第七章 糖的化学和糖代谢- - 4

合集下载

第七章 糖代谢—糖酵解

第七章 糖代谢—糖酵解

⑦、 1,3-二磷酸甘油酸将磷酰基转给 , 二磷酸甘油酸将磷酰基转给ADP形成 磷酸甘油 形成3-磷酸甘油 二磷酸甘油酸将磷酰基转给 形成 酸和ATP 酸和
磷酸甘油酸激酶
催化此反应的酶是磷酸甘油酸激酶。 3- 磷酸甘油醛氧化产生 催化此反应的酶是磷酸甘油酸激酶。 磷酸甘油酸激酶 的高能中间物再转化成3 磷酸甘油酸并产生ATP, 产生ATP 的高能中间物再转化成3-磷酸甘油酸并产生ATP,这是酵解过程中 第一次产生ATP的反应 也是底物水平磷酸化反应。 底物水平磷酸化反应 第一次产生ATP的反应,也是底物水平磷酸化反应。因为葡萄糖分 ATP的反应, 解成2分子三碳糖,故可产生2分子ATP。 解成2分子三碳糖,故可产生2分子ATP。 ATP
糖原
非糖物质 脂肪、 脂肪、氨基酸
第二节 葡萄糖的分解代谢
1、无氧分解 、 指少数生物或生物的某些组织在缺氧的条件下, 指少数生物或生物的某些组织在缺氧的条件下,糖分 解并释放能量,但分解不完全, 解并释放能量,但分解不完全,释放的能量也大大少于 糖的有氧氧化。 糖的有氧氧化。
EMP
无氧
酵解: 酵解: 葡萄糖
2 、纤维素的水解
纤维素酶
纤维素
葡萄糖
3 、寡糖的降解
麦芽糖酶
麦芽糖
蔗糖酶
2 α-葡萄糖
蔗 糖
α-葡萄糖 + β-果糖
乳糖酶
乳 糖
α-葡萄糖 + β-半乳糖 葡萄糖 半乳糖
二 、糖的的来源和去路
消化吸收
氧化分解
CO2、H2O、ATP 、 、
食物中的糖
分解 来源 去路 合成
肝糖原
血糖
糖异生 转化
③ பைடு நூலகம்酸烯醇式丙酮酸

第七章 糖代谢—有氧氧化和三羧酸循环

第七章 糖代谢—有氧氧化和三羧酸循环

(8). 苹果酸脱氢生成草酰乙酸:
TCA中第4次氧化还原反应,由L-苹果酸脱氢酶催化,NAD+是辅酶。
TCA循环小节: 1、总体概况
乙酰CoA
H2 O NADH + H+
草酰乙酸 苹果酸
HSCoA
柠檬酸
H2O
H2O
延胡索酸
FAD.2H
琥珀酸
HSCoA
GTP
三 羧 酸 循 环
GDP + Pi
(顺乌头酸)
6×6-磷酸葡萄糖 + 12 NADP+ 5×6-磷酸果糖 + 12NADPH+H+ + 6CO2
一、 磷酸戊糖途径的生理意义: 1955年Gunsalas发现并提出单磷酸己糖支路(HMP),又 称戊糖途径。
磷酸戊糖途径具有以下功能: (1)产生的NAPH为生物合成提供还原力,例 如脂肪酸、固醇类物质的合成。 (2)在无氧和有氧分解受阻的情况下,也能将 糖分解成CO2,并释放出大量的能量。 (3)5-磷酸核糖是核酸合成的原料。
6 种辅助因子:焦磷酸硫胺素(TPP)、硫辛酸、CoA、FAD、NAD、
Mg2+
丙酮酸的氧化脱羧
丙酮酸 + NAD+ + HSCoA
丙酮酸脱氢酶复合体(系)
丙酮酸脱氢酶(E1) 二氢硫辛酰胺转乙酰酶(E2) 二氢硫辛酰胺脱氢酶(E3)
乙酰CoA + NADH + H+ + CO2
丙酮酸脱氢酶复合体的组成及其作用机制
CH2OH C O
转醛酶是催化含有一个酮基、二 个醇基的三碳基团转移的酶。其 接受体是亦是醛,但不需要TPP。
CH2OH C HO C O H

