时间序列:ARIMA模型

合集下载

题目什么是时间序列分析请简要解释ARIMA模型的基本原理

题目什么是时间序列分析请简要解释ARIMA模型的基本原理

题目什么是时间序列分析请简要解释ARIMA模型的基本原理时间序列分析是一种用于研究时间序列数据的统计方法,它考察数据随时间变化的规律性和趋势。

ARIMA(Autoregressive Integrated Moving Average)模型是时间序列分析中常用的一种模型,用于预测未来的数据趋势。

ARIMA模型的基本原理可以分为三个部分,即自回归(AR)、差分(I)和移动平均(MA)。

首先,自回归(AR)是指通过过去的数据来预测未来的数据。

AR 模型假设未来的数据与过去的数据存在一定的相关性,即当前观测值与前期观测值之间存在着线性关系。

AR模型通过将过去若干期的观测值作为自变量,利用最小二乘法来估计模型的系数。

AR模型的阶数(p)表示使用多少期的观测值作为自变量来预测未来的数据。

其次,差分(I)是为了消除数据的非平稳性。

在时间序列分析中,非平稳性数据的均值和方差会随着时间的推移而变化,不适合进行预测。

通过差分操作,我们可以将非平稳的时间序列转化为平稳序列。

一阶差分是指相邻两个观测值之间的差异,通过反复进行差分操作,直到得到平稳序列。

最后,移动平均(MA)是考虑误差项的影响,通过对残差的移动平均来建立模型。

MA模型假设当前观测值的误差与过去的一些误差有关,通过将过去若干期的误差作为自变量,利用最小二乘法来估计模型的系数。

MA模型的阶数(q)表示使用多少期的误差来预测当前观测值。

综合考虑了自回归、差分和移动平均三个因素,ARIMA模型能够较好地解决时间序列数据的趋势预测问题。

ARIMA模型的阶数(p,d,q)分别表示自回归的阶数、差分的阶数和移动平均的阶数。

通过对历史数据进行拟合,可以得到ARIMA模型的参数估计值,进而用于预测未来的数据。

总之,ARIMA模型是一种通过考察时间序列数据的自回归、差分和移动平均过程来预测未来趋势的统计模型。

通过对历史数据进行拟合,ARIMA模型能够帮助我们更好地理解和预测未来的时间序列数据变化。

arima时间序列预测模型的形式

arima时间序列预测模型的形式

arima时间序列预测模型的形式ARIMA(AutoRegressive Integrated Moving Average)模型是一种常用的时间序列预测模型,它可以根据过去的观测值来预测未来的值。

ARIMA模型的主要思想是将时间序列分解为自回归(AR)成分、差分(I)成分和移动平均(MA)成分的组合。

ARIMA模型的核心是自回归成分(AR),它基于时间序列的自相关性,将当前值与过去的若干值进行线性组合。

自回归成分可以表示为AR(p),其中p表示用于线性组合的过去观测值的个数。

自回归成分的阶数p决定了模型将考虑多少个过去时刻的值。

差分成分(I)是为了处理非平稳时间序列而引入的。

如果时间序列是平稳的,即均值、方差和自协方差在时间上保持不变,那么可以直接应用ARIMA模型进行预测。

但是,很多实际时间序列数据都是非平稳的,因此需要通过差分操作将其转化为平稳序列。

差分成分可以表示为I(d),其中d表示进行差分的次数。

移动平均成分(MA)是为了捕捉时间序列的滞后效应而引入的。

移动平均成分基于时间序列的残差项,将当前值与过去的若干残差值进行线性组合。

移动平均成分可以表示为MA(q),其中q表示用于线性组合的残差值的个数。

移动平均成分的阶数q决定了模型将考虑多少个滞后残差。

ARIMA模型的建立过程通常包括模型识别、参数估计和模型检验三个步骤。

模型识别是确定ARIMA模型的阶数p、d和q的过程。

可以通过观察自相关图(ACF)和偏自相关图(PACF)来初步判断模型的阶数。

参数估计是利用最大似然估计或最小二乘法来估计模型的参数。

模型检验是通过检验残差序列是否为白噪声,来验证模型的拟合程度。

ARIMA模型具有一定的局限性。

首先,ARIMA模型假设时间序列的模式是稳定的,但实际中很多时间序列数据具有非稳定性。

其次,ARIMA模型的预测结果可能受到异常值和趋势的影响。

如果时间序列中存在异常值或趋势,ARIMA模型的预测结果可能不准确。

时间序列分析中的ARIMA模型

时间序列分析中的ARIMA模型

时间序列分析中的ARIMA模型时间序列分析是一种对时间序列数据进行分析和预测的模型,在现代经济学、金融学、气象学、物理学、工业生产等领域中有着广泛的应用。

ARIMA模型是时间序列分析中最为基础和经典的模型之一,其对于时间序列的平稳性、趋势性及季节性进行分解后,通过自相关函数和偏自相关函数的分析,得出模型的阶数和参数,进而进行模拟、预测和检验等步骤。

一、时间序列分析简介时间序列通常是指在某个时间段内,观测某种现象的数值,如个人月收入、经济指标、气温等。

时间序列的基本特点有趋势性、季节性、周期性、自相关和非平稳性等。

时间序列分析的目的就是对序列进行建模,找出序列中的规律性和非规律性,并对序列进行预测。

时间序列建模的基础是对序列的平稳性进行分析,若序列在时间上呈现平稳性,则可以使用分析预测方法来建模;反之,若序列不满足平稳性的要求,则需要进行差分处理,将其转换为平稳时间序列,再进行建模。

