V对称稳压电源设计

±12V对称稳压电源设计

一、设计题目题目:±12V 对称稳压电源 二、设计任务 设计任务和技术指标:设计一个直流稳压线性电源,输入220V ,50Hz 的正弦交流信号,输出±12V 对称稳压直流电。

输出最大电流为1A ,输出纹波电压小于5mV,稳压系数小于错误!未找到引用源。

,输出内阻小于0.1Ω.并加输出保护电路。

三、原理电路和程序设计 电路原理方框图1.直流稳压电源的基本原理下面将就直流稳压电源各部分的作用作简单陈述。

① 电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压Ui 。

变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。

根据电路的需求,我们选择了±15V 10W 的变压器。

② 整流滤波电路:整流电路将交流电压Ui 变换成脉动的直流电压。

再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。

常用的整流滤波电路有全波整流滤波、桥式整流滤波等。

我们选用了桥式整流滤波电路。

③三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。

其中固定式稳压器有7800和7900系列。

7800输出正电压,7900输出负电压,根据本设计要求,我们选用7812和7912。

2.稳压电流的性能指标及测试方法稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出、电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。

①测量稳压电源输出的稳压值及稳压范围首先使调压器的输出为0V,通过示波器或万用表观测稳压电路的输出,然后调节调压器的输出,使输入到变压器的交流电压逐渐增加,当稳压电路输出的直流电压值不再随着调压器输出电压的增加而改变时,此时电路输出的直流电压值即为稳压电源的稳压值。

使稳压器输出在稳压值上的输入电压范围为稳压电路的稳压范围。

课程设计直流稳压电源

课程设计直流稳压电源

物理与电气工程学院课程设计报告直流稳压电源的设计作者专业年级指导教师成绩日期直流稳压电源的设计摘要:本直流稳压电源是依照模拟电子技术的知识设计而成,用来测量直流电压,测量范围为+12V,-12V,+15V,-15V。

直流稳压是一种当电网电压波动或温度负载改变时,能保证输出电压大体不变的电源。

其电源电路包括电源变压器,直流电路,滤波电路,稳压电路四个环节。

设计中要用的元件有:变压器、整流二极管、电解电容、瓷片电容、端子。

关键词:直流电源整流滤波稳压1 引言:说到稳压问题,历史悠长。

目前,线性继承稳压器已进展到几百个品种。

按结构分为串联式和并联式集成稳压器。

依照输出电压类型可分为固定式和可调式集成稳压器。

依照脚管的引线数量可分为三端式和多端式集成稳压器。

按制造工艺可分为:半导体式,薄膜混合式和厚膜混合式集成稳压器。

按输入输出之间的压差由可分为一样的压差和低压差两大类,等等。

目前,通过电子课程设计能专门好的提高大学生的动手实习能力,也能专门好的提高大学生的创新、设计和实践能力,因此才设计了那个直流稳压电源,又称集成直流稳压电源。

2 设计方案论证方案一:采纳LM317、LM337共地可调式三端稳压器电源LM317可调式三端稳压器电源能够持续输出可调的直流电压,只是它只能许诺可调的正电压,稳压器内部含有过流,过酷爱惜电路;由一个电阻(R)和一个可变电位器(RP)组成电压输出调剂电路,输出电压为:V o=1.25(1+RP/R)。