生物化学习题-第七章:糖代谢

生物化学习题-第七章:糖代谢

第七章糖代谢一、知识要点(一)糖酵解途径:糖酵解途径中,葡萄糖在一系列酶的催化下,经10步反应降解为2分子丙酮酸,同时产生2分子NADH+H+和2分子ATP。

主要步骤为(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛和磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H及磷酸变成丙酮酸,脱去的2H 被NAD+所接受,形成2分子NADH+H+。

(二)丙酮酸的去路:(1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1分子NADH+H+。

乙酰辅酶A进入三羧酸循环,最后氧化为CO2和H2O。

(2)在厌氧条件下,可生成乳酸和乙醇。

同时NAD+得到再生,使酵解过程持续进行。

(三)三羧酸循环:在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A与草酰乙酸缩合成柠檬酸,进入三羧酸循环。

柠檬酸经脱水、加水转变成异柠檬酸,异柠檬酸经过连续两次脱羧和脱氢生成琥珀酰CoA;琥珀酰CoA发生底物水平磷酸化产生1分子GTP和琥珀酸;琥珀酸脱氢,加水及再脱氢作用依次变成延胡索酸、苹果酸和循环开始的草酰乙酸。

三羧酸循环每进行一次释放2分子CO2,产生3分子NADH+H+,和一分子FADH2。

(四)磷酸戊糖途径:在胞质中,磷酸葡萄糖进入磷酸戊糖代谢途径,经过氧化阶段和非氧化阶段的一系列酶促反应,被氧化分解成CO2,同时产生NADPH + H+。

其主要过程是G-6-P脱氢生成6-磷酸葡萄糖酸,再脱氢脱羧生成核酮糖-5-磷酸。

6分子核酮糖-5-磷酸经转酮反应和转醛反应生成5分子6-磷酸葡萄糖。

中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。

(五)糖异生作用:非糖物质如丙酮酸,草酰乙酸和乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。

糖异生作用不是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程是在线粒体和细胞液中进行的。

生物化学--糖代谢

生物化学--糖代谢
2-磷酸甘油酸
COO-
C
O~ P
H2 O
CH2
烯醇化酶
磷酸烯醇式丙酮酸
(10)磷酸烯醇式丙酮酸旳磷酸转移
COO-
ADP ATP
C
O~ P
CH2
丙酮酸激酶
磷酸烯醇式丙酮酸
COO-
CO
CH
3
丙酮酸
2. 丙酮酸转变为乳酸
COOH NADH+H + NAD +
CO
CH
3
乳酸脱氢酶
丙酮酸
COOH
CHOH
CH
H2O
延胡索酸酶
COO-
HOCH
CH2 COO-
延胡索酸
苹果酸
反应8:苹果酸氧化生成草酰乙酸
乙酰-CoA H2O
草酰乙酸
苹果酸脱氢酶 (氧化)
苹果酸
NADH
柠檬酸合成酶 (缩合)
柠檬酸
顺乌头酸酶(脱水)
H2O
顺乌头酸
H2O
顺乌头酸酶
(水化)
异柠檬酸
H2O
延胡索酸酶
(加水)
延胡索酸
FADH2
NADH
非糖物质
血糖 肝、肌肉 合成糖原
(3.89~6.11mmol/L) 转变为
[血糖]> 8.9mmol/L
非糖物质
转变成其他 糖及衍生物
尿糖
血糖水平旳调整
正常情况,来路去路,维持动态平衡 1.肝脏调整 [血糖]正常水平,肝糖元Glc,[Glc]
糖异生作用加强 [血糖]正常水平,Glc肝糖元,[Glc]
糖异生作用减弱 2.肾脏调整
肾 糖 阈 : 肾 脏 所 能 保 持 旳 最 高 [Glc] 在 160180mg/dl,

