人教版初中数学代数部分知识点总结

合集下载

初中数学代数知识点总结

初中数学代数知识点总结

初中数学代数知识点总结初中数学代数部分是数学学习的重要基础,涵盖了众多的概念、法则和运算。

下面我们来系统地梳理一下这部分的主要知识点。

一、有理数有理数包括整数和分数。

整数又分为正整数、零和负整数;分数包括正分数和负分数。

有理数的基本运算有加、减、乘、除、乘方。

加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

减法法则:减去一个数,等于加上这个数的相反数。

乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

除法法则:除以一个数等于乘以这个数的倒数。

二、整式整式包括单项式和多项式。

单项式是由数字和字母的积组成的代数式,单独的一个数或一个字母也是单项式。

多项式是几个单项式的和。

整式的加减运算实质是合并同类项,即把同类项的系数相加,字母和字母的指数不变。

幂的运算包括同底数幂的乘法、除法、幂的乘方和积的乘方。

同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

三、一元一次方程含有一个未知数,并且未知数的次数是 1 的整式方程叫做一元一次方程。

解一元一次方程的一般步骤为:去分母、去括号、移项、合并同类项、系数化为 1。

四、二元一次方程组由两个二元一次方程组成的方程组叫做二元一次方程组。

解二元一次方程组的基本思想是消元,方法有代入消元法和加减消元法。

五、不等式与不等式组用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子叫做不等式。

解一元一次不等式的步骤与解一元一次方程类似,但要注意在不等式两边乘或除以同一个负数时,不等号的方向要改变。

由几个一元一次不等式组成的不等式组,解集是各个不等式解集的公共部分。

六、整式的乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。

七、因式分解把一个多项式化成几个整式的积的形式,叫做因式分解。

初中代数知识点总结(全面)

初中代数知识点总结(全面)