二、ARIMA模型的概述ARIMA模型是自回归移动平均模型的简称,该模型由自回归模型(AR)和移动平均模型(MA)组成,是时间序列分析中最为经典的模型之一。

ARIMA模型是一种线性模型,对于简单的时间序列分析具有良好的解释性,同时模型的表现能力也比较强。

ARIMA模型对于时间序列的建模和预测主要涉及三个方面:趋势项(Trend)、季节项(Seasonal)和误差项(Error)。

趋势项指的是时间序列中的长期趋势,在某一个方向上呈现出来的变化;季节项指的是时间序列中呈现出来的周期性变化;误差项指的是时间序列的随机波动。

ARIMA模型通常用一个(p, d, q)的表示方式描述,其中,p是自回归项数,d是差分次数,q是滑动平均项数。

P 和q 分别定义了线性拟合时窗口函数的大小,模型的复杂度取决于 p,d 和 q 的选择。

ARIMA模型主要分为“定常”和“非定常”模型两大类。

在建模中,首先需要检验时间序列的平稳性,若时间序列不符合平稳性的要求,则需要进行差分操作,将其转化为平稳的时间序列。

金融时间序列预测中的ARIMA模型及改进

金融时间序列预测中的ARIMA模型及改进

金融时间序列预测中的ARIMA模型及改进随着金融市场的日益复杂和全球化程度的不断提高,金融时间序列的预测成为了金融领域中非常重要的一个问题。

准确地预测金融时间序列可以帮助投资者制定有效的投资策略,降低风险并提高收益。

ARIMA(自回归综合移动平均)模型作为一种经典的时间序列预测模型,被广泛应用于金融市场的预测和分析中。

本文将重点介绍ARIMA模型及其改进。

1. ARIMA模型ARIMA模型是由自回归模型(AR)和移动平均模型(MA)组成的。

AR模型用于描述当前时刻的观测值与前一时刻观测值之间的线性关系,而MA模型用于描述当前时刻的观测值与随机误差项之间的线性关系。

ARIMA模型的核心理念是将时间序列数据进行平稳化处理,然后利用自回归和移动平均的方法建立模型,最后通过对模型进行参数估计和拟合来进行预测。

2. ARIMA模型的改进尽管ARIMA模型在金融时间序列预测中表现出了较好的效果,但是它仍然存在一些局限性。

首先,ARIMA模型只适用于线性时间序列数据的预测,并不能很好地捕捉到非线性的特征。

其次,ARIMA模型对于长期依赖的时间序列数据的预测效果较差。

为了克服这些问题,研究者们提出了一系列的ARIMA改进模型,如ARIMA-GARCH模型、ARIMA-EGARCH模型等。

3. ARIMA-GARCH模型ARIMA-GARCH模型是ARIMA模型与广义自回归条件异方差模型(GARCH)的结合。

GARCH模型能够对时间序列数据中的异方差进行建模,并可以较好地捕捉到金融市场中的风险特征。

ARIMA-GARCH模型在预测金融时间序列数据时,首先利用ARIMA模型对序列数据进行平稳化处理,然后使用GARCH模型对平稳化后的序列拟合,最后利用模型得到的结果进行预测。

4. ARIMA-EGARCH模型ARIMA-EGARCH模型是ARIMA模型与指数广义自回归条件异方差模型(EGARCH)的结合。

与GARCH模型不同的是,EGARCH模型不仅能够对异方差进行建模,还可以捕捉到金融时间序列中的杠杆效应。

ARIMa--时间序列模型

ARIMa--时间序列模型

ARIMa--时间序列模型⼀、概述 在⽣产和科学研究中,对某⼀个或者⼀组变量 x(t)x(t) 进⾏观察测量,将在⼀系列时刻 t1,t2,⋯,tnt1,t2,⋯,tn 所得到的离散数字组成的序列集合,称之为时间序列。

时间序列分析是根据系统观察得到的时间序列数据,通过曲线拟合和参数估计来建⽴数学模型的理论和⽅法。

时间序列分析常⽤于国民宏观经济控制、市场潜⼒预测、⽓象预测、农作物害⾍灾害预报等各个⽅⾯。

ARIMA模型,全称为⾃回归积分滑动平均模型(Autoregressive Integrated Moving Average Model),是由博克思(Box)和詹⾦斯(Jenkins)于20世纪70年代初提出的⼀种时间序列预测⽅法。

ARIMA模型是指在将⾮平稳时间序列转化为平稳时间序列过程中,将因变量仅对它的滞后值以及随机误差项的现值和滞后值进⾏回归所建⽴的模型。

注意:时间序列模型适⽤于做短期预测,即统计序列过去的变化模式还未发⽣根本性变化。

⼆、原理 ARIMA(p,d,q) 称为差分⾃回归移动平均模型,根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、⾃回归过程(AR)、⾃回归移动平均过程(ARMA)和⾃回归滑动平均混合过程(ARIMA)。

AR是⾃回归,p为⾃回归项;MA为移动平均,q为移动平均项数,d为时间序列变为平稳时间序列时所做的差分次数。

三、时间序列建模步骤 1.数据的准备,准备带观测系统的时间序列数据 2.数据可视化,观测是否为平稳时间序列,若是⾮平稳时间序列,则需要进⾏d阶差分运算,将其化为平稳时间序列 3.得到平稳时间序列后,要对其分别求得⾃相关系数ACF,偏⾃相关系数PACF,通过对⾃相关图和偏⾃相关图的分析,得到最佳的阶层P,阶数q 4.由以上得到d,p,q,得到ARIMA模型,然后对模型进⾏模型检验四、典例解析 1.数据的准备 这⾥我们已经备好了数据,截图如下。

时间序列公式指数平滑法ARIMA模型

时间序列公式指数平滑法ARIMA模型

时间序列公式指数平滑法ARIMA模型时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。

其中,指数平滑法和ARIMA模型是时间序列分析中应用广泛的两种方法。

本文将介绍这两种方法的原理、应用及其比较。

一、指数平滑法指数平滑法是一种简单且有效的时间序列预测方法,适用于数据变动较为平稳的序列。

其基本原理是通过对历史数据进行加权平均,得到未来一段时间的预测值。

1. 简单指数平滑法简单指数平滑法是最基本的指数平滑法。

其公式如下:St = αYt + (1-α)St-1其中,St为预测值,Yt为实际观测值,St-1为前一个周期的预测值,α是平滑系数,取值范围为0到1。

2. 加权指数平滑法加权指数平滑法在简单指数平滑法的基础上,对不同时期的数据进行加权,以减小较早期数据的权重。

其公式如下:St = αYt + (1-α)(α^(t-1))Yt-1 + (1-α)(α^(t-2))Yt-2 + ...其中,α为平滑系数,t为时间周期。

3. 双重指数平滑法双重指数平滑法适用于具有趋势的时间序列数据。

其基本思想是通过指数平滑法预测趋势的影响,进而得到未来的预测值。

二、ARIMA模型ARIMA模型是一种基于时间序列预测的自回归(AR)和滑动平均(MA)模型。

ARIMA模型是一种更为复杂和全面的方法,可以应对更多类型的时间序列数据。

ARIMA模型包括三个参数:AR(p)、I(d)和MA(q),分别表示自回归项、差分项和滑动平均项。

ARIMA模型的一般形式如下:ARIMA(p,d,q):Yt = c + ϕ1Yt-1 + ϕ2Yt-2 + ... + ϕpYt-p + θ1et-1 +θ2et-2 + ... + θqet-q + et其中,Yt为观测值,c为常数,ϕ为自回归系数,θ为滑动平均系数,et为白噪声误差项。