糖代谢-课件(PPT演示)

糖代谢-课件(PPT演示)

糖酵解小结
⑴ 反应部位:胞浆 ⑵ 糖酵解是一个不需氧的产能过程 ⑶ 反应全过程中有三步不可逆的反应
ATP ADP 己糖激酶 ATP ADP
G
F-6-P PEP
G-6-P
F-1,6-2P 丙酮酸
目录
磷酸果糖激酶-1 ADP ATP
丙酮酸激酶
⑷ 产能的方式和数量
方式:底物水平磷酸化 净生成ATP数量:2(1mol葡萄糖可生成4molATP, 在葡萄糖和6-磷酸果糖磷酸化时消耗2mol) ⑸ 终产物乳酸的去路 释放入血,进入肝脏再进一步代谢。 分解利用 乳酸循环(糖异生)
吸湿、保水(化妆品 )生物活性 (细胞免疫的激性、
肝素代用、降胆固醇、促进创伤愈合 )
目录
结合糖
糖与非糖物质的结合物。
常见的结合糖有 糖脂 (glycolipid):是糖与脂类的结合物。
糖蛋白 (glycoprotein):是糖与蛋白质的结合物。
目录
纤维素
作为植物的骨架
β-1,4-糖苷键
目录
第 二 节 糖的分解代谢
机体在无氧状态下,葡萄糖经过一系列的 酶促反应生成丙酮酸进而还原生成乳酸的过程, 也称为糖的无氧氧化。
* 糖酵解的反应部位:胞浆 糖酵解是动物、植物和微生物葡萄糖分解 产生能量的共同代谢途径。
糖酵解共由十个酶促反应组成
目录
Glu
ATP ADP
(一)葡萄糖分解成丙酮酸
1.磷酸化阶段——活化耗能阶段
G-6-P F-6-P
目录
本节的要求
掌握糖酵解的概念、反应的亚细胞部位、 反应过程、ATP生成、限速酶及其生理意义; 熟悉糖酵解调节。 掌握三羧酸循环反应的亚细胞部位、反应 过程、限速酶、特点及生理意义,了解其

第七章 糖代谢

第七章  糖代谢

甘油醛-3-磷酸脱氢酶的作用机理: 甘油醛-3-磷酸脱氢酶由4个相同亚基组成,每个亚 基牢固地结合一个分子的NAD+,并能独立参与催化作 用。亚基中第149位的半胱氨酸残基的-SH是活性基团, NAD+的吡啶环与活性-SH基很近,共同组成酶的活性 部位。
甘油酸-1,3-二磷酸将磷酰基转给ADP形成了磷酸甘油酸和 ATP,催化这个反应的酶是磷酸甘油酸激酶 。
第七章 糖代谢
生物化学
教 学 内 容
多糖和低聚糖的酶促降解 糖的分解代谢 糖的合成代谢
糖类的重要的生物学功能
供给能量:糖的主要功能是供给能量,人体所需
能量的70%以上是由糖氧化分解供应的。1克葡萄糖在 体内完全氧化分解,可释放能量16.7千焦。 供给碳源:糖分解过程中形成的中间产物可以提 供合成脂类和蛋白质等物质所需要的碳架。 构成组织细胞的重要组成成分:如核糖和脱氧 核糖是细胞中核酸的成分;糖与脂类形成的糖脂是组 成神经组织与细胞膜的重要成分;糖与蛋白质结合的 糖蛋白,具有多种复杂的功能。
第一节 多糖和低聚糖的酶促降解
教 学 内 容
淀粉的酶促降解 糖原的降解 纤维素的酶促降解 双糖的酶水解
一、淀粉的酶促降解
淀粉的种类:有直链淀粉和支链淀粉两类。
淀粉的水解:
α-淀粉酶:又称α-1,4-葡萄糖水解酶。其作用方式是从淀 粉分子的内部,随机水解分子内的α-1,4-糖苷键,若底物 是直链淀粉,生成葡萄糖、麦芽糖、麦芽三糖等混合物。 如果底物是支链淀粉,则水解产物中有葡萄糖、麦芽糖和 α-糊精等混合物。 β-淀粉酶:又称β-1,4-麦芽糖苷酶。此酶具有外切酶的特 性,能专一地从直链淀粉或支链淀粉外层的非还原性末端, 依次切下两个葡萄糖单位(即麦芽糖)。 α-1,6糖苷酶:支链淀粉分子中的α-1.6糖苷键需要由α-1,6 糖苷酶作用,如植物中的R酶和动物小肠中的α-糊精酶, 其作用方式是从支链淀粉的外部开始,将α-1,6糖苷键水解 掉,其产物是由α-1,4糖苷键组成的直链片段。 麦芽糖酶:麦芽糖酶可催化麦芽糖水解成葡萄糖。