初中代数知识点总结(全面)
代数是数学中的一个重要分支,也是初中数学的基础内容。


文将全面总结初中代数知识点,供同学们复和研究参考。

一、代数表达式
代数表达式由字母、数字和运算符号组成,可以进行加减乘除
和幂运算,常见的代数表达式有多项式和分式。

二、代数方程
代数方程是等式,其中包含未知数。

常见的代数方程有一元一
次方程、一元二次方程等,可以通过解方程的方式求解未知数的值。

三、代数函数
代数函数是一种以代数表达式为依据的关系。

常见的函数有一
次函数、二次函数、分段函数等,可以通过函数图像和函数方程来
描述和理解函数的性质。

四、代数运算性质
代数运算包括加法、减法、乘法和除法,常见的运算性质有交换律、结合律、分配律等,这些性质在计算中起到重要的作用。

五、代数方程应用
代数方程在实际问题中有广泛的应用,可以用代数方程来描述和解决各种问题,如物品购买、距离速度等。

六、代数符号应用
代数符号包括字母和数学符号,可以用来表示未知数、系数、常数等,通过代数符号可以简化和推导数学问题。

七、代数推理和证明
代数推理和证明是数学中重要的思维方式,通过运用代数知识和运算性质,可以进行推理和证明数学命题的正确性。

以上是初中代数知识点的全面总结,希望对同学们的研究有所帮助。

(统计字数:196字)。

人教版初中数学知识点总结.doc

人教版初中数学知识点总结.doc

人教版初中数学知识点总结.doc一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。

- 有理数的运算:加法、减法、乘法、除法、乘方、开方。

- 有理数的性质:绝对值、相反数、倒数。

2. 整数- 整数的分类:正整数、负整数、零。

- 整数的性质:奇数、偶数、质数、合数。

3. 分数与小数- 分数的表示:真分数、假分数、带分数。

- 分数的运算:加减乘除、通分、约分。

- 小数的表示:有限小数、无限循环小数。

- 小数与分数的互化。

4. 代数表达式- 代数式的概念:用字母表示数的表达式。

- 单项式与多项式:单项式的系数、次数;多项式的项、次数、升幂排列、降幂排列。

- 代数式的运算:加减、乘除、因式分解。

5. 一元一次方程- 方程的概念:含有未知数的等式。

- 解方程的方法:移项、合并同类项、系数化为1。

- 方程的应用:实际问题中的方程求解。

6. 二元一次方程组- 方程组的概念:两个或多个一元一次方程的集合。

- 解方程组的方法:代入法、消元法。

- 方程组的应用:解决实际问题中的多个未知数问题。

7. 不等式与不等式组- 不等式的概念:表示不等关系的式子。

- 不等式的解集:找出满足不等式关系的所有数。

- 不等式组的解法:求解多个不等式的公共解集。

二、几何1. 平面图形- 点、线、面的概念:点无大小、线有长度无宽度、面有长度和宽度。

- 角的概念:两条射线的夹角。

- 直线与射线:直线无限延伸,射线有起点无限延伸。

2. 三角形- 三角形的性质:内角和为180度,外角和为360度。

- 特殊三角形:等边三角形、等腰三角形、直角三角形。

- 三角形的分类:按边分类、按角分类。

3. 四边形- 四边形的性质:内角和为360度。

- 特殊四边形:正方形、长方形、菱形、平行四边形、梯形。

4. 圆- 圆的概念:平面上所有与定点等距离的点的集合。

- 圆的性质:圆心、半径、直径、弦、弧、切线。

- 圆的分类:正圆、椭圆、扇形。

5. 面积与体积- 平面图形的面积:长方形、正方形、三角形、圆。

人教版初二数学(上)代数知识点总结(参考知识)

人教版初二数学(上)代数知识点总结(参考知识)

.注意:
可以看作是一个数,也可以认为是一个数开二次方的运算. 4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为
.注意:0的算术平方根还是0. 5.三个重要非负数: a2≥0 ,|a|≥0 ,
≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)
; (a≥0) (2)
初二数学(上)应知应会的知识点
因式分解 1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项 式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解 法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂. 注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式: (1)平方差公式: a2-b2=(a+ b)(a- b); (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的注意事项: (1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、 四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理; (6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理; (2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的 式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分 括号或全部括号;(10)拆项或补项. 7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三 项式x2+px+q, 有“ x2+px+q是完全平方式

人教版初中数学重点知识点总结

人教版初中数学重点知识点总结

人教版初中数学重点知识点总结一、数与代数。

1. 有理数。

- 有理数的分类:整数(正整数、0、负整数)和分数(正分数、负分数)。

- 数轴:规定了原点、正方向和单位长度的直线。

数轴上的点与有理数一一对应。

- 相反数:只有符号不同的两个数互为相反数,a的相反数是-a,0的相反数是0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即| a|=a(a≥0) -a(a<0)。

- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 乘方:求n个相同因数的积的运算叫乘方,a^n中a是底数,n是指数。

2. 实数。

- 无理数:无限不循环小数,如√(2)、π等。

- 实数的分类:有理数和无理数。

- 实数与数轴上的点一一对应。

- 平方根:如果x^2 = a(a≥0),那么x叫做a的平方根,记作x=±√(a),其中√(a)是a的算术平方根。

- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x=sqrt[3]{a}。

3. 代数式。

- 代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或者一个字母也是代数式。

- 整式:单项式和多项式统称为整式。

- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

初中数学知识点总结人教版

初中数学知识点总结人教版

初中数学知识点总结人教版初中数学知识点总结(人教版)一、数与代数1. 有理数- 整数和小数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值- 有理数的运算律2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 整式的加减乘除- 因式分解- 分式的基本性质- 分式的乘除法- 分式的加减法3. 代数方程- 一元一次方程- 二元一次方程组- 解方程的基本方法- 列方程解应用题4. 函数- 函数的概念- 线性函数- 反比例函数- 函数的图像和性质- 解析式的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形的分类和性质- 四边形的分类和性质- 圆的基本性质- 相似图形- 平行线与平行线的性质2. 几何变换- 平移- 旋转- 轴对称(镜像对称)3. 几何计算- 线段、角的计算- 三角形、四边形的面积计算- 圆的周长和面积计算- 体积和表面积的计算(棱柱、棱锥、圆柱、圆锥、球)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的计算四、应用题1. 列方程解应用题- 行程问题- 工作问题- 利润问题- 比例问题2. 几何应用题- 面积问题- 体积问题- 角度计算问题3. 统计与概率应用题- 调查与统计分析- 可能性与预测请注意,以上内容是根据人教版初中数学教材的一般结构和知识点进行的总结,具体的教学内容可能会根据不同年份的教材版本和教学大纲有所变化。