ARIMA模型的建立包括模型识别、估计参数、检验和预测四个步骤。

在实际应用中,还可以通过模型诊断来进一步改进和优化ARIMA模型。

时间序列分析与ARIMA模型

时间序列分析与ARIMA模型

时间序列分析与ARIMA模型时间序列分析是一种研究时间上连续测量所构成的数据的方法。

它可以用来分析数据中的趋势、周期性和随机性,并预测未来的走势。

ARIMA(自回归滑动平均模型)是时间序列分析中常用的模型之一。

本文将介绍时间序列分析的基本概念以及ARIMA模型的原理和应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一组连续观测数据。

在时间序列分析中,我们常常关注序列中的趋势(trend)、季节性(seasonality)和周期性(cycle)等特征。

趋势是指长期上升或下降的走势;季节性是指数据在相同周期内波动的规律性;周期性是指超过一年的时间内出现的规律性波动。

二、ARIMA模型的原理ARIMA模型是由自回归(AR)和滑动平均(MA)模型组成的。

AR模型用过去的观测值来预测未来的值,滑动平均模型则用过去的噪声来预测未来的值。

ARIMA模型是将这两种模型结合起来,对时间序列进行建模和预测。

ARIMA模型包括三个主要部分:自回归阶数(p)、差分阶数(d)和滑动平均阶数(q)。

p表示模型中的自回归项数目,d表示需要进行的差分次数,q表示模型中的滑动平均项数目。

通过对时间序列的观测值进行差分,ARIMA模型可以将非平稳的序列转化为平稳的序列。

然后,可以通过对平稳序列的自回归和滑动平均建模,预测未来的值。

三、ARIMA模型的应用ARIMA模型在实际应用中被广泛使用。

它可以用于经济学、金融学、气象学等领域中的时间序列预测和分析。

以股票市场为例,投资者可以利用ARIMA模型对历史股价进行分析,预测未来股价的走势。

在气象学中,ARIMA模型可以用于预测未来的天气情况。

除了ARIMA模型,时间序列分析还包括其他模型,如季节性分解、移动平均、指数平滑等。

这些模型都有各自的优点和应用领域。

在实际应用中,根据不同的数据特点和研究目的,选择合适的模型进行分析和预测是十分重要的。

总结时间序列分析和ARIMA模型是研究时间数据的重要方法。

arima时间序列预测模型python简单

arima时间序列预测模型python简单

arima时间序列预测模型python简单ARIMA时间序列预测模型(Python简介)时间序列预测是指根据过去的数据来预测未来一段时间内的数值或趋势。

在实际应用中,时间序列预测模型被广泛应用于财务预测、经济预测、股票市场分析等领域。

ARIMA(自回归移动平均)模型是一种经典的时间序列预测模型,它的强大之处在于可以适应多种非线性趋势和季节性模式。

Python是一种功能强大的编程语言,拥有丰富的数据处理和分析库。

其中,statsmodels包提供了ARIMA模型的实现。

本文将介绍ARIMA时间序列预测模型的基本概念,并结合Python代码实例展示其使用方法。

## 1. ARIMA模型介绍ARIMA模型是由AR(自回归)、I(差分)和MA(移动平均)三个部分构成的。

- 自回归(AR):自回归是指通过观察过去一段时间内的值来预测未来的值。

AR模型将未来的值与过去一段时间内的多个过去值进行线性组合。

- 差分(I):差分是指对时间序列进行一阶或多阶差分操作,目的是消除趋势和季节性。

- 移动平均(MA):移动平均是将未来的值与过去一段时间内的误差项进行线性组合。

ARIMA模型的建立需要确定AR、I和MA的参数。

利用时间序列的自相关图ACF(自相关函数)和偏自相关图PACF(偏自相关函数)可以辅助确定这些参数。

## 2. Python实现ARIMA模型在Python中,利用statsmodels库可以方便地实现ARIMA模型。

下面我们将通过一个例子来演示其使用方法。

首先,我们需要导入必要的库:```pythonimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom statsmodels.tsa.arima.model import ARIMA```然后,我们读取时间序列数据并进行预处理。

假设我们的时间序列数据保存在名为"data.csv"的文件中,其中包含两列数据:日期和数值。

时间序列中的ARIMA模型

时间序列中的ARIMA模型

时间序列中的ARIMA模型时间序列指的是一组按时间顺序排列的数据,这些数据通常都带有某种趋势、周期或季节性变化。

时间序列经常用于分析股票市场、商品价格、销售量等等。

因为随时间变化的规律性,使得时间序列分析成为了一种非常有效的预测方法。

而ARIMA模型则是对时间序列进行分析和预测的重要工具之一。

ARIMA模型(Autoregressive Integrated Moving Average Model)又称为差分自回归滑动平均模型,是一种以时间序列自身的滞后值和移动平均值为基础,对时间序列进行拟合和预测的统计模型。

ARIMA模型是其他一些时间序列分析工具的基础,比如自回归移动平均模型(ARMA)和指数平滑模型等等。

通常情况下,一个时间序列中包含以下三个方面的变化情况:1.趋势变化(Trend):即随着时间变化呈现的长期趋势,比如一个公司销售量的增长或下降趋势。

2.季节性变化(Seasonality):即固定周期性的变化,比如圣诞节或节假日前后销售量的高峰期。

3.不规则变化(Residual):即与时间没什么关系的随机波动,比如房价因为某些非时间相关的事件而突然上涨或下跌。

基于这些变化情况, ARIMA模型主要有以下三个参数:1.p:表示时间序列的滞后(Lag)阶数,即AR模型的自回归项数。

p越大,模型就会考虑越多的过去数据,但是过度拟合也会带来过多的噪音。

2.d:表示进行差分(隔期间差异)的次数,即使时间序列具有平稳性(Stationary)的一阶差分系列,d=1;否则,需要再进行差分,直到为平稳性。

3.q:表示滑动平均(MA)模型中移动平均项数,即在随机波动中引入前q个误差项。

实际应用中,ARIMA模型常常需要经过以下步骤:首先,检查时间序列数据是否平稳(Stationary),如果不是平稳状态,就需要对其进行处理,通常需要差分(Differencing)操作。