糖化学和糖代谢(共149张PPT)

糖化学和糖代谢(共149张PPT)
54
葡萄糖的主要分解代谢途径
葡萄糖
糖酵解
(有氧或无氧)
6-磷酸葡萄糖
(无氧) 丙酮酸
(有氧)
乙酰 CoA
乳酸 乙醇
磷酸戊糖途 径
三羧酸 循环
55
细胞定位
动物细胞
磷酸戊糖途径
糖酵解
丙酮酸氧化三
羧酸循环
胞饮 中心体
细胞膜 细胞质 线粒体 高尔基体
细胞核
吞噬 分泌物
内质网 溶酶体 细胞膜
植物细胞
细胞壁 叶绿体
右旋糖苷 2) 生化分离--交联葡聚糖
41
五、糖蛋白和蛋白聚糖 (一)糖蛋白:糖含量<蛋白含量
1.糖蛋白的结构 O连接 和含-OH的氨基酸以糖苷形式结合
N连接 与天冬酰胺的酰胺基连接
42
(二)蛋白聚糖 蛋白含量<糖含量
糖胺聚糖链共价连接于核心蛋白组成
糖胺聚糖是不分枝的、呈酸性的、阴离子多糖长 链聚合物,以氨基己糖和糖醛酸组成的二糖单位 为基本单元构成, 旧称粘多糖、氨基多糖、酸性 多糖。它是动、植物,特别是高等动物结缔组织
糖原是人和动物餐间以及肌肉剧烈运动时最易动用的葡 萄糖贮库。
35
36
糖原结构与支链淀粉很相似,糖原分支程度更
高,分支链更短,平均8-12个残基发生一次分支。 高度分支可增加分子的溶解度,还可使更多的非 还原末端同时受到降解酶(糖原磷酸化酶、 -淀 粉酶)的作用,加速聚合物转化为单体,有利于即时
动用葡萄糖贮库以供代谢的急需。
一个还原端。
32
33
淀粉
淀粉水解
(酸或淀粉酶)
直链淀粉 支链淀粉
红色糊精
无色糊精 麦芽糖 葡萄糖
遇碘显色

