第二章圆锥曲线与方程单元测试卷
圆锥曲线与方程测试题及参考答案
高中数学选修2—1第二章《圆锥曲线与方程》单元测试题及参考答案(时间120分钟 总分150分)一、选择题(本大题共8小题,每小题5分,共40分。
每小题只有一个选项符合题目意思)1.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为 ( C ) A.12 B. 23 C.34 D.452.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( D )A.2833x y =B. 21633x y = C. 28x y = D. 216x y = 3.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= ( C )A.14B.35C.34D.454.已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( D )A.22182x y += B.221126x y += C.221164x y += D.221205x y += 5.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)A.5B.42C.3D.56.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( B ) A.28条 B.32条 C.36条 D.48条7.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =; 则AOB ∆的面积为 ( C )A.22B.2C.322D.228.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
高中数学选修1-1第二章《圆锥曲线与方程》单元测试卷及答案2套
高中数学选修一第二章《圆锥曲线与方程》单元测试卷及答案2套单元测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12C .2D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 25.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1 D.x 28-y 24=1 6.设a >1,则双曲线x 2a 2-y 2a +12=1的离心率e 的取值范围是( )A .(2,2)B .(2,5)C .(2,5)D .(2,5)7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( ) A .1 B .2 C .3 D .08.设F 为抛物线y 2=4x 的焦距,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC →=0,则FB →|+|FB →|+|FC →|等于( )A .9B .6C .4D .39.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )A.(32,54) B .(1,1)C. (32,94) D .(2,4)12.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( )A.(34π,π)B.(π4 ,π)C.(π2 ,π)D.(π2 ,34π)二、填空题(本大题共4小题,每小题5分,共20分)13.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且三角形F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为________.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在直线的方程是______________.15.设椭圆x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点(b2,0)分成3∶1的两段,则此椭圆的离心率为________.16.对于曲线C :x 24-k +y 2k -1=1,给出下面四个命题:①曲线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52.其中所有正确命题的序号为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.18.(12分)双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.19.(12分)直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长.20.(12分)已知点P (3,4)是椭圆x 2a 2+y 2b2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程; (2)△PF 1F 2的面积.21.(12分)已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.22.(12分)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)若OA →⊥OB →,求k 的值.答案1.A 2.B 3.B 4.D 5.B 6.B 7.B8.B 9.C 10.B 11.B 12.D13.3214.2x -y -15=015.2216.③④17.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 209=1.∵M 是线段PP ′的中点,x 0=x , x 0=x ,∴ y 0=y 2, 把 y 0=y2,代入x 2036+y 209=1,得x 236+y 236=1,即x 2+y 2=36. ∴P 点的轨迹方程为x 2+y 2=36.18.解 设双曲线方程为x 2a 2-y 2b2=1.由椭圆x 28+y24=1,求得两焦点为(-2,0),(2,0),∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线, ∴b a=3,解得a 2=1,b 2=3,∴双曲线C 的方程为x 2-y 23=1.19.解 将y =kx -2代入y 2=8x 中变形整理得:k 2x 2-(4k +8)x +4=0, 由⎩⎪⎨⎪⎧k ≠04k +82-16k 2>0,得k >-1且k ≠0. 设A (x 1,y 1),B (x 2,y 2),由题意得:x 1+x 2=4k +8k2=4⇒k 2=k +2⇒k 2-k -2=0.解得:k =2或k =-1(舍去) 由弦长公式得:|AB |=1+k 2·64k +64k 2=5×1924=215. 20.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以kPF 1·kPF 2=-1,即43+c ·43-c=-1,解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1.因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1.解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去. 故所求椭圆方程为x 245+y 220=1.(2)由椭圆定义知|PF 1|+|PF 2|=65, ①又|PF 1|2+|PF 2|2=|F 1F 2|2=100, ② ①2-②得2|PF 1|·|PF 2|=80,所以S △PF 1F 2=12|PF 1|·|PF 2|=20.21.解 焦点F (p2,0),设A (x 1,y 1),B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k x -p 2,y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2p k,y 1y 2=-p 2. ∴|AB |=x 1-x 22+y 1-y 22= 1+1k2·y 1-y 22=1+1k2·y 1+y 22-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在的直线方程为y =2(x -p 2)或y =-2(x -p2).22.解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-32=1,故曲线C 的方程为x 2+y24=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1.消去y 并整理得(k 2+4)x 2+2kx -3=0. 其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4.OA →⊥OB →,即x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k2k 2+4+1=0,化简得-4k 2+1=0,所以k =±12.单元测试卷二(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A.x 281+y 272=1 B.x 281+y 29=1C.x 281+y 245=1 D.x 281+y 236=1 2.平面内有定点A 、B 及动点P ,设命题甲是“|PA |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( )A.(a 2,0) B .(0, 12a )C. (a 4,0) D .(0, 14a)4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( )A .x 2+y 2=2B .x 2+y 2=4C .x 2+y 2=2(x ≠±2)D .x 2+y 2=4(x ≠±2)5.已知椭圆x 2a 2+y 2b2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22B.12C.2-12D.347.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A.125 B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( ) A .-2 B .0C .-2或0D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( )A .5 6B .6 5C .10 2D .5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1± 512.设F 1、F 2分别是双曲线x 25-y 24=1的左右焦点。
选修2-1第二章圆锥曲线与方程测试(含解析答案)
第二章圆锥曲线与方程单元综合测试班别: 姓名: 成绩:一、选择题(每小题5分,共60分) 1.椭圆x 2+4y 2=1的离心率为( )A.32B.34C.22D.232.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( )A .-1B .1C .-1020D.1023.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12)4.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线5.已知两定点F 1(-1,0),F 2(1,0),且12|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .线段6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB | 为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2 D .37.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 8.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( )A .x -2y =0B .x +2y -4=0C .2x +3y +4=0D .x +2y -8=0 9.过椭圆x 24+y 22=1的右焦点作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的焦点在x 轴 上,对称中心在坐标原点且两条渐近线分别过A 、B 两点,则双曲线的离心率e 为( )A.12B.22C.62D.3210.双曲线x 2m -y 2n =1(mn ≠0)有一个焦点与抛物线y 2=4x 的焦点重合,则m +n 的值为( )A .3B .2C .1D .以上都不对11.设F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b <0)的左、右焦点,点P 在双曲线上,若 PF 1→·PF 2→=0,且|PF 1→|·|PF 2→|=2ac (c =a 2+b 2),则双曲线的离心率为( ) A.1+52 B.1+32 C .2 D.1+2212.已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线右支上的任意 一点,若|PF 1|2|PF 2|的最小值为8a ,则双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2]C .(1,3]D .(1,3] 二、填空题(每小题5分,共20分)13.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是.14.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=__________, ∠F 1PF 2的大小为________.15.已知F 1、F 2是椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 是椭圆上任意一点,从F 1引∠F 1PF 2的外角平分线的垂线,交F 2P 的延长线于M ,则点M 的轨迹方程是 . 16.过抛物线y 2=4x 的焦点,作倾斜角为3π4的直线交抛物线于P ,Q 两点,O 为坐标原点,则△POQ 的面积等于__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共60分)17.(10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18、(12分)知抛物线xy42 ,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.19.(12分)已知双曲线中心在原点,且一个焦点为(7,0),直线y=x-1与其相交于M,N两点,MN的中点的横坐标为-23,求此双曲线的方程.20.(12分)已知A (2,0)、B (-2,0)两点,动点P 在y 轴上的射影为Q ,P A →·PB→=2PQ →2.(1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0<k <1时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标.21.(14分)已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13. (1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.