因为ARIMA模型只有在平稳性条件下才能产生可靠的估计结果。

基于时间序列分析的ARIMA模型分析及预测

基于时间序列分析的ARIMA模型分析及预测

基于时间序列分析的ARIMA模型分析及预测ARIMA(Autoregressive Integrated Moving Average)模型是一种常用于时间序列分析和预测的经典模型。

它结合了自回归(AR)、差分(I)和移动平均(MA)这三种方法,可以较好地处理非平稳时间序列数据。

ARIMA模型的基本思想是根据时间序列数据的自相关(AR)和趋势性(MA)来预测未来的值。

它的建模过程包括确定模型的阶数、参数估计和模型诊断。

首先,ARIMA模型的阶数由p、d和q这三个参数决定。

其中,p代表自回归阶数,d代表差分阶数,q代表移动平均阶数。

p和q决定了时间序列的自相关和移动平均相关的程度,而d决定了时间序列是否平稳。

确定这些参数可以通过观察ACF(自相关函数)和PACF(偏自相关函数)图来进行。

接下来,参数估计是ARIMA模型中关键的一步。

常用的估计方法有最小二乘法(OLS)和最大似然估计法(MLE)。

最小二乘法适用于平稳时间序列,最大似然估计法适用于非平稳时间序列。

完成参数估计后,还需要进行模型诊断。

模型诊断主要是通过残差序列来判断模型是否拟合良好。

通常,残差序列应满足如下条件:残差序列应是白噪声序列,即残差之间应该没有相关性;残差序列的均值应接近于零,方差应保持不变。

最后,通过使用ARIMA模型预测未来的值。

根据模型对未来的预测,我们可以得到未来一段时间内的时间序列预测结果。

ARIMA模型的优点是可以对非平稳时间序列进行建模和预测。

它几乎可以应用于任何时间序列数据,如股票价格、气温、销售量等。

然而,ARIMA模型也有一些限制。

首先,ARIMA模型假设时间序列的结构是稳定的,但实际上很多时间序列数据都是非稳定的。

其次,ARIMA 模型对数据的准确性和完整性有较高的要求,如果数据中存在缺失值或异常值,建模的准确性会受到影响。

总结来说,ARIMA模型是一种经典的时间序列分析和预测方法。

它能够处理非平稳时间序列数据,并且可以通过确定阶数、参数估计和模型诊断来进行预测。

arima模型的作用

arima模型的作用

arima模型的作用ARIMA(自回归移动平均)模型是一种用于时间序列分析和预测的机器学习模型。

它结合了自回归(AR)模型和移动平均(MA)模型的特点,能够处理非平稳时间序列数据。

ARIMA模型通过寻找时间序列的内在规律和趋势,能够进行有效的预测和分析。

ARIMA模型的作用可以简单概括为以下几点:1.时间序列的特征提取:ARIMA模型可以对时间序列数据进行分解,提取出数据的长期趋势、季节性变化和随机波动部分。

这有助于我们更好地理解时间序列数据,并找到可能影响数据变化的因素。

2.时间序列的预测:ARIMA模型可以根据过去的数据,预测未来一段时间内的数据变化趋势。

通过对时间序列的模型建立和参数估计,可以得到未来数据的预测结果,帮助我们做出合理的决策。

3.时间序列的异常检测:ARIMA模型可以帮助我们检测时间序列中的异常点或异常事件,即与预测结果有较大出入的数据点。

通过对异常数据的分析,我们可以找到导致异常的原因,并采取相应的措施进行调整。

4.时间序列的平稳性检验:ARIMA模型在建立之前,需要对时间序列数据进行平稳性检验。

平稳性是指时间序列数据的均值、方差和自协方差不随时间变化而变化。

平稳时间序列数据更容易建立模型和预测,而非平稳时间序列数据则需要进行差分处理或其他方法转化为平稳序列。

5.时间序列的建模和参数选择:ARIMA模型采用了自回归和移动平均的结合形式,通过选择合适的自回归阶数(p)、差分阶数(d)和移动平均阶数(q),可以建立起准确性较高的模型。

这需要结合时间序列数据的特点和问题的实际需求来进行参数选择。

6.时间序列的评估和优化:ARIMA模型可以通过评估模型的预测精度来选择和优化模型。

常用的评估指标包括平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)。

通过对模型的评估和优化,可以提高模型的预测能力和鲁棒性。

ARIMA模型在实际应用中具有广泛的用途。

以下是一些常见的应用场景:1.经济预测:ARIMA模型可以对经济指标(如GDP、通货膨胀率)进行预测,帮助政府和企业做出合理的经济决策。

ARIMA模型

ARIMA模型

ARIMA模型⼀、ARIMA模型介绍ARIMA模型全称为⾃回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹⾦斯(Jenkins)于70年代初提出⼀著名时间序列预测⽅法[1],所以⼜称为box-jenkins模型、博克思-詹⾦斯法。

其中ARIMA(p,d,q)称为差分⾃回归移动平均模型,AR是⾃回归, p为⾃回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。

所谓ARIMA模型,是指将⾮平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进⾏回归所建⽴的模型。

ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、⾃回归过程(AR)、⾃回归移动平均过程(ARMA)以及ARIMA过程。

ARIMA模型的基本思想是:将预测对象随时间推移⽽形成的数据序列视为⼀个随机序列,⽤⼀定的数学模型来近似描述这个序列。

这个模型⼀旦被识别后就可以从时间序列的过去值及现在值来预测未来值。

⼆、ARIMA模型建模过程1. 检查平稳性平稳性就是围绕着⼀个常数上下波动且波动范围有限,即有常数均值和常数⽅差。

如果有明显的趋势或周期性,那它通常不是平稳序列。

不平稳序列可以通过差分转换为平稳序列。

d阶差分就是相距d期的两个序列值之间相减。

如果⼀个时间序列经过差分运算后具有平稳性,则该序列为差分平稳序列,可以使⽤ARIMA模型进⾏分析。

2、确定模型阶数AIC准则:即最⼩信息准则,同时给出ARMA模型阶数和参数的最佳估计,适⽤于样本数据较少的问题。

⽬的是判断⽬标的发展过程与哪⼀个随机过程最为接近。

因为只有样本量⾜够⼤时,样本的⾃相关函数才⾮常接近原时间序列的⾃相关函数。

具体运⽤时,在规定范围内使模型阶数由低到⾼,分别计算AIC值,最后确定使其值最⼩的阶数,就是模型的合适阶数。

时间序列:ARIMA模型

时间序列:ARIMA模型

时间序列:ARIMA模型时间序列是指在某一时间段内按照时间顺序排列的数据序列,其中每个数据点都与前面的数据点有一定的关系。

时间序列的分析与预测在许多领域有广泛的应用,如经济学、金融学、天气预报、医学研究等。

ARIMA模型是一种常用的时间序列分析和预测方法,本文将对其进行详细介绍。

ARIMA模型是指自回归移动平均模型(Autoregressive Integrated Moving Average Model),它是建立在时间序列基础上的一种统计模型,可以用来描述时间序列的长期趋势和短期波动。