第七章 糖代谢

第七章  糖代谢

K2=3250
在植物光合组织中蔗糖磷酸合酶的活性较高,而非光合组 织中蔗糖合酶的活性较高。这是目前认为可能在光合组织中合 成蔗糖的主要途径。
(二)淀粉的合成:
存在于植物体内,尤其是谷类、豆类、薯类 作物的籽粒和贮藏组织都含丰富的淀粉。
淀粉合成中的糖基供体有ADPG、UDPG, 主要是ADPG。
合成分两阶段进行,先合成直链淀粉,然后 分支形成支链淀粉。
二、反应过程 反应可分为两个阶段: 第一阶段:氧化阶段,生成NADPH+H+和 CO2;由6-磷酸葡萄糖直接脱氢脱羧生 成磷酸戊糖; 第二阶段:非氧化阶段,一系列基团转 移反应;磷酸戊糖分子再经重排最终又 生成6-磷酸葡萄糖。
第一阶段:氧化阶段
1、脱氢反应:6-磷酸葡萄糖脱氢酶以NADP+ 为辅酶,催化6-磷酸葡萄糖脱氢生成6-磷酸 葡萄糖酸δ内酯,不可逆。
生物合成的供氢体
脂肪酸、胆固醇和类固醇化合物 的生物合成,均需要大量的NADPH。
0 R-CH2-C-R’
=
OH R-CH2-CH-R’ NADP+
R-CH2-CH2-R’
NADPH + H+
H R-C=C-R’
3、磷酸戊糖途径与疾病
神经精神病
(neuropsychiatric disorder)
第六节 糖的合成代谢
一、光合作用 二、糖异生途径 三、蔗糖和多糖的生物合成
一、光合作用
• 光合作用是糖合成代谢的主要途径。 • 绿色植物、光合细菌或藻类等将光能转变成化学 能的过程,即利用光能,由CO2和H2O合成糖类化 合物并释放出氧气的过程,称为光合作用。 • 光合作用的总反应式可表示如下: 光能 • n CO2 + n H2O (CH2O)n + n O2 叶绿体 糖类化合物

03糖代谢-4糖原的合成与分解

03糖代谢-4糖原的合成与分解
1
腺苷酸环化酶(活性)
肾上腺素或 胰高血糖素
1、腺苷酸环化酶
的共价修饰反 应是酶促反应, 只要有少量信 号分子(如激 素)存在,即 可通过加速这 种酶促反应, 而使大量的另 一种酶发生化 学修饰,从而 获得放大效应。 这种调节方式 快速、效率极 高。
30
2、ATP
cAMP
2
102
3
3、蛋白激酶
(无活性)
-
磷酸化酶b激酶 磷酸化酶b激酶-P 糖原合酶 (有活性) Pi 糖原合酶-P 磷酸化酶b (无活性)
磷蛋白磷酸酶-1
Pi
+

磷蛋白磷酸酶-1
磷酸化酶a-P
磷蛋白磷酸酶-1
Pi

PKA(有活性)
28

磷蛋白磷酸酶抑制剂-P 磷蛋白磷酸酶抑制剂
激素通过cAMP-蛋白激酶调节代谢示意图
激素 受体 G蛋白 环化酶
糖原累积症
糖原累积症(glycogen storage diseases)是一 类遗传性代谢病,其特点为体内某些器官组织 中有大量糖原堆积。会导致肝硬化和肝功能衰 竭。除肝病变外,大部分患者有肌无力,尤其 疾走和爬山时,部分患者有肌肉萎缩。糖原可累
积在心脏,出现心脏增大。
引起糖原累积症的原因是:
糖原合成与分解均在细胞质中进行……
23
代谢调节与关键酶
酶定位的区域化:“合成”、“分解”割据 一方。 酶活性的调节:“增加一个,降低一个”。防 止无效循环。 共价修饰调节:难点、重点 磷酸化酶 酶活性的调节 Gn
糖原合酶 别构调节
G
24
1、糖原代谢的共价修饰调节
酶分子中的某些基团,在其它酶的催化下,可以 共价结合或脱去,引起酶分子构象的改变,使其活性 得到调节,这种方式称为酶的共价修饰(Covalent moldification )。磷酸化/去磷酸化是主要形式。

生物化学 --糖代谢(共32张PPT)