第二章圆锥曲线与方程单元综合测试参考答案一、选择题(每小题5分,共60分)1.A 解析:∵a =1,b =12,∴c =a 2-b 2=32,∴e =c a =32,故选A.2.A 解析 把方程化为标准形式-x 2-1m +y 2-3m=1,则a 2=-3m ,b 2=-1m ,∴c 2=a 2+b 2=-4m =4,∴m =-1.3.B 解析:∵a 2=4,b 2=-k ,∴c 2=4-k .∵e ∈(1,2),∴c 2a 2=4-k4∈(1,4),k ∈(-12,0).4.D 解析:设M (2,0),由题设可知,把直线x =-1向左平移一个单位即为直线x =-2, 则点P 到直线x =-2的距离等于|PM |,所以动点P 的轨迹为抛物线,故选D. 5.D 解析:依题意知|PF 1|+|PF 2|=|F 1F 2|=2,作图可知点P 的轨迹为线段,故选D. 6.B 解析:不妨设双曲线C 为x 2a 2-y 2b 2=1(a >0,b >0),并设l 过F 2(c,0)且垂直于x 轴,则 易求得|AB |=2b 2a ,∴2b 2a =2×2a ,b 2=2a 2,∴离心率e =ca =1+b 2a 2=3,故选B.7.B 解析:由定义|AB |=5+2=7,∵|AB |min =4,∴这样的直线有且仅有两条.8.D 解析:设l 与椭圆的两交点分别为(x 1,y 1)、(x 2,y 2),则得y 21-y 22x 21-x 22=-936,所以y 1-y 2x 1-x 2=-12.故方程为y -2=-12(x -4),即x +2y -8=0.9.C 解析:A (2,1),B (2,-1),设双曲线为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±b a x ,因为A 、B 在渐近线上,所以1=b a ·2,b a =22,e =ca =a 2+b 2a 2=62.10.C 解析:抛物线y 2=4x 的焦点为F (1,0),故双曲线x 2m -y 2n =1中m >0,n >0,且m +n =c 2=1.11.A 解析:由PF 1→·PF 2→=0可知△PF 1F 2为直角三角形,则由勾股定理,得 |PF 1→|2+|PF 2→|2=4c 2,① 由双曲线的定义,得(|PF 1→|-|PF 2→|)2=4a 2,② 又|PF 1→|·|PF 2→|=2ac ,③ 由①②③得c 2-ac -a 2=0,即e 2-e -1=0, 解得e =1+52或e =1-52(舍去). 12.D 解析:|PF 1|2|PF 2|=2a +|PF 2|2|PF 2|=4a 2|PF 2|+|PF 2|+4a ≥4a +4a =8a ,当且仅当4a 2|PF 2|=|PF 2|,即|PF 2|=2a 时取等号.这时|PF 1|=4a .由|PF 1|+|PF 2|≥|F 1F 2|,得6a ≥2c ,即e =ca ≤3, 得e ∈(1,3],故选D. 二、填空题(每小题5分,共20分)13.x 29-y 2=1 解析:由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是 (10,0),知a 2+b 2=10,因此a =3,b =1,故双曲线的方程是x 29-y 2=1.14.2;120° 解析:由椭圆的定义知|PF 1|+|PF 2|=2a =2×3=6,因为|PF 1|=4,所以|PF 2|=2.在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°.15.(x -a 2-b 2)2+y 2=4a 2 解析:由题意知|MP |=|F 1P |,∴|PF 1|+|PF 2|=|MF 2|=2a .∴点M 到点F 2的距离为定值2a .∴点M 的轨迹是以点F 2为圆心,以2a 为半径的圆,其方程为(x -a 2-b 2)2+y 2=4a 2.16.2 2 解析 设P (x 1,y 1),Q (x 2,y 2),F 为抛物线焦点,由2(1)4y x y x=--⎧⎨=⎩,得y 2+4y -4=0,∴|y 1-y 2|=()()221212444442y y y y +-=-+⨯=∴S △POQ =12|OF ||y 1-y 2|=2 2. 三、解答题17.解:由椭圆方程x 29+y 24=1,知长半轴a 1=3,短半轴b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5,c 2=a 2+b 2,c a =52,解得⎩⎨⎧a =2,b =1.故所求双曲线的方程为x 24-y 2=1. (10分)18. [解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=y y x x 21222,又Q 是OP 的中点 ∴ ⎪⎪⎩⎪⎪⎨⎧==221212y y x x ⇒⎩⎨⎧==-==yy y x x x 422422121,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y . (12分)19.解:设双曲线方程为x 2a 2-y2b 2=1(a >0,b >0),依题意c =7,∴方程可以化为x 2a 2-y 27-a 2=1,由⎩⎪⎨⎪⎧x2a 2-y 27-a 2=1,y =x -1,得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2a 27-2a 2,∵x 1+x 22=-23,∴-a 27-2a 2=-23,解得a 2=2. ∴双曲线的方程为x 22-y 25=1. (12分)20.解:(1)设动点P 的坐标为(x ,y ),则点Q (0,y ),PQ →=(-x,0),P A →=(2-x ,-y ), PB →=(-2-x ,-y ),P A →·PB→=x 2-2+y 2.① ②∵P A →·PB →=2PQ →2,∴x 2-2+y 2=2x 2, 即动点P 的轨迹方程为y 2-x 2=2. (2)设直线m :y =k (x -2)(0<k <1),依题意,点C 在与直线m 平行且与m 之间的距离为2的直线上,设此直线为 m 1:y =kx +b . 由|2k +b |k 2+1=2,即b 2+22kb =2.① 把y =kx +b 代入y 2-x 2=2,整理,得(k 2-1)x 2+2kbx +(b 2-2)=0, 则Δ=4k 2b 2-4(k 2-1)(b 2-2)=0,即b 2+2k 2=2.② 由①②,得k =255,b =105. 此时,由方程组⎩⎨⎧y =255x +105,y 2-x 2=2,解得⎩⎨⎧x =22,y =10,即C (22,10).(12分)21. [解析]:(1)∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0), 2a >2c =22,∴a > 2由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1∵|PF 1||PF 2|≤(|PF 1|+|PF 2|2)2=a 2,∴当且仅当|PF 1|=|PF 2|时,|PF 1||PF 2|取得最大值a 2. 此时cos ∠F 1PF 2取得最小值2a 2-4a 2-1,由题意2a 2-4a 2-1=-13,解得a 2=3,123222=-=-=∴c a b∴P 点的轨迹方程为x 23+y 2=1.(2)设l :y =kx +m (k ≠0),则由 ⎪⎩⎪⎨⎧+==+m kx y y x 1322 将②代入①得:(1+3k 2)x 2+6kmx +3(m 2-1)=0 (*)设A (x 1,y 1),B (x 2,y 2),则AB 中点Q (x 0,y 0)的坐标满足:x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m1+3k 2 即Q (-3km 1+3k 2,m1+3k 2) ∵|MA |=|MB |,∴M 在AB 的中垂线上,∴k l k AB =k ·m1+3k 2+1-3km 1+3k 2=-1 ,解得m =1+3k 22 …③又由于(*)式有两个实数根,知△>0,即 (6km )2-4(1+3k 2)[3(m 2-1)]=12(1+3k 2-m 2)>0 ④ ,将③代入④得12[1+3k 2-(1+3k 22)2]>0,解得-1<k <1,由k ≠0, ∴k 的取值范围是k ∈(-1,0)∪(0,1). (14分)。
高中数学选修2-1第二章《圆锥曲线与方程》单元检测卷含解析
选修2-1第二章《圆锥曲线与方程》单元检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 2.平面内有定点A 、B 及动点P ,设命题甲是“|PA |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫a 2,0 B.⎝ ⎛⎭⎪⎫0,12a C.⎝ ⎛⎭⎪⎫a 4,0 D.⎝ ⎛⎭⎪⎫0,14a 4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( ) A .x 2+y 2=2 B .x 2+y 2=4C .x 2+y 2=2(x ≠±2) D .x 2+y 2=4(x ≠±2)5.已知椭圆x 2a 2+y 2b2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( ) A.22 B.12 C.2-12 D.347.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( ) A .2a +2m B .4a +2m C .a +m D .2a +4m8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( ) A .-2 B .0 C .-2或0 D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( ) A .5 6 B .6 5 C .10 2 D . 5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1± 512.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF u u u u r ·2PF u u u u r =0,则|1PF u u u u r +2PF u u u u r|等于( )A .3B .6C .1D .2第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为_ ___________.14.已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF u u u r=3FB u u u r,则k =________.15.已知抛物线y 2=2px (p >0),过点M (p,0)的直线与抛物线交于A 、B 两点,则OA u u u r ·OB uuu r =________.16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=_ _______. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18.(本小题满分12分)已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点F 交椭圆于A 、B 两点,求弦AB 的长.19.( 本小题满分12分)已知两个定点A (-1,0)、B (2,0),求使∠MBA =2∠MAB 的点M 的轨迹方程.20.(本小题满分12分)已知点A (0,-2),B (0,4),动点P (x ,y )满足PA u u u r ·PB u u u r =y 2-8.(1)求动点P 的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C 、D 两点.求证:OC ⊥OD (O 为原点).21.( 本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.22.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线y =14x 2的焦点,离心率为255. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于点M ,若MA u u u r =m FA u u u r ,MB u u u r =n FB u u u r,求m +n 的值.选修2-1第二章《圆锥曲线与方程》单元检测题参考答案选择题答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABDDABBABACB【第5题解析】2201.02.21 3.x y b y x a c ======∴=-=时,时,故选A.【第6题解析】2a =3+1=4.∴a =2,又∵c =m 2-m 2-1=1,∴离心率e =c a =12.故选B.【第7题解析】∵A ,B 在双曲线的右支上,∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a ,|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a ,|BF 1|+|AF 1|=4a +m ,∴△ABF 1的周长为4a +m +m =4a +2m ..故选B. 【第8题解析】如图所示过点F 作FM 垂直于直线3x -4y +9=0,当P 点为直线FM 与抛物线的交点时,d 1+d 2最小值为|3+9|5=125.故选A. 【第9题解析】由题意B 为抛物线的焦点.令A 的横坐标为x 0,则|AB |=x 0+1=1,∴x 0=0.故选B. 【第10题解析】由题得2,0|3,26,P p x y ∴=∴=±焦点的坐标为(),PM|=5,1526562PFM S ∆∴=⋅⋅= .故选A.【第11题解析】由⎩⎪⎨⎪⎧y =kx -2y 2=8x消去y 得,k 2x 2-4(k +2)x +4=0,故Δ=[-4(k +2)]2-4k 2×4=64(1+k )>0,解得k >-1,由x 1+x 2=4k +2k2=4,解得k =-1或k =2,又k >-1,故k =2.故选C. 【第12题解析】因为PF 1→·PF 2→=0,所以PF 1→⊥PF 2→,则|PF 1→|2+|PF 2→|2=|F 1F 2|2=4c 2=36,故|PF 1→+PF 2→|2=|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=36,所以|PF 1→+PF 2→|=6.故选B.填空题答案第13题 22或2-1 第14题 3 第15题-p 2第16题2【第14题解析】设直线l 为抛物线的准线,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 1为垂足,过B 作BE 垂直于AA 1与E ,则|AA 1|=|AF |,|BB 1|=|BF |,由AF →=3FB u u u r ,∴cos ∠BAE =|AE ||AB |=12,∴∠BAE =60°,∴tan∠BAE = 3.即k = 3.故填 3.【第15题解析】直接取两个特殊点1212(2)(,2)A p B p OA OB x x y y -∴⋅=+u u u r u u u r和,222p p =-2p =-.故填-p 2.【第16题解析】设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,x 1=1,直线AF 的方程是x =1,故|BF |=|AF |=2. 故填2. 【第17题答案】x 24-y 2=1.【第17题解析】由椭圆方程为x 29+y 24=1,知长半轴长a 1=3,短半轴长b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0),由题设条件及双曲线的性质, 得⎩⎪⎨⎪⎧c =5c 2=a 2+b 2c a =52,解得⎩⎪⎨⎪⎧a =2b =1,故所求双曲线的方程为x 24-y 2=1.