LM337输出为负的可调电压,采纳两个独立的变压器别离和LM317及LM337组装,操作比较简单。

电路图2-1所示图2-1 LM317与LM337组装电路方案二: 采纳LM7815,LM7812、LM7912和LM7915组成稳压电路LM7815固定式三端稳压器可输出+15V电压如图2-2,固定式三端可调稳压器LM7812和LM7912组装电路可对称输出±12v,其电路图如图2-3所示.其电路图如图2-4所示.图2-2 LM7815图2-3 LM7812和LM7912组装方案的最终选择方案一的电路由三端可调式稳压器LM317和LM337组装而成,可输出范围为±1.25 -±12持续可调,通过对Rw的调整可输出+5V, ±12,(3-9)V持续可调.其电路组装比较简单,但输出所需电压时需要调整可变电阻,不能直接输出,因此利历时不方便.方案二由三端可调式稳压器和三端固定式稳压器一起组成,所用器件例如案一多,但电路组装简单,可不能增添麻烦,在方案二中可直接取得+5v和±12的输出电压.利用式比较方便,综上所述,方案二例如案一合理,因此选择方案二2.1 本设计采纳桥式整流单相桥式整流电路与半波整流电路相较,在相同的变压器副边电压下,对二极管的参数要求式一样的,而且还具有输出电压高、变压器利用率高、脉动小等优势,因此在次设计中我选用单相桥式整流电路。

±5V双电源制作原理及电路图

±5V双电源制作原理及电路图

±5V双电源制作原理及电路图7805/7905 三端稳压器件 +5V电源 -5V电源双电源 [原创 2010-05-22 15:23:30] 三端稳压器件:78xx/79系列三端稳压器件是最常用的线性降压型 DC/DC 转换器,78xx/79 系列简单易用、价格低廉,直到今天还在大多电路中采用。

如7805,7806,7809,7812,7815,7824,(79××)以及三瑞可调稳压(LM317,337,338......) 。

78xx/79xx系列在降压电路中应注意以下事项:1、输入输出压差不能太大,太大则转换效率急速降低,而且容易击穿损坏;2、输出电流不能太大,1.5A 是其极限值。

大电流的输出,散热片的尺寸要足够大,否则会导致高温保护或热击穿;3、输入输出压差也不能太小,大小效率很差。

4、7805、7905要加散热片,前面加的电压值最好不能超过其额定值的3V以上。

5、另外注意78xx/79xx系列的引脚顺序是不一样的。

具体如下所示: Vin Gnd Vout (To-220)7815 1 2 37915 2 1 3我们面对7815或7819(有字的一面对我们)左边数第一个是1脚,中间是2脚,最后一个是3脚。

7815 一脚是输入,二脚是地,三脚是输出7915 一脚是地,二脚是输入,三脚是输出7805引脚图7905引脚图78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。

IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。

当输出电较大时,7805应配上散热板。

79XX系列集成压器是常用的固定负输出电压的三端集成稳压器,除输入电压和输出电压均为负值外,其他参数和特点与78XX系列集成稳压器相同。

79XX系列集成稳压的三个引脚为:1脚为接地端,2脚为输入端,3脚为输出端。

79XX系列集成稳压器的应用电路也很简单。

可调稳压电源电路图大全(八款可调稳压电源电路设计原理图详解)

可调稳压电源电路图大全(八款可调稳压电源电路设计原理图详解)

可调稳压电源电路图设计(一)简易可调稳压电源采用三端可调稳压集成电路LM317,使电压可调范围在1.5~25V,最大负载电流1.5A。

其电路如图所示。

电路工作原理:220V交流电经变压器T降压后,得到24V交流电;再经VD1~VD4组成的全桥整流、C1滤波,得到33V左右的直流电压。

该电压经集成电路LM317后获得稳压输出。

调节电位器RP,即可连续调节输出电压。

图中C2用以消除寄生振荡,C3的作用是抑制波纹,C4用以改善稳压电源的暂态响应。

VD5、VD6在当输出端电容漏电或调整端短路时起保护作用。

LED为稳压电源的工作指示灯,电阻R1是限流电阻。

输出端安装微型电压表PV,可以直观地指示输出电压值。

元器件的选择与制作:元器件无特殊要求,按图所示选用即可。

制作要点:①C2应尽量靠近LM317的输出端,以免自激,造成输出电压不稳定;②R2应靠近LM317的输出端和调整端,以避免大电流输出状态下,输出端至R2间的引线电压降造成基准电压变化;③稳压块LM317的调整端切勿悬空,接调整电位器RP时尤其要注意,以免滑动臂接触不良造成LM317调整端悬空;④不要任意加大C4的容量;⑤集成块LM317应加散热片,以确保其长时间稳定工作。