ARIMA模型的核心思想是将时间序列分解为趋势、周期和随机变量三个部分,并分别建立模型进行预测。

ARIMA模型分为三个部分,分别是“AR”、“I”和“MA”,其中:“AR”是指自回归模型(Autoregression),即通过利用过去一段时间的样本值,预测未来的数值。

自回归模型的基本思想是每个时间点的值都是前一段时间点的值的线性组合。

“MA”是指移动平均模型(Moving Average),即通过利用前一段时间的误差项来预测未来的数值。

移动平均模型的基本思想是在预测模型中引入一些误差项。

“I”是指整合模型(Integration),即通过对时间序列做差分或差分运算,将非平稳序列转化为平稳序列,并建立模型进行预测。

整合模型的基本思想是通过差分或差分运算,将序列中的趋势、周期和随机变量分离出来,从而得到平稳的序列。

ARIMA模型的建立需要确定三个参数:p、d、q,分别代表自回归模型阶数、差分阶数和移动平均模型阶数。

自回归模型阶数p对应于自回归法中使用的lag数量。

例如,当p=1时,预测变量就是前一个时期的值;当p=2时,预测变量就是前两个时期的值。

差分阶数d指的是对序列进行差分操作的次数。

移动平均模型阶数q对应于移动平均法中使用的lag数量。

ARIMA模型的优点在于它可以适应多种不同种类的时间序列数据,包括非平稳序列,而且模型的参数也较为容易解释。

时间序列ARIMA模型

时间序列ARIMA模型
农作物年产量序列等。
● 为什么了解随机过程? 要认识时间序列变化的普遍规律,而不是一个具体结果。(商高定理,毕达哥
拉斯(Pythagoras)定理)
(2)随机过程可分为严平稳,宽平稳和非平稳三类。
严平稳过程:一个随机过程中若随机变量的任意子集的联合分布函数与时间无关, 即无论对 T 的任何时间子集(t, t +1, …, t+n)以及任何实数 k, (t+n+k) T, i = 0, 1, 2, …, n 都有
1.1 随机过程,时间序列定义
随机过程:随时间由随机变量组成的一个有序序列称为随机过程。用 {x, tT } 表 示。简记为 {xt} 或 xt。随机过程也常简称为过程。
时间序列:随机过程的一次观测结果称为时间序列。也用 {xt , tT } 表示,并简记 为 {xt}或 xt。时间序列中的元素称为观测值。
另一类是具有不确定形式的变化过程,即不能用一个(或几个)时间 t 的确定性函数 描述一个事物的变化过程。换句话说,对事物变化全过程进行一次观测得到的结果是 一个时间 t 的函数,但对同一事物变化过程独立、重复地进行多次观测而得到的结果 是不相同的。
● 刻卜勒(J Kepler)第 2 定律:太阳中心与行星中心间的连线在轨道上所扫过的 面积与时间成正比例。
file: li-12-1b file: 7arma07 file: 7b2c3 file: 7HongKong file: li-12-2 file: 7dummy01 file: 7program1 file: 7gener1
● ARIMA、SARIMA 模型从两个方向讲授
已知真实 ARIMA、SARIMA 过程
● 2014 年秋分时刻:9 月 23 日 10:29:04, 2015 年秋分时刻:9 月 23 日 16:20:31, 2020 年秋分时刻:9 月 22 日 21:30:32,

时间序列分析中的ARIMA算法介绍及应用案例分析

时间序列分析中的ARIMA算法介绍及应用案例分析

时间序列分析中的ARIMA算法介绍及应用案例分析时间序列分析是一种从历史数据中提取信息并预测未来趋势的方法,它在金融、经济、气象等领域有广泛的应用。

而ARIMA模型则是时间序列分析中最常用的一种模型。

本文将介绍ARIMA模型的原理及应用案例。

一、ARIMA模型的原理ARIMA模型全称为AutoRegressive Integrated Moving Average Model,即自回归积分滑动平均模型。

它是一种将自回归模型和滑动平均模型结合在一起的时间序列模型,用于对非平稳时间序列进行建模和预测。

ARIMA模型可以表示为ARIMA(p, d, q),其中p表示自回归项数,d表示差分次数,q表示滑动平均项数。

如果时间序列是平稳的,可以使用ARMA模型,而非平稳时间序列则需要使用ARIMA模型。

ARIMA模型的建立一般有三个步骤:确定阶数,估计系数,检验模型。

首先,我们需要通过观察时间序列的自相关图和偏自相关图来确定p和q的值。

自相关图可以反映时间序列的自相关性,即同一时间点前后的样本值之间的相关性。

而偏自相关图是指当与其他滞后时期的影响被移除后,两个时期之间的相关性。

如图1所示:图1 自相关图和偏自相关图在确定p和q的值之后,我们需要进行差分运算,将非平稳序列转换为平稳序列,以确保ARIMA模型的有效性。

当d=1 时,表示进行一次一阶差分运算,将原来时间序列的差分序列变为平稳序列。

当然也有可能需要进行多阶差分。

最后,我们需要通过最大似然估计法或最小二乘法来估计ARIMA模型的系数,进而用模型进行预测。

二、ARIMA模型的应用案例为了更好地理解ARIMA模型的应用,我们可以通过一个实际案例来进行分析。

案例:某导购商城每天的销售额某月份的数据如下:日期销售额(万元)2020-06-01 1022020-06-02 892020-06-03 772020-06-04 622020-06-05 812020-06-06 932020-06-07 1042020-06-08 982020-06-09 762020-06-10 702020-06-11 672020-06-12 932020-06-13 93 2020-06-14 111 2020-06-15 93 2020-06-16 77 2020-06-17 72 2020-06-18 56 2020-06-19 81 2020-06-20 99 2020-06-21 110 2020-06-22 104 2020-06-23 81 2020-06-24 75 2020-06-25 59 2020-06-26 84 2020-06-27 95 2020-06-28 112 2020-06-29 92 2020-06-30 77通过观察时间序列的图像,我们可以看出该序列的趋势、季节性和噪声。