∴x 1+x 2=835,x 1x 2=85,∴|AB |=x 1-x 22+y 1-y 22=1+1⎝ ⎛⎭⎪⎫8352-4×85=85. 【第19题答案】点M 的轨迹方程为3x 2-y 2=3(右支)或y =0 (-1<x <2). 【第19题解析】设动点M 的坐标为(x ,y ). 设∠MAB =β,∠MBA =α,即α=2β, ∴tan α=tan 2β,则tan α=2tan β1-tan 2β.① (1)如图(1),当点M 在x 轴上方时,tan β=y x +1,tan α=y2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y >0); (2)如图(2),当点M 在x 轴的下方时, tan β=-y x +1,tan α=-y2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y <0);(3)当点M 在x 轴上时,若满足α=2β,M 点只能在线段AB 上运动(端点A 、B 除外),只能有α=β=0. 综上所述,可知点M 的轨迹方程为3x 2-y 2=3(右支)或y =0 (-1<x <2). 【第20题答案】(1)x 2=2y ;(2)证明见解析. 【第20题解析】(1)解 ∵A (0,-2),B (0,4), ∴PA →=(-x ,-2-y ),PB →=(-x,4-y ).【第21题答案】(1)抛物线C 的方程为y 2=4x ,其准线方程为x =-1;(2)符合题意的直线l 存在,其方程为2x +y -1=0.【第21题解析】(1)将(1,-2)代入y 2=2px , 得(-2)2=2p ·1,所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t .由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x 得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 到l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞),所以符合题意的直线l 存在,其方程为2x +y -1=0. 【第22题答案】(1)x 25+y 2=1;(2)m +n =10.【第22题解析】(1)设椭圆C 的方程为x 2a 2+y 2b2=1 (a >b >0).抛物线方程可化为x 2=4y ,其焦点为(0,1), 则椭圆C 的一个顶点为(0,1),即b =1.由e =c a=a 2-b 2a 2=255. 得a 2=5,所以椭圆C 的标准方程为x 25+y 2=1.FA u u u r = (x 1-2,y 1),FB u u u r=(x 2-2,y 2).∵MA →=m FA u u u r ,MB →=n FB u u u r ,∴m =x 1x 1-2,n =x 2x 2-2, ∴m +n =2x 1x 2-2x 1+x 24-2x 1+x 2+x 1x 2, 又2x 1x 2-2(x 1+x 2)=40k 2-10-40k 21+5k2 =-101+5k2, 4-2(x 1+x 2)+x 1x 2 =4-40k 21+5k 2+20k 2-51+5k 2=-11+5k 2, ∴m +n =10.。
新人教版圆锥曲线测试卷
第二章 圆锥曲线与方程 单元测试一.选择题:(60分)1.方程x =所表示的曲线是 ( )(A )双曲线 (B )椭圆(C )双曲线的一部分 (D )椭圆的一部分2.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值是 ( )(A )12 (B )1或–2 (C )1或12 (D )1 3.双曲线22221x y a b-=的两条渐近线互相垂直,那么该双曲线的离心率是 ( ) (A )2 (B )3 (C )2 (D )23 4. 抛物线y 2= 4x 上一点P 到焦点F 的距离是10, 则P 点的坐标是( )(A )(9, 6) (B )(6, 9) (C )(±6, 9) (D )(9,±6) 5. 若椭圆22221(0)x y a b a b +=>>的离心率是2,则双曲线22221x y a b-=的离心率是( ) A .54 B .2 C . 32D .4 6.若双曲线1922=-my x 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为 A .2 B .14C .5D .25 7、直线y x b =+与抛物线22x y =交于A 、B 两点,O 为坐标原点,且OA OB ⊥,则b =( ).2A .2B - .1C .1D -8、若直线l 过点(3,0)与双曲线224936x y -=只有一个公共点,则这样的直线有( )A.1条B.2条C.3条D.4条9、已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其交于N M 、两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) A.14322=-y x B.13422=-y x C.12522=-y x D.15222=-y x 10、设离心率为e 的双曲线2222:1x y C a b-=(0a >,0b >)的右焦点为F ,直线l 过点F 且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是 ( )A .221k e -<B . 221k e ->C .221e k -<D .221e k ->11、双曲线两条渐近线的夹角为60º,该双曲线的离心率为 ( )A .332或2B .332或2 C .3或2 D .3或2 12、若不论k 为何值,直线(2)y k x b =-+与曲线221x y -=总有公共点,则b 的取值范围是( )A.(B.⎡⎣C.(2,2)-D.[]2,2- 13(选做)、椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于 ( )A .2B .4C .6D .32二、填空题(20分)1.双曲线14522=-y x 的焦点到渐近线的距离等于 . 2. 椭圆的焦点为F 1、F 2,过点F 1作直线与椭圆相交,被椭圆截得的最短的线段MN 长为532,N MF 2∆的周长为20,则椭圆的离心率为 __________ 3、双曲线22221(,0)x y a b a b-=>和直线2y x =有交点,则它的离心率的取值范围是______________ 4.已知点P(6, y )在抛物线y 2=2p x (p >0)上,F 为抛物线焦点, 若|PF |=8, 则点F 到抛物线准线的距离等于三、简答题(70分)1.(12分) 已知椭圆的中心在原点,焦点为F 1()022,-,F 2(0,22),且离心率e =223。
高中数学选修1-1第二章圆锥曲线与方程-单元测试-及答案
高中数学选修1-1第二章圆锥曲线与方程-单元测试-及答案高中数学选修1-1第二章圆锥曲线与方程 单元测试一、选择题(每小题5分,共60分) 1.椭圆122=+my x的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .41B .21C .2D .4 2.过抛物线xy 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6D .43.若直线y =kx +2与双曲线622=-y x的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315 C .315(-,)0D .315(-,)1-4.(理)已知抛物线xy 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( )A .(2,5)B .(-2,5)C .(5,-2) D .(5,2) (文)过抛物线)0(22>=p px y的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若px x 321=+,则||PQ 等于( ) A .4p B .5p C .6pD .8p5.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )(A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠FAF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-y x C .1512322=-y xD .1125322=-y x7.圆心在抛物线)0(22>=y x y上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y xC .01222=+--+y x y xD .041222=+--+y x y x8.双曲线的虚轴长为4,离心率26=e ,1F 、2F 分别是它的左、右焦点,若过1F 的直线与双曲线的右支交于A 、B 两点,且||AB 是||2AF 的等差中项,则||AB 等于( ) A .28 B .24 C .22D .8.9.(理)已知椭圆22221a y x=+(a >0)与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A .2230<<aB .2230<<a 或282>aC .223<a 或 282>a D .282223<<a(文)抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为( )A .0B .23 C .2D .310.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点, MN 中点横坐标为32-,则此双曲线的方程是( ) (A) 14322=-y x (B)13422=-y x (C)12522=-y x(D)15222=-y x11.将抛物线342+-=x xy 绕其顶点顺时针旋转090,则抛物线方程为( )(A )x y -=+2)1(2(B )2)1(2-=+x y (C )xy -=-2)1(2 (D )2)1(2-=-x y12.若直线4=+ny mx 和⊙O ∶422=+y x 没有交点,则过),(n m 的直线与椭圆14922=+y x 的交点个数( )A .至多一个B .2个C .1个D .0个二、填空题(每小题4分,共16分) 13.椭圆198log 22=+y x a 的离心率为21,则a =________. 14.已知直线1+=x y 与椭圆122=+ny mx)0(>>n m 相交于A ,B 两点,若弦AB 的中点的横坐标等于31-,则双曲线12222=-n y m x 的两条渐近线的夹角的正切值等于________.15.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.16.某宇宙飞船的运行轨道是以地球中心F 为焦点的椭圆,测得近地点A 距离地面)km (m ,远地点B 距离地面)km (n ,地球半径为)km (R ,关于这个椭圆有以下四种说法:①焦距长为m n -;②短轴长为))((R n R m ++;③离心率Rn m mn e 2++-=;④若以AB 方向为x 轴正方向,F 为坐标原点,则与F 对应的准线方程为)())((m n R n R m x -++2-=,其中正确的序号为________. 三、解答题(共44分)17.(本小题10分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点到直线22=+-y x 的距离为3.(1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点M 、N.当AN AM =时,求m 的取值范围.18.(本小题10分)双曲线)0,0(12222>>=-b a by a x 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.19.(本小题12分)如图,直线与抛物线2交于),(,),(2211y x B y x A 两点,与x 轴相交于点M ,且121-=y y .(1)求证:M 点的坐标为)0,1(; (2)求证:OB OA ⊥;(3)求AOB ∆的面积的最小值.y x20.(本小题12分)已知椭圆方程为1822=+y x ,射线xy 22=(x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A 、B 两点(异于M ).(1)求证直线AB 的斜率为定值;(2)求△AMB 面积的最大值.三、解答题(20分) 11.(本小题满分10分)已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.12.(10分)已知椭圆2222b y a x +(a >b >0)的离心率36=e ,过点),0(b A -和)0,(a B 的直线与原点的距离为23.(1)求椭圆的方程.(2)已知定点)0,1(-E ,若直线)0(2≠+=k kx y 与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD为直径的圆过E 点?请说明理由.圆锥曲线单元检测答案1. A2.B 3 D 4 理C 文A 5 D 6 A 7 D 8A 9 理B 文B 10 D 11 B 12 B13.24或69 14.34 15.42l 16.①③④ 17.(1)依题意可设椭圆方程为 1222=+y ax ,则右焦点F (,12-a )由题设322212=+-a 解得32=a故所求椭圆的方程为1322=+y x .1322=+y x ………………………………………………4分.(2)设P 为弦MN 的中点,由⎪⎩⎪⎨⎧=++=1322y x m kx y 得)1(36)13(222=-+++m mkx x k由于直线与椭圆有两个交点,,0>∆∴即 1322+<k m①………………6分13322+-=+=∴k mkx x x N M p 从而132+=+=k mm kx yp pmkk m x y k pp Ap 31312++-=+=∴ 又MNAP AN AM⊥∴=,,则kmk k m 13132-=++-即1322+=k m②…………………………8分把②代入①得 22m m > 解得 20<<m 由②得 03122>-=m k解得21>m .故所求m 的取范围是(2,21)……………………………………10分 18.设M )(0,0y x是双曲线右支上满足条件的点,且它到右焦点F 2的距离等于它到左准线的距离2MN ,即MNMF =2,由双曲线定义可知eMF MF eMNMF =∴=211……5分 由焦点半径公式得000x eaex aex ∴=-+ee e a -+=2)1(…………………………7分 而a ee e a ax ≥-+∴≥20)1( 即122≤--e e 解得1221+≤≤-e 但1211+≤<∴>e e ……………………………………10分19. (1 ) 设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=, 代入x y =2得002=--x my y ① 21,y y 是此方程的两根,∴1210=-=y y x ,即M 点的坐标为(1, 0). (2 ) ∵ 121-=y y∴ 0)1(21212122212121=+=+=+y y y y y y y y y y x x∴ OB OA ⊥.(3)由方程①,m y y =+21, 121-=y y , 且 1||0==x OM , 于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴ 当0=m 时,AOB ∆的面积取最小值1. 