可调稳压电源电路图设计(二)大电流可调稳压电源电路此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。

工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。

调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。

元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。

FU1选用1A,FU2选用3A~5A。

VD1、VD2选用6A02。

7815稳压电源电路图

7815稳压电源电路图

7815稳压电源电路图连续可调的双电源(正负对称电源)。

此电路由一块7815和一块7915三端稳压器对称连接,即可获得一组正负对称的稳压电源,而且输出电压值可各自单独调节,也可同步调节。

电路如图所示,由变压器输出的交流双18V电压经D1~D4整流,C1、C2滤波得到一直流电压,其中变压器双电源的中心抽头作为公共接地端,然后分别把该直流电压正负极接入7815的①脚和7915的③脚。

7815的③脚接到电位器W2的滑动触片“d”上,7915的①脚接到电位器W1的滑动触片“C”上。

当将触片“C”滑到“0”端接地时,调节W2,即可从“a”端得到“+6~+15V”的正向可变电压;若将触片“d”滑到“0”端接地,调节W1,在“b”端就可得到“-6~-15V”的负向可变电压,将W1、W2换成同轴电位器,将获得正负对称的可调电源,输出电压值在±6V~±15V之间连续可调,可达到同步调节的目的。

本电路的7815、7915三端稳压块上应加装散热片,做散热用。

如图所示7815稳压电源电路图7915/LM7915应用电路作者:本站来源: 发布时间:2008-10-14 16:18:24 [收藏] [评论]7915/LM7915应用电路*Required if regulator is separated from filter capacitor bymore than 3". For value given, capacitor must be solidtantalum. 25μF aluminum electrolytic may be substituted.†Required for stability. For value given, capacitor must be solid tantalum. 25μF aluminum electrolytic may be substituted.Values given may be increased without limit.For output capacitance in exces s of 100μF, a high currentdiode from input to output (1N4001, etc.) will protect theregulator from momentary input shorts.7915Typical Applications (Continued)Load Regulation at DIL = 1A 40mV 2mVOutput Ripple, CIN = 3000μF, IL = 1A 100 μVms 100 μVmsTemperature Stability 50mV 50mVOutput Noise 10Hz £ f £ 10kHz 150 μVms 150 μVms*Resistor tolerance of R4 and R5 determine matching of (+) and (−) outputs. **Necessary only if raw supply filter capacitors are more than 3" from regulators.。

5v12v直流稳压电源设计参数计算

5v12v直流稳压电源设计参数计算

5v12v直流稳压电源设计参数计算1变压电路功率电源变压器的作用是将来自电网的220V 交流电压u 1变换为整流电路所需要的交流电压u 2。

电源变压器的效率为:12P P =η 其中:2P 是变压器副边的功率,1P 是变压器原边的功率。

一般小型变压器的效率如表1所示:表1 小型变压器的效率因此,当算出了副边功率2P 后,就可以根据上表算出原边1P 。

电源变压器电压变换公式为:2121N N U U = 其中:N 1为原边线圈扎数,N 2为副边线圈扎数。

由于LM317L 的输入电压与输出电压差的最小值()V U U o I 3min =-,输入电压与输出电压差的最大值()V U U o I 40max =-,故LM317L 的输入电压范围为:max min min max )()(o I o I o I o U U U U U U U -+≤≤-+ 即 V V U V V I 405.2325+≤≤+ V U V I 5.4228≤≤ V U U in 5.251.1281.1Im 2==≥取U 2=26 变压器副边电流I 2>I omax = 1A,取I 2 =1.1A 因此,变压器副边输出功率:W I U P 6.28222=⨯≥ 由于变压器7.0=η所以变压器原边输出功率W P P 1.4021=≥η,为留有余地选用功率为50W 的变压器。