利用ARIMA模型进行市场时间序列预测

利用ARIMA模型进行市场时间序列预测

利用ARIMA模型进行市场时间序列预测ARIMA(Autoregressive Integrated Moving Average)模型是一种常用于时间序列预测的经典模型。

它结合了自回归(AR)模型和滑动平均移动平均(MA)模型,其中还包括差分整合(I)的步骤。

ARIMA模型在金融市场、经济学领域以及其他许多领域中被广泛应用。

本文将介绍ARIMA模型的原理与应用,并探讨如何使用ARIMA模型进行市场时间序列的预测。

首先,我们来了解ARIMA模型的三个重要组成部分:自回归(AR)模型、滑动平均移动平均(MA)模型和差分整合(I)步骤。

AR模型是指将当前值与过去一段时间的值进行线性回归。

AR模型假设当前值与过去的值之间存在相关性,可以通过计算自相关系数(ACF)和偏自相关系数(PACF)来确定AR模型的阶数。

ACF描述了当前值与过去值之间的相关性,而PACF描述了当前值与过去值之间消除了其他中间变量的相关性。

MA模型是指当前值与过去的误差项之间的关系。

MA模型假设误差项具有滑动平均的性质,可以通过计算残差的自相关系数(ACF)和偏自相关系数(PACF)来确定MA模型的阶数。

通常,MA模型的PACF截尾到零,这意味着误差项与过去的值之间没有长期相关性。

差分整合(I)步骤是为了对非平稳时间序列进行处理,使其变得平稳。

若时间序列不平稳,ARIMA模型的预测结果可能不准确。

差分整合可以通过对时间序列进行取差分或一阶差分的方式来实现。

取差分即减去前一个值得到差分序列,一阶差分即减去当前值和前一个值的差分序列。

通过差分整合后,时间序列中的趋势和季节性因素被消除,使其平稳化。

接下来,我们将介绍如何使用ARIMA模型进行市场时间序列的预测。

首先,我们需要收集市场相关的时间序列数据。

这可以是某个特定商品或股票的价格、交易量等。

我们可以使用Python或R等编程语言中的相应库来进行数据获取和处理。

接着,我们可以使用自相关图(ACF)和偏自相关图(PACF)来确定ARIMA模型的参数。

arima的概念

arima的概念

arima的概念
Arima模型是一种时间序列模型,ARIMA全称是“自回归移动平均模型”(Autoregressive Integrated Moving Average Model)。

ARIMA模型是以确定的时间步长为基础,对时间序列的趋势、周期性和随机性进行建模和预测的一种多层线性回归模型。

ARIMA模型可以用来预测时间序列数据特性,包括趋势、周期和异常点。

它的核心思想是将时间序列的趋势和季节性分解出来,然后对残
差建立自回归和移动平均的线性回归模型。

ARIMA模型可以很好地预测未来的趋势,对时间序列的拟合也很出色。

ARIMA模型的应用范围广泛,是经济学、金融学、地理学等学科的重要研究工具。

例如,ARIMA模型在宏观经济学中被广泛用于预测物价、股市走势等。

在天气预报中,ARIMA模型被用来预测降雨量、气温等气象参数。

ARIMA模型也被用来预测诸如肺癌、心脏病等疾病的传播趋势。

ARIMA模型的建立有以下三个重要步骤:
1. 分析时间序列数据,确定时间序列数据的趋势、季节性和随机性。

2. 根据时间序列数据的特性,建立AR、MA或ARMA模型。

3. 根据建立的模型,进行参数估计和模型拟合,并进行预测和检验。

ARIMA模型有几个重要的参数,包括AR(p)、I(d)和MA(q),其中p、d、q分别代表AR、差分和MA阶数。

对于一个ARIMA(p,d,q)模型,p、d、q应当被选择得足够大,以便确保模型可以很好地拟合时间序
列数据,但是也不应该过大,以避免过拟合。

总之,ARIMA模型是一种重要的时间序列模型,可以应用于各种领域,可以帮助研究人员进行时间序列的预测和分析。

时间序列预测之--ARIMA模型

时间序列预测之--ARIMA模型

时间序列预测之--ARIMA模型什么是 ARIMA模型ARIMA模型的全称叫做⾃回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model)。

也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的⼀种⽤来进⾏时间序列预测的模型。

1. ARIMA的优缺点优点:模型⼗分简单,只需要内⽣变量⽽不需要借助其他外⽣变量。

缺点:1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的。

2.本质上只能捕捉线性关系,⽽不能捕捉⾮线性关系。

注意,采⽤ARIMA模型预测时序数据,必须是稳定的,如果不稳定的数据,是⽆法捕捉到规律的。

⽐如股票数据⽤ARIMA⽆法预测的原因就是股票数据是⾮稳定的,常常受政策和新闻的影响⽽波动。

2. 判断是时序数据是稳定的⽅法。

严谨的定义:⼀个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独⽴于时间的(是关于时间的常量)。

判断的⽅法:1. 稳定的数据是没有趋势(trend),没有周期性(seasonality)的; 即它的均值,在时间轴上拥有常量的振幅,并且它的⽅差,在时间轴上是趋于同⼀个稳定的值的。

2. 可以使⽤Dickey-Fuller Test进⾏假设检验。

(另起⽂章介绍)3. ARIMA的参数与数学形式ARIMA模型有三个参数:p,d,q。

p--代表预测模型中采⽤的时序数据本⾝的滞后数(lags) ,也叫做AR/Auto-Regressive项d--代表时序数据需要进⾏⼏阶差分化,才是稳定的,也叫Integrated项。

q--代表预测模型中采⽤的预测误差的滞后数(lags),也叫做MA/Moving Average项先解释⼀下差分:假设y表⽰t时刻的Y的差分。

if d=0,y t=Y t if d=1,y t=Y t−Y t−1if d=2,y t=(Y t−Y t−1)−(Y t−1−Y t−2)=Y t−2Y t−1+Y t−2ARIMA的预测模型可以表⽰为:Y的预测值 = 常量c and/or ⼀个或多个最近时间的Y的加权和 and/or ⼀个或多个最近时间的预测误差。