20.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线AB 方程为)22(2--=-x k y .分别与椭圆方程联立,可解出2284222-+-=k k k xA,2284222-++=k k k x B .∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴22=AB k (定值).(2)设直线AB 方程为mx y +=22,与1822=+y x 联立,消去y 得mxx24162+)8(2=-+m .由0>∆得44<<-m ,且0≠m ,点M 到AB 的距离为3||m d =.设AMB ∆的面积为S . ∴2)216(321)16(321||41222222=≤-==⋅m m d AB S .当22±=m 时,得2max=S.11.解:直线l 与x 轴不平行,设l 的方程为 a ky x += 代入双曲线方程 整理得12)1(222=-++-a kay y k ……………………3分 而12≠-k ,于是122--=+=k aky y y B A T 从而12--=+=k a a ky x T T 即)1,1(22kak ak T --……5分Θ点T 在圆上 012)1()1(22222=-+-+-∴k a k a kak即22+=a k①由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l TO k k 则 0=k或 122+=a k当0=k 时,由①得 la ∴-=,2的方程为 2-=x ;当122+=a k时,由①得 1=a lK ∴±=,3的方程为13+±=y x .故所求直线l 的方程为2-=x 或13+±=y x …………………………10分12.解:(1)直线AB 方程为:0=--ab ay bx . 依题意⎪⎪⎩⎪⎪⎨⎧=+=233622ba ab ac , 解得⎩⎨⎧==13b a ,∴ 椭圆方程为 1322=+y x .(2)假若存在这样的k 值,由⎩⎨⎧=-++=033222y x kx y ,得)31(2k +09122=++kx x .∴)31(36)12(22>+-=∆k k .① 设1(x C ,)1y 、2(x D ,)2y ,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x ,② 而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx yy .要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则1112211-=++⋅x y x y ,即)1)(1(2121=+++x x y y .∴5))(1(2)1(21212=+++++x x k x x k .③将②式代入③整理解得67=k .经验证,67=k ,使①成立.综上可知,存在67=k ,使得以CD 为直径的圆过点E .。
苏教版高中数学(选修2-1)单元测试-第二章圆锥曲线与方程
圆锥曲线与方程综合练习一、选择题:1.已知A(-1,0),B(1,0),点C(x,y)12=,则=+BC AC ( )A .6B .4C .2D .不能确定2. 抛物线px y 22=与直线04=-+y ax 交于A 、B 两点,其中点A 的坐标为 (1,2),设抛物线的焦点为F ,则|FA|+|FB|等于( ) A .7 B .53 C .6 D .53.双曲线22221(,0)x y a b a b-=>的左、右焦点分别为F 1、F 2,过焦点F 2且垂直于x轴的弦为AB ,若︒=∠901B AF ,则双曲线的离心率为 ( )A .)22(21- B .12- C .12+ D .)22(21+4.若椭圆22221(0)x y a b a b +=>>和双曲线221(,0)x y m n m n-=>有相同的焦点F 1、F 2,P 是两曲线的交点,则21PF PF ⋅的值是( ) A .n b -B .m a - C . n b -D . 2a m -5.已知F 是抛物线241x y =的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹 方程是( ) A .122-=y x B .16122-=y x C .212-=y xD .222-=y x6. 给出下列结论,其中正确的是 ( )A .渐近线方程为()0,0>>±=b a x a b y 的双曲线的标准方程一定是12222=-b y a xB .抛物线221x y -=的准线方程是21=xC .等轴双曲线的离心率是2 D.椭圆()0,012222>>=+n m ny m x 的焦点坐标是()(),,0,222221n mF n m F ---7.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为( ) A 、1 B 、2 C 、3 D 、48.一个椭圆中心在原点,焦点12,F F 在x 轴上,P (2)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为 ( )22222222.1.1.1.18616684164x y x y x y x y A B C D +=+=+=+=9.双曲线2214x y k +=的离心率(1,2)e ∈,则k 的取值范围是( ) .(,0).(12,0).(3,0).(60,12)A B C D -∞----10. 方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应11. 12,F F 是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF 的最大值是 .12.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .13.在△ABC 中,AB=BC ,7cos 18B =-.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e= .14.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB>,则FA与FB的比值等于 .三、解答题:15.(1)已知双曲线的渐近线方程为12y x =±,焦距为10,求双曲线的标准方程。
数学人教A选修2-1第二章 圆锥曲线与方程单元检测.docx
高中数学学习材料马鸣风萧萧*整理制作数学人教A选修2-1第二章圆锥曲线与方程单元检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1.设F1,F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为().A.12B.23C.34D.452.设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是().A.y2=-8x B.y2=8xC.y2=-4x D.y2=4x3.已知双曲线222=14x yb-的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于().A.5B.42C.3 D.54.设F1,F2是双曲线22124yx-=的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于().A.42B.83C.24 D.485.过抛物线y2=4x的顶点O作互相垂直的两弦OM,ON,则M的横坐标x1与N的横坐标x2之积为().A.64 B.32C.16 D.46.以椭圆22=1164x y+内的点M(1,1)为中点的弦所在直线的方程为().A.4x-y-3=0 B.x-4y+3=0 C.4x+y-5=0 D.x+4y-5=07.已知双曲线2222=1x ya b-(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为().A.22=154x y-B.22=145x y-C.22=136x y-D.22=163x y-8.若F1,F2是椭圆2214xy+=的左、右焦点,点P在椭圆上运动,则|12PF PF⋅|的最大值是().A.4 B.5C.2 D.1二、填空题(每小题6分,共18分)9.△ABC的两个顶点A,B的坐标分别是(-6,0),(6,0),边AC,BC所在直线的斜率之积等于49-,则顶点C的轨迹方程是____________________.10.抛物线y2=4x的弦AB⊥x轴,若|AB|=43,则焦点F到直线AB的距离为______.11.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为__________.三、解答题(共3小题,共34分)12.(10分)已知直线y=x-4被抛物线y2=2mx(m≠0)截得的弦长为62,求抛物线的标准方程.13.(10分)已知椭圆C:22221x ya b+=(a>b>0)的左焦点F及点A(0,b),原点O到直线F A的距离为22b.(1)求椭圆C的离心率e;(2)若点F关于直线l:2x+y=0的对称点P在圆O:x2+y2=4上,求椭圆C的方程及点P的坐标.14.(14分)设椭圆22221x ya b+=(a>b>0)的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为12-,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足||3k>.参考答案1答案:C 解析:设直线32ax =与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,F 2M =32ac -,故cos 60°=2231222a cF M PF c -==, 解得34c a =,故离心率34e =.2答案:B 解析:∵抛物线的准线方程为x =-2,∴抛物线的开口向右.设抛物线的标准方程为y 2=2px (p >0),则其准线方程为2px =-, ∴22p-=-,解得p =4. ∴抛物线的标准方程为y 2=8x .3答案:A 解析:由双曲线的右焦点与抛物线y 2=12x 的焦点重合,知32pc ==,c 2=9=4+b 2,于是b 2=5,5b =.因此该双曲线的渐近线的方程为52y x =±,即520x y ±=. 故该双曲线的焦点到其渐近线的距离为|35|554d ==+.4答案:C 解析:由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24,故选C . 5答案:C 解析:由已知设OM 的斜率为k ,则ON 的斜率为1k-. 从而OM 的方程为y =kx ,联立方程24,,y x y kx ⎧=⎨=⎩解得M 的横坐标124x k =.同理可得N的横坐标x 2=4k 2,可得x 1x 2=16.6答案:D 解析:设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),则有221122221,1641.164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得21212121()()()()164x x x x y y y y +++-=-, 即212121214()16()y y x x x x y y -+=--+.而AB 的中点为M (1,1), 所以x 1+x 2=2,y 1+y 2=2, 又k AB =2121y y x x --,所以k AB =4211624⨯-=-⨯,于是弦AB 所在直线的方程为y -1=-14(x -1),即x +4y -5=0. 7答案:A 解析:由题意得2222=1x y a b -(a >0,b >0)的两条渐近线的方程为by x a=±,即bx ±ay =0.又圆C 的标准方程为(x -3)2+y 2=4,半径为2,圆心坐标为(3,0),∴a 2+b 2=32=9,且22|3|=2b a b +,解得a 2=5,b 2=4.∴该双曲线的方程为22=154x y -. 8答案:C 解析:依题意a 2=4,b 2=1,3c =,则F 1(3-,0),F 2(3,0).设P (x ,y ),则1PF =(3x --,-y ),2PF =(3x -,-y ).12PF PF ⋅=x 2-3+y 2=x 2-3+1-14x 2=2324x -,因为点P 在椭圆上, 所以-2≤x ≤2,故-2≤34x 2-2≤1, 故12PF PF ⋅=2324x -∈[0,2], 即12PF PF ⋅的最大值是2.9答案:22=13616x y +(x ≠±6,y ≠0) 解析:设C (x ,y ),则k AC ·k BC =4669y y x x ⋅=-+-,整理得4x 2+9y 2=144(x ≠±6,y ≠0).10答案:2 解析:由抛物线的方程可知F (1,0),由|AB |=43且AB ⊥x 轴,得22(23)12A y ==,∴234A A y x ==,∴点F 到直线x =3的距离为2. 11答案:22=1168x y + 解析:由椭圆的第一定义可知△ABF 2的周长为4a =16,得a =4,又离心率为22,即22c a =,所以22c =,故a 2=16,b 2=a 2-c 2=16-8=8,则椭圆C 的方程为22=1168x y +. 12答案:解:设直线与抛物线的交点为(x 1,y 1),(x 2,y 2).由22,4,y mx y x ⎧=⎨=-⎩得x 2-2(4+m )x +16=0, 所以x 1+x 2=2(4+m ),x 1x 2=16,所以弦长=2212(1)()k x x +-=222[4(4)416]22(8)m m m +-⨯=+. 由222(8)=62m m +,解得m =1或m =-9. 经检验,m =1或m =-9均符合题意.所以所求抛物线的标准方程为y 2=2x 或y 2=-18x .13答案:解:由点F (-ae,0),点A (0,b ),及21b e a =-得直线F A 的方程为2=11x y ae e a+--,即22110e x ey ae e --+-=.∵原点O 到直线F A 的距离为2212b ae e =-, ∴222112e a ae e -⋅=-.解得22e =. 答案:解:设椭圆C 的左焦点F 2,02a ⎛⎫- ⎪ ⎪⎝⎭关于直线l :2x +y =0的对称点为P (x 0,y 0),则有00001,2222220,22y x a x a y ⎧=⎪⎪+⎪⎨⎪-⎪⋅+=⎪⎩解得03210x a =,0225y a =. ∵P 在圆x 2+y 2=4上,∴223222+=4105a a ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.∴a 2=8,b 2=(1-e 2)a 2=4.故椭圆C 的方程为22=184x y +,点P 的坐标为68,55⎛⎫ ⎪⎝⎭. 14答案:解:设椭圆C 的左焦点F 2,02a ⎛⎫- ⎪ ⎪⎝⎭关于直线l :2x +y =0的对称点为P (x 0,y 0),则有00001,2222220,22y x a x a y ⎧=⎪⎪+⎪⎨⎪-⎪⋅+=⎪⎩解得03210x a =,0225y a =. ∵P 在圆x 2+y 2=4上,∴223222+=4105a a ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.∴a 2=8,b 2=(1-e 2)a 2=4.故椭圆C 的方程为22=184x y +,点P 的坐标为68,55⎛⎫ ⎪⎝⎭. 设点P 的坐标为(x 0,y 0).由题意,有220022=1x y a b+.①由A (-a,0),B (a,0),得00AP y k x a =+,00BP y k x a=-. 由k AP ·k BP =12-,可得x 02=a 2-2y 02,代入①并整理得(a 2-2b 2)y 02=0. 由于y 0≠0,故a 2=2b 2.于是222212a b e a -==, 所以椭圆的离心率22e =.答案:解:证明:(方法一)依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得00220022,1,y kx x y ab =⎧⎪⎨+=⎪⎩消去y 0并整理得2220222a b x k a b =+.②由|AP |=|OA |,A (-a,0)及y 0=kx 0, 得(x 0+a )2+k 2x 02=a 2.整理得 (1+k 2)x 02+2ax 0=0.而x 0≠0, 于是0221ax k -=+,代入②,整理得 (1+k 2)2=2244a k b ⎛⎫+ ⎪⎝⎭.由a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3.所以||>3k . (方法二)依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0),由点P 在椭圆上,有2220022=1x k x a b+. 因为a >b >0,kx 0≠0,所以2220022<1x k x a a+,即(1+k 2)x 02<a 2.③ 由|AP |=|OA |,A (-a,0), 得(x 0+a )2+k 2x 02=a 2,整理得(1+k 2)x 02+2ax 0=0,于是x 0=221ak -+. 代入③,得(1+k 2)2224(1)a k +<a 2,解得k 2>3, 所以||3k >.。