教师和学生应参考最新的教材和教学指南来确定具体的教学内容和要求。

最新人教版初中数学代数部分知识点总结只是分享

最新人教版初中数学代数部分知识点总结只是分享

一、实数的分类:121.101001000100001……;特定意义二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b2、倒数:(1)实数a (a ≠0(2)a 和b(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简),先(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0a a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;用减法确定 五、实数的运算 1、加法: 2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)同号取正,异号取负,并把绝对值相乘。

(2)n 个实数相乘,有一个因数为0,积就为0;(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:除以一个数等于乘以这个数的倒数。

0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

初中代数知识点的全面总结与归纳

初中代数知识点的全面总结与归纳

初中代数知识点的全面总结与归纳代数是数学中的一个重要分支,它主要研究数、数运算和运算规则。

初中代数是中学数学中的一部分,是铺垫高中代数的基础知识。

本文将全面总结和归纳初中代数的知识点,帮助学生对代数理解更加透彻。

一、代数基本概念代数:代数是数学研究的一个分支,它使用字母和符号来表示数和数的关系,研究数的运算和性质。

二、代数运算1. 加法和减法:数的加法和减法运算可以用代数表示。

2. 乘法和除法:代数中的乘法和除法运算也有相应的符号和规则。

3. 幂运算:幂运算是指将一个数反复乘以自身若干次的运算,用代数表示为a^n。

4. 开方运算:开方运算是指找出一个数的某个幂等于另一个数的运算,用代数表示为√a = b。

三、代数式代数式是数的运算式,其中包含有数和字母,用字母表示未知数。

代数式可以进行加法、减法、乘法、除法和合并同类项等运算。

四、一元一次方程一元一次方程是形如ax+b=0的方程,其中a和b是已知数,x是未知数。

解一元一次方程可以用加法、减法、乘法和除法的逆运算等方法。

五、一元一次不等式一元一次不等式是形如ax+b>0或ax+b<0的不等式,其中a和b是已知数,x 是未知数。

解一元一次不等式时需要考虑不等号的正负方向。

六、整式的加减运算整式是指由数字、字母和乘法、加法、减法符号构成的式子。

整式的加减运算需要合并同类项和运用运算法则。

七、整式的乘法整式的乘法运算需要用到分配律和合并同类项的法则,并进行系数的乘法。

八、两个一元一次方程的联立联立方程是指两个或两个以上方程在同一组中存在的关系。

解联立方程的方法包括代入法、消元法和加减法等。

九、一元二次方程一元二次方程是形如ax^2+bx+c=0的方程,其中a、b和c是已知数,x是未知数。

解一元二次方程可以用因式分解法、配方法和求根公式等方法。

十、二次根式二次根式是形如√a和√(a+b)的式子,其中a和b是已知数。

二次根式的运算包括化简、加减和乘法等。

人教版初三数学代数知识点复习

人教版初三数学代数知识点复习

人教版初三数学代数知识点复习除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了人教版初三数学代数知识点复习,希望对大家的学习有一定帮助。

一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积-包括单独的一个数或字母)几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x,=│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的平方根( [a0-与平方根的区别]);⑵算术平方根与绝对值① 联系:都是非负数,=│a│②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数⑴ ( -幂,乘方运算)① a0时,②a0时, 0(n是偶数), 0(n是奇数)⑵零指数:=1(a0)负整指数: =1/ (a0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质: = (m0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:① ② ③ = ;④ = ;⑤技巧:5.乘法法则:⑴单⑵单⑶多多。

初中数学知识点(代数)

初中数学知识点(代数)