报告中的时间序列模型与ARIMA分析

报告中的时间序列模型与ARIMA分析

报告中的时间序列模型与ARIMA分析时间序列模型是一种用于分析和预测时间序列数据的统计模型。

ARIMA(自回归移动平均)是常用的时间序列模型之一,可以用于描述和预测时间序列数据中的趋势、季节性和随机性成分。

在本文中,我们将对报告中的时间序列模型与ARIMA分析进行详细讨论,包括其基本原理、建模方法和应用案例。

一、时间序列模型的基本原理时间序列模型是基于时间序列数据的统计模型,其基本原理是假设数据中存在一定的内在结构和规律,可以通过建立数学模型来揭示和利用这些结构和规律。

时间序列模型通常用于分析和预测具有时间先后顺序的数据,如股票价格、气温变化等。

它可以帮助我们理解数据的变化趋势、周期性和随机性,并提供预测未来数值的方法。

二、ARIMA模型的基本原理ARIMA模型是一种广泛应用的时间序列模型,其基本原理是通过自回归(AR)、差分(I)和移动平均(MA)的组合来描述和预测时间序列数据。

ARIMA模型假设时间序列数据既受到其自身过去值的影响,又受到随机误差的影响,通过建立自回归项、差分项和移动平均项的组合来捕捉这些影响。

三、ARIMA建模方法ARIMA建模包括模型识别、参数估计和模型检验三个步骤。

模型识别主要是通过观察时间序列图和自相关函数(ACF)和偏自相关函数(PACF)图来确定模型的阶数。

参数估计采用最大似然估计方法来估计模型的参数。

模型检验主要包括残差的白噪声检验和模型拟合程度的评估。

四、ARIMA模型的应用案例ARIMA模型在各个领域都有广泛应用。

例如,在经济学中,ARIMA模型可以用于预测经济指标的变化,如 GDP、通货膨胀率等。

在环境学中,ARIMA模型可以用于预测大气污染物浓度的变化。

在医学中,ARIMA模型可以用于预测传染病的发展趋势。

在金融领域,ARIMA模型可以用于预测股票价格变动。

这些应用案例充分展示了ARIMA模型在时间序列分析和预测中的重要作用。

五、ARIMA模型的改进和扩展ARIMA模型在实际应用中存在一些局限性,如对数据的平稳性要求较高、无法很好地处理长期依赖等。

arima模型

arima模型

ARIMA模型(英语:自回归综合移动平均模型),差分综合移动平均自回归模型,也称为综合移动平均自回归模型(移动也可以称为滑动),是时间序列预测分析方法之一。

在ARIMA(p,d,q)中,AR是“自回归”,p是自回归项的数量;MA是“移动平均数”,q是移动平均项的数量,d是使其成为固定序列的差(顺序)的数量。

尽管ARIMA 的英文名称中没有出现“difference”一词,但这是关键的一步。

非平稳时间序列在消除其局部水平或趋势后显示出一定的同质性,也就是说,该序列的某些部分与其他部分非常相似。

经过微分处理后,可以将该非平稳时间序列转换为平稳时间序列,称为均质非平稳时间序列,其中差值的数量为齐次。

因此,可以得出结论如果存在一个D阶非平稳时间序列,那么如果存在一个平稳时间序列,则可以称为ARMA(p,q)模型,其中,它们是自回归系数多项式和移动平均系数多项式。

零均值白噪声序列。

该模型可以称为自回归求和移动平均模型,表示为ARIMA(p,d,q)。

当差分阶数D为0时,ARIMA模型等效于ARMA模型,即两个模型之间的差分为差分阶数D是否等于零,即序列是否平稳。

ARIMA模型对应于非平稳时间序列,而ARMA模型对应于平稳时间序列。

时间序列的预处理包括两个测试:平稳性测试和白噪声测试。

ARMA 模型可以分析和预测的时间序列必须满足平稳非白噪声序列的条件。

检查数据的平稳性是时间序列分析中的重要步骤,通常通过时间序列和相关图进行检查。

时序图的特点是直观,简单,但误差较大。

自相关图,即自相关和部分自相关函数图,相对复杂,但结果更准确。

本文使用时序图直观地判断,然后使用相关图进行进一步测试。

如果非平稳时间序列有增加或减少的趋势,则需要进行差分处理,然后进行平稳性测试,直到稳定为止。

其中,差异的数量为ARIMA(p,d,q)的顺序。

从理论上讲,差异的数量越多,时间序列信息的非平稳确定性信息的提取就越充分。

从理论上讲,差异数量越多越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验:建立ARIMA模型(综合性实验)实验题目:某城市连续14年的月度婴儿出生率数据如下表所示:26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.90123.175 23.227 21.672 21.870 21.439 21.089 23.709 21.66921.752 20.761 23.479 23.824 23.105 23.110 21.759 22.07321.937 20.035 23.590 21.672 22.222 22.123 23.950 23.50422.238 23.142 21.059 21.573 21.548 20.000 22.424 20.61521.761 22.874 24.104 23.748 23.262 22.907 21.519 22.02522.604 20.894 24.677 23.673 25.320 23.583 24.671 24.45424.122 24.252 22.084 22.991 23.287 23.049 25.076 24.03724.430 24.667 26.451 25.618 25.014 25.110 22.964 23.98123.798 22.270 24.775 22.646 23.988 24.737 26.276 25.81625.210 25.199 23.162 24.707 24.364 22.644 25.565 24.06225.431 24.635 27.009 26.606 26.268 26.462 25.246 25.18024.657 23.304 26.982 26.199 27.210 26.122 26.706 26.87826.152 26.379 24.712 25.688 24.990 24.239 26.721 23.47524.767 26.219 28.361 28.599 27.914 27.784 25.693 26.88126.217 24.218 27.914 26.975 28.527 27.139 28.982 28.16928.056 29.136 26.291 26.987 26.589 24.848 27.543 26.89628.878 27.390 28.065 28.141 29.048 28.484 26.634 27.73527.132 24.924 28.963 26.589 27.931 28.009 29.229 28.75928.405 27.945 25.912 26.619 26.076 25.286 27.660 25.95126.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897(1)选择适当模型拟和该序列的发展(2)使用拟合模型预测下一年度该城市月度婴儿出生率实验内容:给出实际问题的非平稳时间序列,要求学生利用R统计软件,对该序列进行分析,通过平稳性检验、差分运算、白噪声检验、拟合ARMA模型,建立ARIMA模型,在此基础上进行预测。