2.电容滤波电路在稳压电源电路设计中一般用四个二极管组成桥式整流电路来完成整流功能,整流电路的作用是将交流电压u 2变换成脉动的直流电压u 3。

滤波电路一般由电容组成,其作用是把脉动直流电压u 3中的大部分纹波加以滤除,以得到较平滑的直流电压U I 。

U I 与交流电压u 2的有效值U 2的关系为:2)2.1~1.1(U U I =在整流电路中:22U U RM = 流过每只二极管的平均电流为:RU I I R D 245.02==其中:R 为整流滤波电路的负载电阻,它为电容C 提供放电通路,放电时间常数RC 应满足:2)5~3(TRC >其中:T = 20ms 是50Hz 交流电压的周期 由于V U U RM 365.25222=⨯=>,Iomax = 1A,IN4001的反向击穿电压V U RM 50≥,额定工作电流max 01I A I D ==,故整流二极管选用IN4001. 根据mV U V U V U p p I 20,5.25,2500=∆==-和公式 可求的V S U U U U vI p op I 8.6103255.2502.030=⨯⨯⨯=∆=∆--所以滤波电容uF F U T I U t I C II c 147000147.08.62150112m ax 0==⨯⨯=∆⋅=∆= 电容的耐压要大于VU U RM 365.25222=⨯=>,故滤波电容C1取容量为2000uF1.3.3整流二极管及滤波电容的选择整流二极管选1N4001,其极限参数为v U RM 50≥,而v U 26.5622=,因为I IoO V U U U U S ∆∆=,而3102,5,40,24--⨯==∆==V p op i O S mv U v U v U所以vS U U U U VO i p op i 2.4=∆=∆-滤波电容为F U IU t I C io i C μ4765max =∆=∆=,电容C 的耐压应大于v U 26.5622=.所以我们选用4700F μ的电容4 元件参数的计算4.1稳压器的参数计算电源变压器将来自电网的220V交流电压U1变换为整流电路所需要的交流电压U2。

正负对称的基准电压转换

正负对称的基准电压转换

正负对称的基准电压转换
正负对称的基准电压转换是一种电路设计技术,它可以将输入电压转
换为相应的正负对称的电压输出。

这种技术在许多电子设备中都得到
了广泛的应用,例如放大器、滤波器、模拟计算器等。

在正负对称的基准电压转换电路中,通常采用两个相反极性的电源来
供电,例如+V和-V。

这样可以使得输出电压在正负两个方向上都有相同的幅值,从而实现正负对称的输出。

同时,为了保证输出电压的稳
定性和精度,还需要使用一些基准电压源和稳压电路来对输入电压进
行精确的调节和控制。

在实际的电路设计中,正负对称的基准电压转换技术可以采用多种不
同的电路结构和实现方式。

例如,可以使用反相放大器、运算放大器、电压跟随器等基本电路单元来构建整个电路。

同时,还可以根据具体
的应用需求来选择不同的电路参数和元件值,以实现最佳的性能和效果。

总的来说,正负对称的基准电压转换技术是一种非常重要的电路设计
技术,它可以为许多电子设备提供稳定、精确的电压输出,从而提高
设备的性能和可靠性。

在今后的电路设计中,我们应该继续探索和应
用这种技术,以满足不断增长的电子设备需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荆楚理工学院电子课程设计成果学院:电子信息工程学院班级学生姓名:学号:设计地点(单位): D1102设计题目:±12V对称稳压电源设计完成日期: 2016年6月23日指导教师评语: _____________________________________________________________________________________________________________ _________________________________________________________________ _______________________________成绩(五级记分制):教师签名:±12V对称稳压电源设计一、设计任务与要求设计一个±12V对称稳压电源,实现其基本功能。