初中数学知识点(代数)一、代数式代数式是由数、字母和运算符号组成的表达式。

代数式可以分为单项式和多项式。

1. 单项式:只包含一个字母和它的指数的代数式,如:5x²、3a³等。

2. 多项式:由若干个单项式相加或相减组成的代数式,如:3x² + 2x 1、4a³ + 5ab²等。

二、代数式的运算1. 加法:将两个或多个代数式相加,如:3x² + 2x 1 + 4x²3x + 2。

2. 减法:将两个或多个代数式相减,如:3x² + 2x 1 (4x²3x + 2)。

3. 乘法:将两个或多个代数式相乘,如:(3x² + 2x 1) ×(4x² 3x + 2)。

4. 除法:将一个代数式除以另一个代数式,如:(3x² + 2x 1) ÷ (4x² 3x + 2)。

三、方程方程是含有未知数的等式。

解方程就是求出未知数的值,使得等式成立。

初中阶段主要学习一元一次方程和一元二次方程。

1. 一元一次方程:未知数的最高次数为1的方程,如:2x + 3 = 7。

2. 一元二次方程:未知数的最高次数为2的方程,如:x² 5x +6 = 0。

四、不等式不等式是表示两个数之间大小关系的式子。

初中阶段主要学习一元一次不等式和一元二次不等式。

1. 一元一次不等式:未知数的最高次数为1的不等式,如:2x + 3 > 7。

2. 一元二次不等式:未知数的最高次数为2的不等式,如:x²5x + 6 ≥ 0。

五、函数函数是描述变量之间关系的数学概念。

初中阶段主要学习一次函数和二次函数。

1. 一次函数:函数表达式为y = kx + b(k ≠ 0)的函数,其中k是斜率,b是截距。

2. 二次函数:函数表达式为y = ax² + bx + c(a ≠ 0)的函数,其中a、b、c是常数。

初中数学代数知识点的归纳

初中数学代数知识点的归纳

初中数学代数知识点的归纳代数是数学中的一个重要分支,它研究的是未知数以及它们之间的关系。

初中阶段的代数知识点主要包括方程与不等式、函数与图像、整式与分式等内容。

以下将对这些知识点进行归纳和总结,帮助学生更好地理解和掌握代数的基本概念和方法。

一、方程与不等式1. 一元一次方程:形如ax + b = 0的方程,其中a和b是已知数,x是未知数。

解一元一次方程的常用方法有逆运算法、消元法和等式法。

2. 一元二次方程:形如ax^2 + bx + c = 0的方程,其中a、b和c是已知数,x是未知数。

解一元二次方程的方法主要有配方法和公式法。

3. 一元一次不等式:形如ax + b < c的不等式,其中a、b和c是已知数,x是未知数。

解一元一次不等式的方法有逆运算法和图像法。

4. 一元二次不等式:形如ax^2 + bx + c < 0的不等式,其中a、b和c是已知数,x是未知数。

解一元二次不等式的方法主要有图像法和解各个因子的符号法。

二、函数与图像1. 函数的定义:函数是一种特殊的关系,每个定义域元素与唯一一个值域元素相对应。

函数可以用符号关系、数据表或图像来表示。

2. 常见函数类型:包括线性函数、二次函数、指数函数、对数函数和三角函数等。

每种函数都有其特定的图像和性质。

3. 函数的运算:函数可以进行加法、减法、乘法和除法运算。

例如,两个函数的和差仍然是一个函数,两个函数的乘积和商也是一个函数。

4. 函数的图像:通过了解函数的定义域、值域、增减性和奇偶性等属性,可以画出函数的图像并分析其性质。

三、整式与分式1. 整式的定义:整式是由常数、未知数及其乘积、商、幂的和与差组成的代数式。

常见的整式有一元多项式和二元多项式等。

2. 整式的运算:整式可以进行加法、减法、乘法和乘方运算。

其中乘法运算可采用分配律和合并同类项的法则。

3. 分式的定义:分式是由整式的形式化倒数、含未知数的代数式与分母不为零的有理数的商所构成的对象。

人教版初中数学知识点全总结(完美打印版)