新人教A版(选修1-1)第二章《圆锥曲线与方程》word单元测试
圆锥曲线与方程测试⑵第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是最符合题目要求的.)21、抛物线y =4x 的焦点坐标为( )A. (0,1)B. (1,0)C.(0,2)D. (2,0) 2、 在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为 5,则p 的值为()A. 2B.1C.丄D.422 23、 若抛物线y2=2px(p 0)的焦点与双曲线X - y1的右焦点重合,则p 的值为124( )A.2B.4C.8D. 4 .. 224、已知抛物线y =2x 上的一个动点,则点p 到点(0,2)的距离与p 到该抛物线的距离 之和的最小值为()v 17A.B.326、当a 为任意实数时,直线(a -1)x - y • 2a 7=0恒过定点p ,则过点p 的抛物线的 标准方程是(C. 59 D. 25、抛物线y 2=4x 上的点 p 到抛物线的准线的距离为d 1,到直线3x-4y • 9=0的距离为d 2则d 1 d 2的最小值为(B.-)C.22A . y 2C.y 9十 2 x 或x29 2 x 或x24 =3y 42B .2D . y9十 24 x 或x y 23 9十 24或2y =2x(y 0)上,并且与抛物线的准线及x轴都相切的圆的方程是7、圆心在抛物线22 小丨小 2 2 c’cA. x y -x-2y - 0B. x y x-2y 1=0 41C.x y —x-2y 1=0D. x y -x-2y 048、抛物线(x-2)2 =2(y-m • 2)的焦点在x轴上,则实数m的值为()3A.0B.C.2D.329、过抛物线y2=4x的焦点作直线I交抛物线于A、B两点若线段AB中点的横坐标为3,则|AB|等于()A.2B.4C.6D.810、将抛物线y =x2 -4x绕其顶点顺时针旋转90°,则抛物线方程为()A. (y I)2 =2 _xB.(y 1)2 = x _2C.(y-1)2=2-xD.(y-1)2=x-211.一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线 x ^0相切,则动圆必过定点()A. (0,2)B. (0, 2)C. (2,0)D. (4,0)12.过抛物线2y二ax (a 0)的焦点F作一直线交抛物线于A、B两点,若线段AF、BF的长分别为m、n,则』^等于()m n1 1 aA. 一B. 一C.2aD.-2a 4a 4第H卷(非选择题共90分)、填空题(本大题共4小题,每小题4分,共16分■把答案填在题中的横线上.)13、若直线ax — y+1 =0经过抛物线y2 =4x的焦点,则实数a= ___________14、已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________15、已知圆C的圆心与抛物线y =4x的焦点关于直线y=x对称•直线4x —3y —2 =0与圆C相交与A、B两点,且| AB | = 6,则圆C的方程为_________21、(12 分)如图,直线丨与抛物线y 2=x 交于A(x 1 , yJ,B(x 2 , y 2)两点, 与x 轴相交于点M ,且 y 1 y 2 - -1 •(1) 求证:M 点的坐标为(1,0); (2) 求证:OA _ OB ; ⑶求 AOB 的面积的最小值•16、如图,过抛物线y 2=2px(p ■ 0)的焦点F 的直线丨交抛物线于点 A 、B,交其准线于点C,若|BC|=2|BF|, 且|AF|=3,则此抛物线的方程为 ____________ .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及 演算步骤.)17、(12 分)已知顶点在原点,焦点在x 轴上的抛物线与直线 y =2x • 1交于P 、Q 两点,|PQ|= 15,求 抛物线的方程18、(12 分)某隧道横断面由抛物线和矩形的三边组成 ,尺寸 如图2所示,某卡车载一集装箱,箱宽3m,车与箱共高 此车能否通过此隧道巧青说明理由•19、(12 分) 过抛物线y 2=4x 的焦点引一直线,已知直线被抛物线截得的弦被焦点分成2:1,求这条直线的方程•20、(12 分)2 2抛物线的顶点在原点,它的准线过双曲线 —2-=1的一个焦点 a b ,且与双曲线实轴垂直已知抛物线与双曲线的交点为3,6 •求抛物线与双曲线的方程 22ni22、(14 分)已知抛物线y2 =4x及点P(2,2),直线l且不过点P ,与抛物线交于点 A,B,(1)求直线I在y轴上截距的取值范围;⑵若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.参考答案一、选择题2 P1.B 因为p=2,所以抛物线y =4x的焦点坐标是(”,0)=(1,0)22.A 抛物线的标准方程为x P,由抛物线的定义知4 •卫=5,解得p = 22 23.C 双曲线的右焦点为(4,0),卫=4= p=8.214.A 依题设P在抛物线准线的投影为P',抛物线的焦点为F,则F(—,0),依抛物线的定义2知P到该抛物线准线的距离为| PP'| PF |,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d =| PF | | PA|_| AF卜9.D 易知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1, d?由抛物5.D 抛物线的焦点为F(1,0),有4 = PF ,而点F到直线的距离d =3 1-4 0 9 12 d1 d26.A由直线方程得a(x+2)—x—y十1 =0,由«!x+2=01 0,得P(-2,3), _x _ y 1=0经检验知A正确.7.D由抛物线的定义可知,所求圆与x轴相切于抛物线的焦点P(^ ,0),从而可求得圆心2(丄,1),半径r =1,所以所求圆的方程为28.B依题意得该抛物线的焦点坐标为1 (x )21(2,; (m-2)),于22(y -1)^1 .故选 D1 3是2 (『2)7,解得m = 3 222线的定义知 | AB |=| AF | | BF |= 4 d 2 = 2 4=810. B 由y =x2-4x • 3=(x-2)2 -1得(x -2)2=:y ・1,绕其顶点顺时针旋转90后开口方向改变,得到(y • 1)2=x - 22 211. C 由抛物线y =8x 的准线方程为x- -2,由题可知动圆的圆心在 y = 8x 上,且恒与抛 物线的准线相切,由定义可知,动圆恒过抛物线的焦点(2,0)1 2 2 112. B 设直线方程为y =kx • 与y =ax 联立消去x 得ax -kx0 ,4a4a22k 122k 1设 A(x !,ax !),B(x 2,ax 2),则捲 x ?,xx 2,/ X 222,a4a a 2a2 221 * 1k 1 k 1n 二 ax 2 ,可得 mn ( ), m n 二 4a4a a a a amn 1 m n 4a填空题213•线 ax-y ,1=0经过抛物线 y =4x 的焦点 F(1,0),则 a • 1 = 0, a =-1211 1 214.由抛物线y =ax -1的焦点坐标(0,1)为坐标原点得,a ,则y x - 1的坐 4a 4 41标轴的交点为(0,-1),(-2,0),(2,0),则以这三点围成的三角形的面积为 4 1=22x 2 (y -1)2 =1016•设 A(x 「yj, Bg y ?),作 AM 、BN 垂直准线于点M 、N,则 BN = BF ,又 BC =2 BF ,得 BC =2 BN ,得/NCB =30”, 有 AC =2 AM =6,设 BF =x ,则 2x+x+3 = 6二 x=1,而捲 +^=3,22 221m =ax t4a 15•抛物线的焦点为 (1,0),所以圆心坐标为2(0,1),=32(0-3-2)25"= 10,圆C 的方程为x2 — = 1,且xx 二丄,••• (3 - R)(1 -卫)=卫=p 一 ,得y2 = 3x •2 4 2 2 4 2三、解答题17•解:设抛物线的方程为y2=2px,则y 2 Px ,消去y得ly = 2x+1把y 1,y 2代入①式得k = 2 2,故所求的直线方程为 2 2x 一 y - 2 2 = 0,20.解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px(p 0,24x -(2 p -4)x 1 = 0, X | x 2 p-22,X 1X 2AB = J i +k 2x 1 -x 2亦』(为 +X 2)2_4x i X 2 = ^{(■^^2)2_4= -、3, p - 4p -12 = 0, p _ -2,或6y 2 - -4x,或 y 2 =12x18.解:取抛物线顶点为原点,水平向右为 x 轴正方向建立直角坐标系 2x 二 ~2py(p 0),当x =3时,y = —3,即取抛物线与矩形的结合点 (3, — 3), 代入x 2- -2py ,得9 =6p ,贝U p = 3,故抛物线方程为x 2- -3y .2已知集装箱的宽为 3m,取x ,则y -」x 2 - - 3.2 3 4 、、、、 3 1而隧道高为 5m, 5m m =4—m 4m .4 4,设抛物线方程为19•解:由 y 2=4x 得焦点 F(1,0),设所求弦两端点为2,yJ ,B =(y : 4小),y2 - -y 14 22 'y 2 y 1 yr y 244①,y 1 y 2又 AB 过焦点 F(-,0),且 y 1y 2 2-p 2 ,故 yy 一4由②③解得丁1=2£y2 - - 2丫 1 = -<2Iy 2 = 22直线k AB将交点3, 6代入得p=2,故抛物线方程为y2=4x,焦点坐标为(1,0), V 丿这也是双曲线的一个焦点,则c =1.又点3, 6也在双曲线上,因此有-92_-^2 =1. [2丿 4a 2 b 2 又a 2 b 2 =1,因此可以解得a 2 =-, b 2 =3,44因此,双曲线的方程为Ax 2—4】/.3 21.解:⑴ 设M 点的坐标为(x 0,O),直线l 方程为= my x 0,代入y 2 =x 得2 y -my-x 0 =0 ① y 「y 2是此方程的两根,二 x()- -y 1y 2 =1,即 M 点的坐标为(i, 0).2 2 ⑵••• y“2 --1 ,•••Ex ? y 』2 y 2 y 〃2 =%丫2(%丫 2 1) =0 ••• OA _ OB .⑶由方程①,y 1 y 2 二 m , %y 2 - -1,且 |OM |=X o =1,于是 S^OB =1〔OM ||y^Y 2 |=*J(y 1 +y 2)2 —4^2 =*如2+4 > 1, •••当m = 0时,.\AOB 的面积取最小值1.22. 解:(1)设直线l 的方程为y = x • b(b = 0),由于直线不过点 P ,因此b = 0y = x + b 22 由」2 得x +(2b-4)x+b =0,由也> 0,解得by = 4x 所以,直线丨在y 轴上截距的取值范围是 (-::,0) 一 (0,1)2n ,m),( ,n),因为AB 斜率为1,所以m • n = 4,42设D 点坐标为, y D ),因为B 、P 、 42 直线 AD 的方程为 y - m 二 —^D —片(x - m) y _ m 2 444 2m 2 2 2m m - 2m即直线AD 与y 轴的交点为(0,2),同理可得BC 与y 轴的交点也为(0,2), 所以AD,BC 交于定点(0,2).2 一 m(2)设A,B 坐标分别为(—— D 共线,所以k PB = k DP ,得y D = =2 — n m — 2my 。
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试
人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程单元测试(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+2. 动圆的圆心在抛物线x 8y 2=上,且动圆恒与直线02x =+相切,则动圆必过点A. (4,0)B. (2,0)C. (0,2)D. (0,-2)3. AB 是抛物线x 18y 2=的一条过焦点的弦,20|AB |=,AD 、BC 垂直于y 轴,D 、C 分别为垂足,则梯形ABCD 的中位线长为A. 5B.211 C.29 D. 104. 方程2sin y 3sin 2x 22-θ++θ=1所表示的曲线是 A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线5. 设P 为椭圆1by a x 2222=+上一点,1F 、2F 为焦点,如果∠75F PF 21=°,∠=12F PF 15°,则椭圆的离心率为A. 22B. 23C. 32D. 36 6. 以椭圆1144y 169x 22=+的右焦点为圆心,且与双曲线116y 9x 22=-的渐近线相切的圆的方程为A. 09x 10y x 22=+-+B. 09x 10y x 22=--+C. 09x 10y x 22=-++D. 09x 10y x 22=+++7. 椭圆11a 4y a 5x 222=++的焦点在x 轴上,而它的离心率的取值范围是A. ⎪⎭⎫ ⎝⎛51,0B. ⎪⎭⎫⎢⎣⎡1,51C. ⎥⎥⎦⎤ ⎝⎛55,0D. ⎪⎪⎭⎫⎢⎢⎣⎡1,55 8. 设双曲线1b y a x 2222=-与1by a x 2222=+-(0a >,0b >)的离心率分别为1e 、2e ,当a 、b 变化时,21e e +的最小值是A. 4B. 24C.2 D. 229. 设椭圆12y 6x 22=+和双曲线1y 3x 22=-的公共焦点分别为1F 、2F ,P 是两曲线的一个交点,则cos ∠21PF F 的值为A.41 B.31 C.32 D. 31-10. 过抛物线x 4y 2=的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标1x 与N 的横坐标2x 之积为A. 64B. 32C. 16D. 411. 抛物线x y 2=和圆()1y 3x 22=+-上最近的两点之间的距离是A. 1B. 2C.1210- D.1211- 12. 已知圆的方程为4y x 22=+,若抛物线过点A (-1,0)、B (1,0),且以圆的切线为准线,则抛物线的焦点F 的轨迹方程是A. 14y 3x 22=+(0y ≠) B. 13y 4x 22=+(0y ≠) C. 14y 3x 22=+(0x ≠) D.13y 4x 22=+(0x ≠)二、填空题(每小题4分,共16分)13. (2004·湖南)1F 、2F 是椭圆C :14y 8x 22=+的焦点,在C 上满足1PF ⊥2PF 的点P的个数为__________。