要求输入220V,50Hz的交流电,输出为±12V的对称稳压直流电,完成实际电路制作,测试相关电路参数,进一步掌握其基本原理。

二、方案设计与论证此设计要求设计一个双路输出12V稳压电源,该电源包含以下几个部分:变压器、整流桥、滤波电路、稳压电路、高频噪声静躁电路。

以上各部分的作用如下:变压器:变压器是将220V 50Hz的交流电压变换成整流电路所需要的交流电压。

整流桥:整流桥的作用是将交流电变成直流电,完成这一任务主要是靠整流二极管的单向导通作用。

滤波电路:滤波电路用于滤去整流输出电压中的纹波,一般由电抗原件组成。

稳压电路:将输出电压保持在一个稳定的数值。

高频噪声静躁电路:滤除电路中出现的高频噪声。

方案一:±12V对称稳压电源设计由输入、变压、整流、滤波、稳压、去噪声、输出几部分组成。

输入为220V 50Hz的正弦交流电,我们采用W7812和W7912三端集成稳压器组成的正、负双向直流电可以满足输出电压为±12V的要求。

整流电路采用的是单相桥式整流电路。

滤波电路可以采用四个1N4007二极管来进行滤波。

电源变压器要为后面的稳压电源部分W7812和W7912提供电源,所以选用220V 50Hz双12V的变压器。

由于滤波电容C的容量比较大,本身就存在较大的等效电感,对于引入的各种高频干扰的抑制能力很差。

为了解决这个问题,在电容C两端并联一只小容量的电容就可以有效的抑制高频干扰。

方案二:晶体管串联型±12V对称稳压电源电路主要元件包括:晶体三极管、限流电阻、稳压二极管、以及滤波电容。

令限流电阻与稳压二极管串联,并联在电源与地之间,便可以在稳压二极管上得到稳定的电压。

之后由NPN型三极管射极输出、集极接电源输入,稳压二极管接基极。

由于发射极与基极PN结间电压固定,因此电路的输出电压等于稳压二极管的电压与PN结电压之和。

经过比较,我们选用方案一,因为方案一成本低,制作简单,同时也能稳定输出我们所需的±12V电压。

三、单元电路设计与参数计算1.变压器:电源变压器的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电,变压器副边与原边的功率之比为P2/P1=n,式中n 是变压器效率。

根据电路要求,我们选择了±12V 30W的变压器。

2.整流电路:在稳压电源中一般用四个二极管组成桥式整流电路,整流电路的作用是将交流电压U2变换成脉动的直流电压U3。

滤波电路一般由电容组成,其作用是把脉动直流电压U3中大部分纹波加以滤除,以得到较平滑的直流电压与交流电U2的有效值U2的关系为:U 1=(~)U2在整流电路中,每只二极管所承受的最大反向电压为:U RM =2U2流过每只二极管的平均电流为:I D =IR/2=R其中,R为整流滤波电路的负载电阻,它为电容C提供放电通路,放电时间常数RC应该满足:RC>(3~5)T/2其中,T=200ms是50Hz交流电的周期。

3.滤波电路:经过整流后的电路仍然含有较多的交流部分,所以我们要经过滤波电路的处理。

滤波电路采用的是电容滤波电路,所选用的电容是耐压值为25V、容量为1000uF的电解电容和耐高温、稳定性强的的独石电容。

T滤波电容的选择:RC=(3~5)2一般选择几十至几千微法的电解电容,耐压>24.稳压电路:稳压管稳压电路,三端集成稳压器和电压可调式三端集成稳压器,开关式稳压电路(电源效率可调高)。

本设计采用三端集成稳压器三端集成稳压器:W78××系列——输出正电压W79××系列——输出负电压××表示输出电压值,本设计中采用7812和7912稳压器。

在它的基本应用电路中要注意:①.三端集成稳压器输入、输出电压差为2~3V②.C3、C4、C7、C8用来实现频率补偿,防止稳压器产生高频自激和抑制电路引入的高频干扰。