人教版初中数学知识点全总结(完美打印版)

初中数学知识点总结基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

人教版【初中数学】知识点总结-全面整理(超全)

人教版【初中数学】知识点总结-全面整理(超全)

人教版【初中数学】知识点总结-全面整理(超全) 人教版初中数学知识点总结——全面整理(超全)一、代数1. 定义、术语和符号定义:代数是在数域中,通过加、减、乘、除及括号等符号把数值或变量组合成不同式子来表达一种数学思想的数学学习。

术语:代数式(Algebraic Expression)、等式(Equation)、不等式(Inequality)符号:加、减、乘、除及括号2. 指数定义:指数是用一个主数的倍数来表示数量的增加或秩序的变化的一种表示法。

术语:秩(Power)、底数(Base)、指数(Exponent)、真指数(Real Exponent)、负指数(Negative Exponent)、秩的计算(Power calculation)3. 根式定义:根式是一些变量和数值加上开方符号组成的一种形式。

术语:根号(Radical)、根次(Root)、开方(Square Root)4. 平方根定义:平方根是表达某个数平方根的一种数学表达方法。

术语:平方(Square)、平方根(Square Root)、开双方(Double Square Root)、三角形(Triangles)二、图形1. 椭圆定义:椭圆是一种具有特殊特征的形状,它是由圆上的一组点组成的图形。

术语:椭圆(Ellipse)、长轴(Major Axis)、短轴(Minor Axis)、椭圆离心率(Eccentricity)2. 三角形定义:三角形是一种最基本的形状,由三条边组成。

术语:角(Angle)、角度(Angle Degree)、边(Side)、面积(Area)、勾股定理(Pythagorean Theorem)3. 四边形定义:四边形是一种经常用来表示几何图形的形状,它由四条恰当的边组成。

术语:矩形(Rectangle)、正方形(Square)、平行四边形(Parallelogram)、菱形(Rhombus)、梯形(Trapezoid)、多边形(Polygon)三、几何1. 颜色定义:颜色是由光的波长和强度产生的颜色,它是人类视觉中最真实的艺术表达。