高中数学 第二章圆锥曲线与方程测试1 A选修11 试题
圆锥曲线与方程 单元测试A 组题〔一共100分〕一.选择题〔每一小题7分〕1162522=+y x 上的一点P 到椭圆一个焦点的间隔 为3,那么P 到另一焦点间隔 为〔 〕 A. 2B. 3C. 5D. 72. 假设椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是〔3,0〕,那么椭圆的HY 方程为〔 〕A. 116922=+y xB. 1162522=+y xC. 1251622=+y xD. 191622=+y x3. 动点P 到点)0,1(M 及点)0,3(N 的间隔 之差为2,那么点P 的轨迹是〔 〕A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线 4. 中心在原点,焦点在x 轴上,焦距等于6,离心率等于53,那么椭圆的方程是〔 〕 A.13610022=+y x B.16410022=+y x C.1162522=+y x D.192522=+y x 5. 抛物线x y 102=的焦点到准线的间隔 是〔 〕A.25 B. 5 C. 215D. 10 二.填空〔每一小题6分〕6. 抛物线x y 62=的准线方程为_____.20x y ±=,焦距为10,这双曲线的方程为_______________.8. 假设曲线1122=++ky k x 表示椭圆,那么k 的取值范围是 .221x my +=,那么它的半长轴长为_______________. 三.解答题〔13+14+14〕10.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公一共点?有一个公一共点?没有公一共点?11. 顶点在原点,焦点在x 轴上的抛物线与直线21y x =+交于P 、Q 两点,|PQ|=15,求抛物线的方程.12.椭圆的焦点为12(0,5),(0,5)F F -,点(3,4)P 是椭圆上的一个点,求椭圆的方程.B 组题〔一共100分〕一.选择题〔每一小题7分〕1. 以椭圆1162522=+y x 的焦点为顶点,离心率为2的双曲线的方程〔 〕A. 1481622=-y xB. 127922=-y xC. 1481622=-y x 或者127922=-y x D. 以上都不对2. 过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于P 、Q ,1F 是另一焦点,假设∠21π=Q PF ,那么双曲线的离心率e 等于〔 〕A.12- B. 2 C. 12+ D. 22+3. 1F 、2F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,那么 Δ12AF F 的面积为〔 〕A. 7B.47 C. 27D. 257 4. 以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是〔 〕A. 23x y =或者23x y -= B. 23x y =C. x y 92-=或者23x y = D. 23x y -=或者x y 92=5. 过抛物线)0(22>=p px y 焦点的直线交抛物线于A 、B 两点,那么AB 的最小值为〔 〕A.2pB. pC. p 2D. 无法确定 二.填空:〔每一小题6分〕6.椭圆5522=+ky x 的一个焦点坐标是)2,0(,那么=k ________.7.双曲线的顶点到渐近线的间隔 为2,焦点到渐近线的间隔 为6,那么该双曲线的离心率为 .2=-y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是_______.9. 椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,那么△21F PF 的面积为________________________. 三.解答题〔13+14+14〕10.点(,)P x y 在曲线2221(0)4x y b b+=>上,求22x y +的最大值.11. 双曲线与椭圆1362722=+y x 有一样焦点,且经过点4),求双曲线的方程.12. k 代表实数,讨论方程22280kx y +-=所表示的曲线.C 组题〔一共50分〕1.抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 那么有〔 〕 A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+D.2213FP FP FP =· 2. 抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的局部相交于点A ,AK l ⊥,垂足为K ,那么AKF △的面积是________________.3.定点(A -,F 是椭圆2211612x y +=的右焦点,在椭圆上求一点M ,使2AM MF +获得最小值时M 点的坐标.4. 设动点P 到点(10)A -,和(10)B ,的间隔 分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.〔1〕证明:动点P 的轨迹C 为双曲线,并求出C 的方程; 〔2〕过点B 作直线交双曲线C 的右支于M N ,两点,试确定λ的范围,使0=⋅ON OM ,其中点O 为坐标原点.圆锥曲线与方程A 组题〔一共100分〕一.选择题: 1.D2.B3.D4.C5.B二.填空:6.32x =-7. 221205x y -=± 8.0>k9. 1,2或三.解答题:10. 解:由222236y kx x y =+⎧⎨+=⎩,得2223(2)6x kx ++=,即22(23)1260k x kx +++= 22214424(23)7248k k k ∆=-+=-当272480k ∆=->,即k k ><或时,直线和曲线有两个公一共点;当272480k ∆=-=,即k k ==或当272480k ∆=-<,即k <<. 11. 解:设抛物线的方程为22y px =,那么22,21y pxy x ⎧=⎨=+⎩消去y 得 21212214(24)10,,24p x p x x x x x ---+=+==2AB x =-===,24120,2,6p p p =--==-或 22412y x y x ∴=-=,或12. 解: 焦点为12(0,5),(0,5)F F -,可设椭圆方程为2222125y x a a +=-;点(3,4)P 在椭圆上,2221691,4025a a a +==-,所以椭圆方程为2214015y x +=.B 组题〔一共100分〕一.选择题: 1.B2.C3.C4.D5.C二.填空:6.1 7.3 8. (4, 2) 9.24 三.解答题: 10.解:法一:设点(2cos ,sin )P b θθ,22224cos 2sin 4sin 2sin 4x y b b θθθθ+=+=-++ 令22,sin ,(11)T x y t t θ=+=-≤≤,2424,(0)T t bt b =-++>,对称轴4bt = 当1,44b b >>即时,max 1|2t T T b ===;当01,044bb <≤<≤即时, 2max 4|44b t bT T ===+ 22max 4,04(2)42,4b b x y b b ⎧+<≤⎪∴+=⎨⎪>⎩法二:由22214x y b +=得2224(1)y x b =-令22T x y =+代入得22442y T y b =-+即22224()444b b T y b =--++〔1〕当222max 044444b b b b b x y ≤<≤==+即时〔2〕2max 424bb b x b y b >>==当时即时22max4,04(2)42,4b b x y b b ⎧+<≤⎪∴+=⎨⎪>⎩11.解:12(0,3)(0,3)F F -由题意知双曲线焦点为,可设双曲线方程为222219y x a a -=-,点4)在曲线上,代入得22436()a a ==或舍22145y x ∴-=双曲线的方程为12.解:当0k <时,曲线22184y x k-=-为焦点在y 轴的双曲线;当0k =时,曲线2280y -=为两条平行于x 轴的直线22y y ==-或;当02k <<时,曲线22184x y k+=为焦点在x 轴的椭圆;当2k =时,曲线224x y +=为一个圆;当2k >时,曲线22184y x k+=为焦点在y 轴的椭圆.C 组题〔一共50分〕1.C2.343.显然椭圆2211612x y +=的14,2,2a c e ===,记点M 到右准线的间隔 为MN那么1,22MF e MN MF MN ===,即2AM MF AM MN +=+ 当,,A M N 同时在垂直于右准线的一条直线上时,2AM MF +获得最小值,此时y y M A ==2211612x y +=得x M =± 而点M在第一象限,M ∴4.解:〔1〕在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<〔常数〕,点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线.方程为:2211x y λλ-=-.〔2〕设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是:22212122(1)(1)(1)k y y k x x kλλλ=--=--. 因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)2101131001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②23λ<.。
高中数学第二章圆锥曲线与方程单元质量测评新人教A版选修21
高中数学第二章圆锥曲线与方程单元质量测评新人教A 版选修21第二章 单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.1.已知双曲线kx 2-y 2=1的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率是( )A.52 B.32C. 3D. 5 答案 A解析 由题意知,渐近线方程为kx ±y =0,所以k =14,所以e =52.2.椭圆(m +1)x 2+my 2=1的长轴长是( ) A.2m -1m -1 B.-2-m mC.2mmD .-21-m m -1答案 C解析 椭圆方程可化为x 211+m +y 21m=1,由题意知m >0,∵11+m <1m ,∴a =mm ,∴椭圆的长轴长2a =2mm.3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A.x 24-y 212=1B.x 212-y 24=1 C.x 23-y 2=1 D .x 2-y 23=1 答案 D解析 根据题意画出草图如图所示⎝⎛⎭⎪⎫不妨设点A 在渐近线y =bax 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2. 又点A 在双曲线的渐近线y =b ax 上, ∴b a=tan60°= 3.又a 2+b 2=4,∴a =1,b =3, ∴双曲线的方程为x 2-y 23=1.故选D.4.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m ≥1或0<m <1C .m ≥1且m ≠5D .0<m <5且m ≠1答案 C解析 直线y =kx +1过定点(0,1),只需该点落在椭圆内或椭圆上,所以025+1m≤1,解得m ≥1.又m ≠5,故选C.5.设椭圆C 1的离心率为715,焦点在x 轴上且长轴长为30.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于10,则曲线C 2的标准方程为( )A.x 224-y 225=1 B.x 225-y 224=1 C.x 215-y 27=1 D.x 225+y 224=1 答案 B解析 由题意知在椭圆C 1中,c a =715,2a =30,∴a =15,c =7,曲线C 2是双曲线,2a 1=10,c =7, ∴b 2=c 2-a 21=72-52=24,∴双曲线C 2的标准方程为x 225-y 224=1.6.设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12 B .1 C.32 D .2 答案 D解析 易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k x(k >0)得k =2.7.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3 D. 2 答案 D解析 设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),不妨设点M 在双曲线的右支上,如图所示,|AB |=|BM |=2a ,∠MBA =120°,过M 作MH ⊥x 轴于H ,则∠MBH =60°,|BH |=a ,|MH |=3a ,所以M (2a ,3a ).将点M 的坐标代入双曲线方程x 2a 2-y 2b2=1,得a =b ,所以e = 2.8.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 答案 A解析 由题意可知抛物线的准线方程为x =-1.如图所示,过A 作AA 1⊥y 轴于点A 1,过B 作BB 1⊥y 轴于点B 1,则S △BCF S △ACF =|BC ||AC |=|BB 1||AA 1|=|BF |-1|AF |-1. 9.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.43 答案 D解析 因为A (-2,3)在抛物线y 2=2px 的准线上,所以-p2=-2,所以p =4,所以y 2=8x .由于直线AB 的斜率不为0.设直线AB 的方程为x =k (y -3)-2,联立直线AB 与抛物线的方程,得⎩⎪⎨⎪⎧x =k (y -3)-2,y 2=8x ,消元得y 2-8ky +24k +16=0①,所以Δ=(-8k )2-4(24k +16)=0,即2k 2-3k -2=0,解得k =2或k =-12(舍去).将k =2代入①,解得y =8,所以x =8,所以B (8,8).又F (2,0),所以k BF =8-08-2=43.10.设过抛物线y 2=4x 的焦点F 的直线l 交抛物线于点A ,B ,若以AB 为直径的圆过点P (-1,2),且与x 轴交于M (m ,0),N (n,0)两点,则mn =( )A .3B .2C .-3D .-2 答案 C解析 解法一:抛物线y 2=4x 的焦点坐标为F (1,0),准线方程为x =-1, 设直线AB 的方程为x =ty +1,A ,B 坐标分别为⎝ ⎛⎭⎪⎫y 214,y 1,⎝ ⎛⎭⎪⎫y 224,y 2,由⎩⎪⎨⎪⎧x =ty +1,y 2=4x 得y 2-4ty -4=0,所以y 1+y 2=4t ,y 1y 2=-4,x 1+x 2=ty 1+1+ty 2+1=t (y 1+y 2)+2=4t 2+2,所以x 1+x 22=2t 2+1,y 1+y 22=2t ,则圆心D (2t 2+1,2t ).由抛物线的性质可知:|AB |=x 1+x 2+2=4(t 2+1), 点P 到圆心的距离d =[2t 2+1-(-1)]2+(2t -2)2. 由题意可知d =12|AB |,解得t =1,则圆心为(3,2),半径为4.