取电容<=1uF。

③.C5是电解电容,用来减小稳压电源输出端由输入电源引入的低频干扰。

四、总原理图和元件清单1.总原理图2.元件清单元件序号型号主要参数数量备注TR1变压器输入1五、安装与调试按照电路图连接好电路后,用万用表进行测试。

1.静态调试:输入为220V 50Hz,输出应该为±12V。

2.动态调试:通电后,用万用表测试输出电压分别为+和。

六、性能测试分析1.在protues中进行分步仿真,并在实验室实际测量,观测输出波形。

(1).变压部分:变压器接交流电,输出接示波器,观测波形。

仿真时,这个部分没有误差,输入为220V 50Hz,输出为±12V,50Hz(如上图)。

而实际电路中测量波形也相同(如下图)。

(2).整流部分仿真时,这部分没有误差(如上图)。

同理,在实验室测量波形也相同,仅有少许干扰(如下图)。

(3).滤波部分在protues中仿真时可以看出波形中已经很平滑(如上图),而在实验室测量实际电路时波形也很平稳(如下图)。

(4).稳压部分在仿真时,输出电压已经是直流了,很平稳(如上图),实验室测试波形也如此(如下图)。

2.测试性能指标稳压电源的技术指标分为两种:一种是特性指标,包括输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数,输出电阻,纹波电压及温度系数。

本设计中,我们主要测试其稳压系数S、输出电阻R和纹波电压。

(1).测量稳压系数S稳压系数定义为:当负载保持不变时,输出电压相对变化量与输入电压相对变化量之比。

稳压系数反映电网波动时对稳压电路的影响,越小越好。

在protues 中改变输入电压,使输入到变压器的交流电压分别为220V±10%,测量稳压电源的输出电压,根据公式计算稳压电源的稳压系数S。

在这里,我选用330Ω的电阻作为负载。

仿真实验数据如下:(2).测量输出电阻R定义为:当稳压电路输入电压保持不变时,由于负载变化而引输出电阻R起的输出电压变化之比与输出电流变化之比。

输出电阻反映稳压电路受负载变化的影响,越小越好。

在仿真时我分别选用50Ω和100Ω电阻来作为负载。

仿真数据如下实际测量数据如下(3).纹波电压所谓纹波电压,是指在额定负载条件下,输出电压中所含交流分量的有效值或峰值。

经过稳压作用,可以使整流滤波后的纹波电压大大降低,降低的倍数反比于稳压系数S。

测量纹波电压可以先用示波器将整个波形捕获,然后将关心的纹波部分放大来测量。

Protues中仿真数据如下,我们采用100Ω电阻作为负载。

(4).实测数据七、结论与心得经过了两个星期的努力,终于完成了±12V对称稳压电源的设计制作。

刚开始时,选题就花了一整天。

由于是第一次做课程设计,总是担心所选的课题太难,担心自己水平不足,做不出作品。

然而,当我真正选好这个课题,并尝试去制作时,发现它并没有想象中的那么难。

我们在大二时就已经学过了模电,在那本书上的第十章就有关于直流稳压电流源制作的介绍,同时,我们在上模电实验课时,也做过直流稳压电源的实验。

并且,我们这学期也在学习数电。

其实,我刚开始的担心是多余的,有了我们之前学习模电、数电的基础,我完全可以独立完成±12V对称稳压电源的设计与制作,它无非就是在我们之前学的基础上有了一些加深而已。

在制作过程中,我先从仿真开始,这一过程也让我对protues这个软件有了更深一步的了解。

仿真也花了我几天时间,但最后我通过查阅资料,也终于顺利的完成了仿真。

我的仿真图给王老师看过后,王老师也确认没有问题,可以动手制作了。

由于有了之前的仿真设计,我在实际焊接制作时,也没有犯错,所有的连线都是按仿真图里面来接的。

焊接好后,经过测试,它的输出电压也在±12V左右,表明我的设计成功完成了。

两周的课程设计让我明白,只有熟练的掌握理论知识,多进行实践,才能更好的理解所学的知识。

八、参考文献童诗白、华成英.《模拟电子技术》(第四版).高等教育出版社.2006李雪梅、童强、何光普.《模拟电子技术基础实验与综合设计》.西安电子科技大学出版社.2015康华光.《电子技术基础数字部分》(第六版).高等教育出版社.2014杨欣、胡文锦、张延强.《实例解读模拟电子技术》.电子工业出版社.2013。

相关文档
最新文档