初中数学中的代数知识点整理

初中数学中的代数知识点整理

初中数学中的代数知识点整理代数是数学中重要且广泛应用的一个分支,它通过符号和字母来表示和操作数值以及未知量。

初中阶段学习代数是建立数学思维和解决实际问题的重要基础。

本文将整理初中数学中常见的代数知识点,包括代数式、方程、不等式以及函数等内容。

一、代数式代数式是用数字、字母和运算符号表示出的数学式子。

初中代数式的构成部分主要包括常数(即具体的数值)和变量(即表示未知量的字母)。

通过运算符号(如+、-、*、/)可以对代数式进行加减乘除的运算。

常见的代数式形式包括单项式、多项式和分式。

单项式是只包含一个项的代数式,如3x、-2y^2。

多项式是由多个单项式相加减而成的代数式,如2x^2-3y+5。

分式是由两个代数式相除而成的代数式,如x/(x-1)。

二、方程方程是一个含有等号的数学语句,表示两个代数式相等。

在初中数学中,主要学习一元一次方程和一元二次方程。

一元一次方程是形如ax+b=0的方程,其中a和b是已知的实数,而x是未知数。

解一元一次方程可以通过移项和化简的方法得到。

例如,要解方程2x+3=7,可以先将3移到等号的右边,得到2x=4,然后除以2,得到x=2。

一元二次方程是形如ax^2+bx+c=0的方程,其中a、b和c是已知的实数,而x 是未知数。

解一元二次方程可以通过配方法、因式分解和求根公式等方法得到。

例如,要解方程x^2-5x+6=0,可以通过因式分解得到(x-2)(x-3)=0,然后令每个因式等于0,得到x=2和x=3。

三、不等式不等式是一个包含不等号的数学语句,表示两个代数式之间的大小关系。

初中主要学习一元一次不等式和一元二次不等式。

一元一次不等式是形如ax+b>0或ax+b<0的不等式,其中a和b是已知的实数,而x是未知数。

解一元一次不等式可以通过移项和判断符号的方法得到。

例如,要解不等式2x+3>7,可以先将3移到不等号的右边,得到2x>4,然后除以2,得到x>2。

代数初一知识点归纳总结

代数初一知识点归纳总结

代数初一知识点归纳总结代数是数学中的一个重要分支,也是初中数学的基础内容之一。

在初一阶段,我们学习了一些代数的基本概念和操作方法。

本文将对代数初一知识点进行归纳总结,帮助初中生复习和掌握这些重要内容。

一、代数的基本概念1. 代数表达式:由数字、字母、运算符号组成的式子,例如3x+y,2x²-5y等。

2. 未知数:用字母来表示的数,代表未知的数量。

3. 系数:代数表达式中与字母相乘的数,例如表达式2x中的2就是系数。

4. 等式和方程:等式是左右两边相等的表达式,方程是含有未知数的等式。

5. 值域:代数表达式中未知数的取值范围。

二、代数运算法则1. 加法法则:加法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。

2. 减法法则:减法满足减去一个数等于加上它的相反数,即a-b=a+(-b)。

3. 乘法法则:乘法满足交换律和结合律,即ab=ba,(ab)c=a(bc)。

4. 除法法则:除法满足除以一个数等于乘以它的倒数,即a/b=a*(1/b)。

5. 分配律:乘法对加法有分配律,即a(b+c)=ab+ac。

6. 指数运算律:指数运算满足指数相加等于底数乘积,即a^n+a^m=a^(n+m)。

三、一元一次方程1. 一元一次方程:具有形式ax+b=0的方程,其中a和b是已知数,x是未知数。

2. 解方程的步骤:通过移项和化简,将方程化为x=某个数的形式,得到方程的解。

3. 检验解:将解代入方程中,验证方程左右两边是否相等。

四、直接比例与反比例1. 直接比例:两个量的比例保持不变,可以表示为y=kx,其中k是比例常数。

2. 反比例:两个量的乘积保持不变,可以表示为y=k/x,其中k是比例常数。

3. 比例式的变形:通过变形可以得到其他形式的比例式,如xy=k,yx=k等。

五、一元一次不等式1. 一元一次不等式:具有形式ax+b>0或ax+b<0的不等式,其中a和b是已知数,x是未知数。

人教版初二数学上册知识点总结

人教版初二数学上册知识点总结

人教版初二数学上册知识点总结初中数学是学生数学学习的一个重要阶段,对于初二学生来说,数学知识点的掌握和理解对于以后的学习起着至关重要的作用。

本文将对人教版初二数学上册的知识点进行总结,希望能够帮助学生更好地理解和掌握相关知识。

一、代数部分。

1. 代数基础知识。

代数是数学的一个重要分支,初二数学代数部分主要包括有理数、整式、一元一次方程等内容。

学生需要掌握有理数的加减乘除运算规则,整式的加减乘除运算法则,以及一元一次方程的解法等基础知识。

2. 一元一次方程。