所以圆的标准方程为(x -3)2+(y -2)2=42.当y =0时,求得与x 轴交点坐标,假设m <n ,则m =3-23,n =3+23,所以mn =-3.解法二:设直线l 的方程为x =ty +1,由⎩⎪⎨⎪⎧y 2=4x ,x =ty +1,得y 2-4ty -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t . 又以AB 为直径的圆过点P (-1,2),P 点在准线上,故P 为切点,故AB 中点的纵坐标为2.因此y 1+y 22=2t =2,即t =1.所以直线l 的方程为x =y +1,圆心为(3,2),因此圆的方程为(x -3)2+(y -2)2=16. 令y =0得x 2-6x -3=0,故mn =-3.11.已知|AB →|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP →=13OA →+23OB →,则动点P的轨迹方程是( )A.x 24+y 2=1 B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1 答案 A解析 设P (x ,y ),A (0,y 0),B (x 0,0),由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|AB →|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9,化简整理得动点P 的轨迹方程是x 24+y 2=1.12.设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过点F 且斜率为-1的直线l 与双曲线C 的两条渐近线分别交于A ,B 两点,若AB →=-3AF →,则双曲线C 的离心率e 等于 ( )A.103 B.52 C. 5 D.343答案 D解析 设F (c,0),则过双曲线:x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 且斜率为-1的直线l的方程为y =-(x -c ),而渐近线方程是y =±b ax ,由⎩⎪⎨⎪⎧ y =c -x ,y =-b a x 得B ⎝⎛⎭⎪⎫ac a -b ,-bc a -b ,由⎩⎪⎨⎪⎧y =c -x ,y =b ax 得A ⎝⎛⎭⎪⎫ac a +b ,bc a +b , AB →=⎝⎛⎭⎪⎫2abc a 2-b 2,-2abc a 2-b 2,AF →=⎝ ⎛⎭⎪⎫bc a +b ,-bc a +b , 由AB →=-3AF →,得⎝ ⎛⎭⎪⎫2abc a 2-b 2,-2abc a 2-b 2=-3⎝ ⎛⎭⎪⎫bca +b ,-bc a +b , 则2abc a 2-b 2=-3·bc a +b ,即b =53a , 则c =a 2+b 2=343a ,则e =c a =343. 第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________. 答案 9解析 由于抛物线y 2=4x 的焦点为F(1,0),准线为x =-1,设点M 的坐标为(x ,y),则x +1=10,所以x =9.故M 到y 轴的距离是9.14.设F 1,F 2为椭圆x 29+y25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为________. 答案513解析 因为线段PF 1的中点在y 轴上,所以PF 2与x 轴垂直,且点P 的坐标为⎝ ⎛⎭⎪⎫2,±53,所以|PF 2|=53,则|PF 1|=2a -|PF 2|=133,|PF 2||PF 1|=513.15.过双曲线x 216-y 29=1的一个焦点F 作弦AB ,则1|AF|+1|BF|=________.答案 89解析 采用特例法即可求得. 不妨设焦点F 为右焦点,则F(5,0). 当AB⊥x 轴时,A ⎝ ⎛⎭⎪⎫5,94,B ⎝ ⎛⎭⎪⎫5,-94, 所以|AF|=|BF|=94,故1|AF|+1|BF|=89. 16.设椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别是F 1,F 2,线段F 1F 2被点⎝ ⎛⎭⎪⎫b 2,0分成3∶1的两段,则此椭圆的离心率为________.答案22解析 由题意,得b 2+c c -b 2=3⇒b 2+c =3c -32b ⇒b =c ,因此e =ca=c 2a2=c 2b 2+c2=12=22. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A ,B ,求双曲线C 的离心率e 的取值范围.解 由双曲线C 与直线l 相交于两个不同的点,知方程组⎩⎪⎨⎪⎧x 2a2-y 2=1,x +y =1有两个不同的实数解.消去y 并整理,得(1-a 2)x 2+2a 2x -2a 2=0.所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0.解得0<a <2且a≠1.所以双曲线的离心率e =1+a 2a =1a2+1. 因为0<a <2且a≠1, 所以e >62且e≠ 2. 故离心率e 的取值范围为⎝⎛⎭⎪⎫62,2∪(2,+∞). 18.(本小题满分12分)平面内与两定点A 1(-a,0),A 2(a ,0)(a>0)连线的斜率之积等于非零常数m 的点的轨迹,加上A 1,A 2两点所成的曲线C 可以是圆、椭圆或双曲线.求曲线C 的方程,并讨论C 的形状与m 值的关系.解 设动点为M ,其坐标为(x ,y).当x≠±a 时,由条件可得kMA1·kMA2=y x +a ·y x -a =y 2x 2-a 2=m ,即mx 2-y 2=ma 2(x≠±a).又A 1(-a,0),A 2(a,0)的坐标满足mx 2-y 2=ma 2,故依题意,曲线C 的方程为mx 2-y 2=ma 2. 当m<-1时,曲线C 的方程为x 2a 2+y 2-ma 2=1,C 是焦点在y 轴上的椭圆;当m =-1时,曲线C 的方程为x 2+y 2=a 2,C 是圆心在原点的圆; 当-1<m<0时,曲线C 的方程为x 2a 2+y2-ma 2=1,C 是焦点在x 轴上的椭圆;当m>0时,曲线C 的方程为x 2a 2-y2ma2=1,C 是焦点在x 轴上的双曲线.19.(本小题满分12分)已知向量m 1=(0,x ),n 1=(1,1),m 2=(x,0),n 2=(y 2,1)(其中x ,y 是实数),又设向量m =m 1+2n 2,n =m 2-2n 1,且m ∥n ,点P (x ,y )的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与y 轴的正半轴的交点为M ,过点M 作一条直线l 与曲线C 交于另一点N ,当|MN |=423时,求直线l 的方程.解 (1)由已知,得m =(0,x )+(2y 2,2)=(2y 2,x +2),n =(x,0)-(2,2)=(x -2,-2).因为m ∥n ,所以2y 2(-2)-(x +2)(x -2)=0,即所求曲线C 的方程是x 22+y 2=1.(2)由(1)求得点M (0,1),显然直线l 与x 轴不垂直. 故可设直线l 的方程为y =kx +1.由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +1,消去y ,得(1+2k 2)x 2+4kx =0,解得x 1=0,x 2=-4k 1+2k2(x 1,x 2分别为点M ,N 的横坐标).由|MN |=1+k 2|x 1-x 2|=1+k 2·⎪⎪⎪⎪⎪⎪4k 1+2k 2=423,解得k =±1. 所以直线 l 的方程为x -y +1=0或x +y -1=0. 20.(本小题满分12分)已知双曲线的方程为2x 2-y 2=2. (1)求以点A (2,1)为中点的双曲线的弦所在的直线方程;(2)过点B (1,1)能否作直线l ,使l 与所给双曲线交于Q 1,Q 2两点,且点B 是弦Q 1Q 2的中点?如果存在,求出直线l 的方程;如果不存在,请说明理由.解 (1)设以点A (2,1)为中点的弦的两端点分别为P 1(x 1,y 1),P 2(x 2,y 2),则有x 1+x 2=4,y 1+y 2=2,x 1≠x 2.由P 1,P 2在双曲线上,得2x 21-y 21=2,2x 22-y 22=2,两式相减,得2(x 1+x 2)(x 1-x 2)-(y 1+y 2)·(y 1-y 2)=0.则2×4(x 1-x 2)-2(y 1-y 2)=0,即y 1-y 2x 1-x 2=4, 故中点弦所在的直线方程为y -1=4(x -2),即4x -y -7=0.(2)假设直线l 存在,可利用(1)中的方法求出直线l 的方程为y -1=2(x -1),即2x -y -1=0.联立方程,得⎩⎪⎨⎪⎧2x 2-y 2=2,2x -y -1=0,消去y ,得2x 2-4x +3=0,方程的判别式Δ=(-4)2-4×2×3=-8<0,所以方程无实根,因此直线l 与双曲线无交点.故满足条件的直线l 不存在.21.(本小题满分12分)在平面直角坐标系中, △ABC 的两个顶点为B (0,-1),C (0,1),平面内两点P ,Q 同时满足:①PA →+PB →+PC →=0;②|QA →|=|QB →|=|QC →|;③PQ →∥BC →.(1)求顶点A 的轨迹E 的方程;(2)过点F (2,0)作两条互相垂直的直线l 1,l 2;直线l 1,l 2与点A 的轨迹E 的相交弦分别为A 1B 1,A 2B 2,求四边形A 1A 2B 1B 2的面积S 的最小值.解 (1)∵PB →+PC →=2PO →,由①知PA →=-2PO →, ∴P 为△ABC 的重心.设A (x ,y ),则P ⎝ ⎛⎭⎪⎫x 3,y3. 由②知Q 是△ABC 的外心, ∴Q 在x 轴上.由③知Q ⎝ ⎛⎭⎪⎫x3,0. 由|QC →|=|QA →|,得⎝ ⎛⎭⎪⎫x 32+1=⎝ ⎛⎭⎪⎫x -x 32+y 2, 化简整理,得x 23+y 2=1(x ≠0).(2)F (2,0)恰为x 23+y 2=1的右焦点,当直线l 1,l 2的斜率存在且不为0时,设直线l 1的方程为my =x -2, 由⎩⎨⎧my =x -2,x 2+3y 2-3=0⇒(m 2+3)y 2+22my -1=0,设A 1(x 1,y 1),B 1(x 2,y 2),则y 1+y 2=-22m m 2+3,y 1y 2=-1m 2+3, 所以|A 1B 1|=m 2+1|y 1-y 2|=23(m 2+1)m 2+3.同理|A 2B 2|=23⎝ ⎛⎭⎪⎫1m 2+11m2+3=23(m 2+1)3m 2+1, 则S =6·(m 2+1)2(m 2+3)(3m 2+1)≥6·(m 2+1)2⎣⎢⎡⎦⎥⎤4(m 2+1)22=32, 当m 2+3=3m 2+1,即m =±1时取等号.当直线l 1,l 2有一条直线斜率不存在时,另一条直线的斜率一定为0,此时S =2>32.所以四边形A 1A 2B 1B 2的面积的最小值为32.22.(本小题满分12分)过抛物线C :x 2=2py (p >0)的焦点F 作直线l 与抛物线C 交于A ,B 两点,当点A 的纵坐标为1时,|AF |=2.(1)求抛物线C 的方程;(2)若直线l 的斜率为2,问抛物线C 上是否存在点M ,使得MA ⊥MB ?并说明理由. 解 (1)由抛物线的定义得|AF |等于点A 到准线y =-p 2的距离, 所以1+p2=2,解得p =2. 所以抛物线C 的方程为x 2=4y .(2)因为抛物线C 的焦点为F (0,1),所以直线l 的方程为y =2x +1,设点A ,B ,M 的坐标分别为⎝ ⎛⎭⎪⎫x 1,x 214,⎝ ⎛⎭⎪⎫x 2,x 224,⎝ ⎛⎭⎪⎫x 0,x 204,由方程组⎩⎪⎨⎪⎧ x 2=4y ,y =2x +1,消去y 得x 2=4(2x +1),即 x 2-8x -4=0,由根与系数的关系得x 1+x 2=8,x 1x 2=-4.因为MA ⊥MB ,所以MA →·MB →=0. 所以(x 1-x 0)(x 2-x 0)+⎝ ⎛⎭⎪⎫x 214-x 204⎝ ⎛⎭⎪⎫x 224-x 204=0. 所以(x 1-x 0)(x 2-x 0)+116(x 1-x 0)(x 2-x 0)(x 1+x 0)(x 2+x 0)=0. 因为M 不与A ,B 重合,所以(x 1-x 0)(x 2-x 0)≠0.所以1+116(x 1+x 0)(x 2+x 0)=0, 所以x 1x 2+(x 1+x 2)x 0+x 20+16=0,所以x 20+8x 0+12=0.因为Δ=64-48>0,所以方程x 20+8x 0+12=0有解,即抛物线C 上存在点M ,使得MA ⊥MB .。
第二章圆锥曲线与方程单元测试卷【精选文档】
第二章圆锥曲线与方程单元测试卷一、选择题:1.双曲线2214x y -=的实轴长为( )A .3B .4C .5D .122.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .12x = D .14x =-3.已知椭圆221102x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .84.抛物线214x y =的焦点到准线的距离为( ) A .2 B .4 C .18 D .125.已知椭圆()222104x y a a +=>与双曲线22193x y -=有相同的焦点,则a 的值为( )B 。
C.4 D 。
106.若双曲线()2222103x y a a -=>的离心率为2,则实数a 等于( )A 。
2BC 。
32D.1 7.曲线221259x y +=与曲线()2219259x y k k k+=<--的( ) A 。
长轴长相等 B.短轴长相等 C 。
焦距相等 D.离心率相等8.已知抛物线2:4C y x =的焦点为F ,点,A B 在C 上且关于x 轴对称,点,M N 分别为,AF BF 的中点,且AN BM ⊥,则AB =( )A .B .C .8或8D .12或129.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线过点,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程是( )A .2212128x y -=B .2212821x y -= C .22134x y -=D .22143x y -= 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )A 。
2 B 。
3 D.9211.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)412.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为ab的值为( )A .B .C .D .第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横一上。
高中数学《圆锥曲线与方程》单元测试
A.1 B. 3 C.1 D. 3 22
3.(2019 年怀化模拟)已知椭圆ax22+by22=1(a>b>0)的左、右顶点分别为 A,B,左、右焦点分别
为 F1,F2,若|AF1|,|F1F2|,|F1B|成等差数列,则此椭圆的离心率为( )
A.1 B. 5 C.1 D. 5-2 254
4.(2019 年汕头模拟)双曲线x2-y2=1(mn≠0)的离心率为 2,有一个焦点与抛物线 y2=4x 的焦 mn
e=c= a
3,∴c=2 2
3,
∴b2=42-(2 3)2=4,∴椭圆的方程为 x2 +y2=1.] 16 4
6.(2019 年福建模拟)过抛物线 y2=8x 的焦点,作倾斜角为 45°的直线,则被抛物线截得的弦
长为( )
A.8 B.16 C.32 D.64 【答案】B [抛物线中 2p=8,p=4,则焦点坐标为(2,0),过焦点且倾斜角为 45°的直线方
的椭圆.]