实验要求:处理数据,掌握非平稳时间序列的ARIMA建模方法,并根据具体的实验题目要求完成实验报告,并及时上传到给定的FTP和课程网站。

实验步骤:第一步:编程建立R数据集;第二步:调用plot.ts程序对数据绘制时序图。

第三步:从时序图中利用平稳时间序列的定义判断是否平稳?第四步:若不满足平稳性,则可利用差分运算是否能使序列平稳?重复第三步步骤第五步:根据Box.test纯随机检验结果,利用LB统计量和白噪声特性检验最后处理的时间序列是否为纯随机序列?第六步:在序列判断为平稳非白噪声序列后,求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值,选择阶数适当的ARIMA(p,d,q)模型进行拟合,并估计模型中未知参数的值。

第七步:检验模型的有效性。

如果拟合模型通不过检验,转向步骤6,重新选择模型再拟合。

第八步:模型优化。

如果拟合模型通过检验,仍然转向步骤6,充分考虑各种可能建立多个拟合模型,从所有通过检验的拟合模型中选择最优模型。

第九步:利用最优拟合模型,预测下一年度该城市月度婴儿出生率。

ex5.2=ts(scan("ex5.2.txt"), frequency=4)Read 168 itemsplot.ts(ex5.2)从图中看出序列一开始有下降趋势,后面有明显上升趋势,所以序列不平稳。

d12ex5.2 = diff(ex5.2,lag=12)acf(d12ex5.2,48)plot(d12ex5.2)从上面的自相关图中可以看出改做滞后12期差分后为平稳。

Box.test(d12ex5.2, lag=17, type="Ljung-Box")Box-Ljung testdata: d12ex5.2X-squared = 147.9254, df = 17, p-value < 2.2e-16P值小于0.05,可以认为是非白噪声序列。

par(mfrow=c(2,1)); acf(d12ex5.2, 48); pacf(d12ex5.2, 48)ARIMA(0,0,3)、ARIMA(0,0,4)、ARIMA(1,0,3)、ARIMA(1,0,4)四个模型分别进行拟合检验(rec.ols = arima(d12ex5.2,order=c(0,0,3)))Call:arima(x = d12ex5.2, order = c(0, 0, 3))Coefficients:ma1 ma2 ma3 intercept0.7949 0.4480 0.1156 0.2150s.e. 0.0839 0.0832 0.0885 0.1744sigma^2 estimated as 0.8621: log likelihood = -210.12, aic = 430.25rec.pr = predict(rec.ols, n.ahead=5)U = rec.pr$pred + 1.96*rec.pr$seL = rec.pr$pred - 1.96*rec.pr$seminx = min(d12ex5.2,L)maxx = max(d12ex5.2,U)ts.plot(d12ex5.2, rec.pr$pred, ylim=c(minx,maxx))lines(rec.pr$pred, col="red", type="o") lines(U, col="blue", lty="dashed") lines(L, col="blue", lty="dashed")qqnorm(rec.ols$resid)qqline(rec.ols$resid)shapiro.test(rec.ols$resid)Shapiro-Wilk normality testdata: rec.ols$residW = 0.9777, p-value = 0.0125用shapiro检验,发现p值为0.0125,在5%的显著性水平下显著,所以为ARIMA(0,0,3)模型不合理。

(rec.ols = arima(d12ex5.2,order=c(0,0,4)))Call:arima(x = d12ex5.2, order = c(0, 0, 4))Coefficients:ma1 ma2 ma3 ma4 intercept0.8306 0.4943 0.2254 0.2070 0.2041s.e. 0.0902 0.1158 0.0925 0.0889 0.1994sigma^2 estimated as 0.828: log likelihood = -207.07, aic = 426.15rec.pr = predict(rec.ols, n.ahead=5)U = rec.pr$pred + 1.96*rec.pr$seL = rec.pr$pred - 1.96*rec.pr$seminx = min(d12ex5.2,L)maxx = max(d12ex5.2,U)ts.plot(d12ex5.2, rec.pr$pred, ylim=c(minx,maxx))lines(rec.pr$pred, col="red", type="o")lines(U, col="blue", lty="dashed")lines(L, col="blue", lty="dashed")qqnorm(rec.ols$resid)qqline(rec.ols$resid)shapiro.test(rec.ols$resid)Shapiro-Wilk normality testdata: rec.ols$residW = 0.9689, p-value = 0.001363用shapiro检验,发现p值为0.001363,在5%的显著性水平下显著,所以为ARIMA(0,0,4)模型不合理。

(rec.ols = arima(d12ex5.2,order=c(1,0,3)))Call:arima(x = d12ex5.2, order = c(1, 0, 3))Coefficients:ar1 ma1 ma2 ma3 intercept0.9288 -0.1369 -0.2156 -0.1586 0.0240s.e. 0.0669 0.1065 0.0921 0.0879 0.4984sigma^2 estimated as 0.7986: log likelihood = -204.35, aic = 420.7rec.pr = predict(rec.ols, n.ahead=5)U = rec.pr$pred + 1.96*rec.pr$seL = rec.pr$pred - 1.96*rec.pr$seminx = min(d12ex5.2,L)maxx = max(d12ex5.2,U)ts.plot(d12ex5.2, rec.pr$pred, ylim=c(minx,maxx)) lines(rec.pr$pred, col="red", type="o")lines(U, col="blue", lty="dashed")lines(L, col="blue", lty="dashed")qqnorm(rec.ols$resid)qqline(rec.ols$resid)shapiro.test(rec.ols$resid)Shapiro-Wilk normality testdata: rec.ols$residW = 0.9783, p-value = 0.01454(rec.ols = arima(d12ex5.2,order=c(1,0,4)))Call:arima(x = d12ex5.2, order = c(1, 0, 4))Coefficients:ar1 ma1 ma2 ma3 ma4 intercept0.9084 -0.1288 -0.2457 -0.1511 0.1309 0.0493 s.e. 0.0725 0.1078 0.1021 0.0778 0.0960 0.4684sigma^2 estimated as 0.7891: log likelihood = -203.47, aic = 420.94rec.pr = predict(rec.ols, n.ahead=5)U = rec.pr$pred + 1.96*rec.pr$seL = rec.pr$pred - 1.96*rec.pr$seminx = min(d12ex5.2,L)maxx = max(d12ex5.2,U)ts.plot(d12ex5.2, rec.pr$pred, ylim=c(minx,maxx))lines(rec.pr$pred, col="red", type="o")lines(U, col="blue", lty="dashed")lines(L, col="blue", lty="dashed")qqnorm(rec.ols$resid)qqline(rec.ols$resid)shapiro.test(rec.ols$resid)Shapiro-Wilk normality testdata: rec.ols$residW = 0.978, p-value = 0.01341。

相关文档
最新文档