一元一次方程是初中数学中的重要内容,学生需要掌握用方程解决实际问题的能力,包括列方程、解方程、检验解等步骤。

3. 不等式。

不等式是代数中的重要内容,学生需要理解不等式的意义和性质,掌握不等式的解法和应用。

二、几何部分。

1. 几何基本概念。

初二数学几何部分主要包括角的概念、直线、射影、平行线、相交线等内容。

学生需要理解这些基本概念,掌握相关性质和定理。

2. 图形的性质。

学生需要了解和掌握各种图形的性质,如三角形的性质、四边形的性质等,能够运用相关性质解决实际问题。

3. 相似与全等。

相似与全等是几何中的重要内容,学生需要理解相似与全等的概念,掌握相似三角形的判定和性质,以及全等三角形的判定和性质。

三、实数部分。

1. 实数的性质。

学生需要了解实数的性质,包括有理数和无理数的性质,实数的大小比较,实数的运算性质等内容。

2. 实数的应用。

实数的应用是初二数学的重要内容,学生需要掌握实数在实际问题中的应用,包括利用实数解决实际问题、实数在坐标系中的应用等。

四、统计与概率部分。

1. 统计。

统计是数学中的一门重要学科,学生需要了解统计的基本概念,包括频数、频率、中位数、众数等内容,能够进行简单的统计分析。

2. 概率。

概率是数学中的一门重要学科,学生需要了解概率的基本概念,包括随机事件、概率的计算、概率的性质等内容,能够运用概率解决实际问题。

总结,人教版初二数学上册的知识点涵盖了代数、几何、实数、统计与概率等内容,学生需要认真学习和掌握这些知识点,能够灵活运用于实际问题的解决中。

初中数学代数基础知识点和公式,初中生必看

初中数学代数基础知识点和公式,初中生必看

初中数学代数基础知识点和公式,初中生必看▊ 一、数1、有理数:⑴正数:大于零的数⑵负数:小于零的数⑶0即不是正数,也不是负数⑷整数:正整数,零、负整数的统称⑸小数:正分数,负分数的统称⑹有理数:整数和分数的统称2、数轴:规定了原点、方向和单位长度的直线⑴在数轴上表示的两个数右边的数总比左边的数大⑵正数都大于零,负数都小于零,正数大于一切负数3、相反数:只有符号不同的两个数,其中一个叫另一个的相反数4、绝对值⑴一个数a的绝对值指数轴上表示数a的点到原点的距离⑵正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数⑶两个负数,绝对值大的发、反而小5、有理数乘法法则:⑴两数相乘,同号得正,异号的负,并把绝对值相乘⑵任何数和0相乘都得0⑶几个不等于0的数相乘,积的符号由负因数的个数决定当负因数有奇数个时,积为负。

当负因数有偶数个时,积为正⑷乘法运算律:①交换律ab=ba ②结合律(ab)c=a(bc)③分配律a(b+c)=ab+ac6、有理数除法法则:除以一个数等于乘上这个数的倒数⑴两数相乘,同号得正,异号的负,并把绝对值相乘⑵0除以任何一个不等于0的数,都得07、有理数的乘方:⑴n个相同因数的积的运算叫乘方,乘方的结果叫幂⑵正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数⑶混合运算顺序:先算乘方,再算乘除,最后算加减,有括号、则先算括号里面的8、有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字▊ 二、整式1、⑴单项式:数和字母的积(所有字母指数的和是单项式的次数⑵多项式:几个单项式的和(多项式里,最高项的次数就是多项式的次数)⑶降幂排列和升幂排列(略)⑷整式:单项式和多项式的统称⑸同类项;所有字母相同,并且相同字母的次数也相同的项①合并同类项:多项式中的同类项合并成一项②法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变▊ 三、因式分解1、方法:⑴提取公因式法⑵公式法:①平方差公式: a2-b2=(a+b)(a-b)②完全平方公式:a2±2ab+b2=(a±b)2③立方和公式:a3+b3=(a+b)(a2-ab+b2)④立方差公式:a3-b3=(a-b)(a2+ab+b2)⑤a2+b2+c2+2ab+2ac+2bc=(a+b+c)2⑶分组分解法(略)⑷十字相乘法(略)⑸配方法:(略)⑹利用x2+(p+q)x+pq=(x+p)(x+q)分解因式2、把一个多项式分解因式,一般可按下列步骤进行①如果多项式的各项有公因式,那么先提公因式②如果各项没有公因式,那么可以尝试用公式来分解③若用上述方法不能分解,那么可以尝试用分组或其他方法来分解④分解因式,必须进行到每一个多项式因式都不能再分解为止▊ 四、一次函数、反比例函数1、⑴数轴上的点的坐标:数轴上的点与实数是一一对应的,从而用一个实数来确定一个点在数轴上的位置,这个实数叫点的坐标⑵平面坐标系的点与一对有序实数一一对应,这一对有序实数称为该点的坐标。