10.(2019 年陕西模拟)设圆锥曲线Г的两个焦点分别为 F1,F2.若曲线Г上存在点 P 满足
M,N 与圆 C 相切的两直线相交于点 P,则点 P 的轨迹方程为( )
A.x2-y2=1(x>1) 8
B.x2-y2=1(x<-1) 8
C.x2+y2=1(x>0) 8
D.x2- y2 =1(x>1) 10
12.(2019
年太原模拟)已知椭圆
C:ax22+by22=1(a>b>0)的离心率为
3,双曲线 2
13.(2019
年青岛模拟)设
F1,F2
为椭圆x2+y2=1 95
的两个焦点,点
P
在椭圆上,若线段
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章圆锥曲线与方程单元测试卷一、选择题:1.双曲线2214x y -=的实轴长为( )A .3B .4C .5D .122.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .12x =D .14x =-3.已知椭圆221102x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .84.抛物线214x y =的焦点到准线的距离为( ) A .2 B .4 C .18 D .12、5.已知椭圆()222104x y a a +=>与双曲线22193x y -=有相同的焦点,则a 的值为( )C.4D.106.若双曲线()2222103x y a a -=>的离心率为2,则实数a 等于( )A.2B.C.32D.1 7.曲线221259x y +=与曲线()2219259x y k k k+=<--的( ) A.长轴长相等 B.短轴长相等 C.焦距相等 D.离心率相等8.已知抛物线2:4C y x =的焦点为F ,点,A B 在C 上且关于x 轴对称,点,M N 分别为,AF BF 的中点,且AN BM ⊥,则AB =( )A .B .C .8或8D .12或12-…9.已知双曲线22221x y a b -=(0,0)a b >>的一条渐近线过点,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程是( )A .2212128x y -=B .2212821x y -= C .22134x y -=D .22143x y -= 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )D.9211.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .(0,]2 B .3(0,]4 C .[2 D .3[,1)412.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为2-,则ab的值为( )A .B .C .D . 第Ⅱ卷(非选择题共90分)@二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横一上.13.若双曲线11622=-mx y 的离心率2=e ,则=m ________.14.动圆经过点(3,0)A ,且与直线:3l x =-相切,则动圆圆心M 的轨迹方程是____________.15.已知椭圆C :2213x y +=,斜率为1的直线l 与椭圆C 交于,A B 两点,且2AB =,则直线l 的方程为___________.16.已知抛物线x y 42=,过其焦点F 作直线l 交抛物线于,A B 两点,M 为抛物线的准线与x 轴的交点,34tan =∠AMB ,则=AB _____. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知:p 方程22192x y m m +=-表示焦点在x 轴上的椭圆,:q 双曲线2215x y m -=的离心率e ∈⎝. (1)若椭圆22192x y m m +=-的焦点和双曲线2215x y m-=的顶点重合,求实数m 的值; (2)若“p q ∧”是真命题,求实数m 的取值范围.<18.(本小题满分12分)已知抛物线2:4C y x =与直线24y x =-交于A B ,两点. (1)求弦AB 的长度;(2)若点P 在抛物线C 上,且ABP ∆的面积为12,求点P 的坐标. 19.(本小题满分12分)设双曲线222:1(0)x C y a a-=>与直线:1l x y +=交于两个不同的点,A B ,求双曲线C 的离心率e 的取值范围.20.(本小题满分12分)已知抛物线()220y px p =>上的点()3,T t 到焦点F 的距离为4. (1)求t ,p 的值;(2)设A ,B 是抛物线上分别位于x 轴两侧的两个动点,且5OA OB ⋅=(其中O 为坐标原点).求证:直线AB 过定点,并求出该定点的坐标.`21.(本小题满分12分)已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点为)F,实轴长为2,经过点()2,1M 作直线l 交双曲线C 于,A B 两点,且M 为AB 的中点. (1)求双曲线C 的方程; (2)求直线l 的方程. 22.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的离心率2e =,焦距为2.(1)求椭圆C 的方程;(2)已知椭圆C 与直线0x y m -+=相交于不同的两点,M N ,且线段MN 的中点不在圆221x y +=内,求实数m 的取值范围.第二章圆锥曲线与方程单元测试卷 参考答案及解析1. 【答案】B 【解析】由双曲线方程可知24,2,24a a a =∴=∴=,所以实轴长为4. @2. 【答案】B 【解析】22y x =,则212x y =,则抛物线开口向上,且112,24p p ==,可得准线方程为18y =-.3. 【答案】D221=,显然2106m m m ->-⇒>且2222-=,解得8m =.4. 【答案】C 【解析】抛物线214x y =的焦点到准线的距离为p ,而112,48p p =⇒=因此选C.5. 【答案】C 【解析】根据题意可知249312a -=+=,结合0a >的条件,可知4a =,故选C.6. 【答案】B 【解析】∵2ce a==,∴2c a =,又2239b ==,222c a b =+,∴2249,a a a =+=7. 【答案】C 【解析】曲线221259x y +=表示的椭圆焦点在x 轴上,长轴长为10,短轴长为6,离心率为45,焦距为8.曲线()2219259x y k k k +=<--表示的椭圆焦点在x 轴上,长轴长为8.故选C .8. 【答案】D 【解析】设)2,(),2,(t t B t t A -,则),21(),,21(t t N t t M -++,所以1(,2tAN -=-,1(2tBM -=,依据AN BM ⊥可得09)21(2=--t t ,可得310±=t ,故||AB=12= 9. 【答案】D 【解析】双曲线的一条渐近线是b y x a =2ba=①,抛物线2y =的准线是x =c =2227a b c +==②,由①②联立解得2a b =⎧⎪⎨=⎪⎩,所以双曲线方程为22143x y -=.故选D .10. 【答案】A 【解析】由题意,设P 在抛物线准线的投影为P ',抛物线的焦点为F ,则1(,0)2F ,根据抛物线的定义可知点P 到该抛物线的准线的距离为PP PF '=,则点P 到点A (0,2)的距离与点P 到该抛物线准线的距离之和d PF PA AF =+≥==,故选A.|11. 【答案】A 【解析】设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而四边形1AF BF 是平行四边形,所以1BF BF AF +=4BF +=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,则12b ≤<,又22224c a b b =-=-,所以0c <≤02ca<≤. 12. 【答案】B 【解析】双曲线221ax by +=的渐近线方程可表示为220ax by +=,由221,0,y x ax by =-⎧⎨+=⎩得()220a b x bx b +-+=,设()()1122,,,A x y B x y ,则12x x +2b a b =+,则122ay y a b +=+,所以过原点和线段AB 中点的直线的斜率为12121212222y y y y a k x x x x b ++====-++,故选B . 13. 【答案】48【解析】依题意离心率2e ==,解得48m =. 14. 【答案】212y x =【解析】设点(,)M x y ,设M 与直线:3l x =-的切点为N ,则MA MN =,即动点M 到定点A 和定直线:3l x =-的距离相等,所以点M 的轨迹是抛物线,且以(3,0)A 为焦点,以直线:3l x =-为准线,所以6p =,所以动圆圆心的轨迹方程为212y x =. 15. 【答案】 1.y x =±【解析】设直线方程为y x b =+2246330x bx b ++-=, 21212633,b b x x x x -∴+=-=,121AB x =-,1.y x =±AB 的方程()1-=x k y ,()11,y x A ,()22,y x B ,因为34tan =∠AMB ,所以341111122112211=+⋅+++-+x y x y x yx y ,整理得()()()2121213411342y y x x x x k +++=-,①()1-=x k y 与x y 42=联立可得()0422222=++-k x k x k ,可得121=x x ,24221+=+kx x ,则421-=y y ,代入①可得,()2214342kx x k ⋅=-,所以32138k x x =-,所以232238424⎪⎭⎫⎝⎛=-⎪⎭⎫ ⎝⎛+k k ,解得33±=k ,所以1424221=+=+k x x ,所以164196311=-⋅+=AB .17. 【答案】(1)43m =(2)2.53m <<【解析】(1)由925m m --=,得43m =.((2)由题意得,p 与q 同时为真,当p 为真时,920m m ->>,解得03m <<,党q 为真时,350,225mm +><<,解得2.55m <<,当p 真、q 真时,032.55m m <<⎧⎨<<⎩,∴实数m 的取值范围是2.53m <<.18. 【答案】(1) (2)()9,6或()4,4-【解析】 (1)设()11,A x y 、()22,B x y ,由224,4,y x y x =-⎧⎨=⎩得2540x x -+=,0∆>. 解方程得1x =或4,∴A 、B 两点的坐标为()1,2-、()4,4d ,则PAB S =, ∴20y -,解得06y =或04y =- P )9,6或()4,4-. 19. 【答案】()2,+∞⎝【解析】由C 与l 相交于两个不同的点,可知方程组2221,1,x y ax y ⎧-=⎪⎨⎪+=⎩有两组不同的解,消去y ,并整理得()22221220,a x a x a -+-=()242210,4810,a a a a ⎧-≠⎪∴⎨+->⎪⎩解得01a a <<≠且, 而双曲线C的离心率e ==2e e >≠且, 故双曲线C 的离心率e的取值范围为()2,2⎛+∞ ⎝20. 【答案】(1)2p =,t =±(2)直线AB 过定点()5,0【解析】(1)由抛物线的定义得,342p+=,解得2p =, 所以抛物线的方程为24y x =,代入点()3,T t ,可解得t =±(2)设直线AB 的方程为x my n =+,211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,<联立24,,y x x my n ⎧=⎨=+⎩消元得2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅=,得()21212516y y y y +=,所以1220y y =-或124y y =(舍去), 即420n -=-,即5n =,所以直线AB 的方程为5x my =+,所以直线AB 过定点()5,0.21. 【答案】(1)2212y x -=(2)47y x =-【解析】(1)由已知得22,a c ==2221,2a b c a ∴=∴=-=.所以双曲线C 的方程为2212y x -=.(2)设点()()1122,,,A x y B x y ,由题意可知直线l 的斜率存在,则可设直线l 的方程为()12y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线C 的方程2212y x -=,得()()()22222121220k x k k x k ------=,① :由题意可知220k -≠,所以()12212222M k k x x x k-+===-,解得4k =. 当4k =时,方程①可化为21456510x x -+=.此时25656512800∆=-⨯=>,方程①有两个不等的实数解. 所以直线l 的方程为47.y x =-22. 【答案】(1)2212x y +=(2)m <≤m ≤< 【解析】(1)由题意知,22,2c e c a ===解得1,a c ==又222a b c -=,222,1a b ∴==.故椭圆的方程为2212x y +=.(2)联立得220,1,2x y m x y -+=⎧⎪⎨+=⎪⎩消去y 可得2234220.x mx m ++-= 则()221612220m m m ∆=-->⇒<<设()()1122,,,M x y N x y ,则124,3m x x +=-则122.3m y y += ∴MN 中点的坐标为2,33m m ⎛⎫-⎪⎝⎭,因为MN 的中点不在圆221x y +=内,所以222133m m m ⎛⎫⎛⎫-+≥⇒≥ ⎪ ⎪⎝⎭⎝⎭或5m ≤-,综上,可知5m <≤-或5m ≤<。