初中数学代数知识点总结

初中数学代数知识点总结

初中数学代数知识点总结一、基本概念代数的基本概念包括了数、变量、代数式、方程和函数等。

数是代数的基本元素,它可以分为自然数、整数、有理数和实数等。

变量是代数中的一种符号,它代表一个数,可以用字母表示。

代数式是由数、变量和运算符号组成的符号集合,代数式可以用字母表示。

方程是由代数式构成的等式,方程有解和无解两种情况。

函数是一个或多个变量的数学关系,它将每个自变量的取值对应到唯一的因变量的取值。

二、代数式与多项式代数式是利用代数符号表示的数学式,它包括了算式与表示式两部分。

多项式是由单项式相加减而成的式子,其中每个单项式的次数必须是非负整数,称为整式。

多项式的次数是指其中次幂数最高的单项式的次数,多项式可以表示为一元多项式和多元多项式。

多项式的加减法按照对应项进行加减运算,乘法按照分配律进行,可以使用分配律求解乘法问题。

多项式的因式分解是将一个多项式表示为几个较简单的因式相乘的结果。

三、一元一次方程与一元一次不等式一元一次方程是形如ax+b=0的方程,其中a和b是已知数,x是未知数,它的解是使等式成立的x的取值。

解一元一次方程可以通过变形和等式的两边同时进行相同的运算来求解。

一元一次不等式是形如ax+b>0的不等式,其中a和b是已知数,x是未知数,它的解是使不等式成立的x的取值。

解一元一次不等式可以通过变形和不等式的两边同时进行相同的运算来求解。

四、二元一次方程组二元一次方程组是由两个形如ax+by=c的方程构成的方程组,其中a、b、c是已知数,x、y是未知数,它的解是使两个方程均成立的x和y的取值。

利用消元法或代入法可以求解二元一次方程组,首先将其中一个方程的系数变为相同的再进行相减,从而消去某个未知数,然后再求解得到另一个未知数的值。

或者将一个方程的未知数表示成另一个方程的未知数的表达式,然后代入到另一个方程中求解未知数的值。

以上是初中数学代数知识的总结,代数知识是数字理解数学的基础,初中数学代数知识是学习数学的重要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp(分数)的形式 2、无理数:开不尽的方根,如2、34;特定结构的无限不限环小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,πφa a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简),先(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;用减法确定 五、实数的运算 1、加法: 2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)同号取正,异号取负,并把绝对值相乘。

(2)n 个实数相乘,有一个因数为0,积就为0;(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:除以一个数等于乘以这个数的倒数。

0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法1、科学记数法:设N >0,则N= a ×n 10(其中1≤a <10,n 为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

代数部分 第二章:代数式一、代数式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mnnm aa =)(积的乘方:n n n b a ab =)(。

乘法公式:平方差公式:22))((b a b a b a -=-+;完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=- 三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++ (2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+± (3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法; (3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

四、分式1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB MA B A(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

五、二次根式1、二次根式的概念:式子)0(≥a a 叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(常用的有理化因式有:a 与a ;d c b a +与d c b a -)2、二次根式的性质:(1) )0()(2≥=a a a ;(2)⎩⎨⎧<-≥==)0()0(2a aa aa a ;(3)b a ab ⋅=(a ≥0,b ≥0);(4))0,0(≥≥=b a bab a 代数部分第三章:方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程 1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0) 2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解; 当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组 一次方程组:(1)二元一次方程组:一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (212121,,,,,c c b b a a 不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

(2)三元一次方程组:解法:代入消元法和加减消元法 二元二次方程组:(1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。

(2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。

代数部分第四章:列方程(组)解应用题知识点:一、列方程(组)解应用题的一般步骤 1、审题: 2、设未知数;3、找出相等关系,列方程(组);4、解方程(组);5、检验,作答;二、列方程(组)解应用题常见类型题及其等量关系;1、工程问题(1)基本工作量的关系:工作量=工作效率×工作时间(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量 (3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题 2、行程问题(1)基本量之间的关系:路程=速度×时间 (2)常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程 3、水中航行问题:顺流速度=船在静水中的速度+水流速度; 逆流速度=船在静水中的速度–水流速度 4、增长率问题:常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率); 5、数字问题:基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100 三、列方程解应用题的常用方法1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系。

相关文档
最新文档