生物化学 --糖代谢(共32张PPT)
新陈代谢
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O

生物化学第七章 糖代谢--第四节 三羧酸循环

生物化学第七章 糖代谢--第四节 三羧酸循环

乙酰CoA 线粒体
第四阶段:氧化磷酸化
[O] H2O
TCA循环
NADH+H+
CO2
ATP ADP FADH2
柠檬酸循环是在细胞的线粒体中进行
的,丙酮酸通过柠檬酸循环进行脱羧 和脱氢反应;羧基形成CO2,氢原子则 随着载体(NAD+、FAD)进入电子传 递链经过氧化磷酸化作用,形成水分 子并将释放出的能量合成ATP。
Hale Waihona Puke 一、丙酮酸进入柠檬循环的准备阶 段——形成乙酰- Co A
从丙酮酸转变为乙酰- Co A可概括为4 步反应,催化这些反应的酶是包括丙 酮酸脱氢酶在内的多酶复合体,由3种 酶和5种辅酶组成的球形复合体,统称 为丙酮酸脱氢酶复合体或丙酮酸脱氢 酶系。
参与反应的3种酶也就是上述的丙酮酸脱氢
酶复合体中的三种酶,分别称为:丙酮酸 脱氢酶组分(Pyruvate dehydrogenase component)、二氢硫辛酰转乙酰基酶 (dihydrolipoyl transacetylase)、二氢 硫辛酸脱氢酶(dihydrolipoyl dehydrogenase),这三种酶在结构上形 成一个有秩序的整体。
二、柠檬酸循环概貌 三、柠檬酸循环的反应机制
四、柠檬酸循环的化学总结算
TCA循环的特点: 1. 2次脱羧 2. 4次氧化脱H(3次NAD+ ,1次 FAD作为受体) 3. 产生GTP 4. 消耗2mol H2O
在TCA循环中除生成一个GTP, 通过GTP 生成ATP外,3个NADH及一个FADH2被电 子传递链氧化也可生成ATP, 在线粒体中 每个NADH生成2.5个ATP, 而每个FADH2 生成1.5个ATP, 故可生成(2.5×3)+ (1.5× 1) +1=10个ATP 。若从丙酮酸脱 氢开始,加上产生的一个NADH 就产生 10+2.5=12.5个ATP。 如果从葡萄糖开始反 应经糖酵解、TCA 和氧化磷酸化三个阶段 共产生2× 12.5 +7= 32个ATP

生物化学——糖代谢思维导图脑图

生物化学——糖代谢思维导图脑图

第七章 糖代谢1.无氧分解概念是指在缺氧情况下,葡萄糖或糖原在细胞质中分解生成乳酸并产生少量ATP 的过程,又称乳酸发酵两个阶段糖酵解:葡萄糖或糖原分解成丙酮酸反应特点一次裂解反应——6 C 变2个 3 C 一次脱氧——NAD 变 NADH两次消耗ATP两个高能化合物,两次底物水平磷酸化(2ATP)三个限速酶催化三个不可逆反应己糖激酶6-磷酸果糖激酶-1丙酮酸激酶乳酸生成:丙酮酸转变成乳酸生理意义机体缺氧状况下,能够迅速提供能量有氧状况下,为某些组织细胞提供能量,为成熟红细胞(无线粒体)提供唯一能量保障。

糖酵解过程的中间产物为其他物质生物合成提供材料。

小结不需要氧的产能过程从1分子葡萄糖开始净生成2分子ATP ★(从糖原开始,则净生成3分子ATP)两次底物水平磷酸化底物水平磷酸化:指将高能代谢物分子中的能量直接转移至ADP或GDP 生成ATP或GTP 的过程。

乳酸的生成使糖酵解途经中生成的NADH和H+重新转变成NAD+,保证糖酵解过程继续运行。

2.有氧氧化是糖分解供能的主要方式概念在有氧条件下,葡萄糖或糖原在细胞质与线粒体中彻底氧化生成水和二氧化碳,并产生大量ATP 的过程。

三个阶段丙酮酸生成(细胞质)葡萄糖生成丙酮酸,同糖酵解丙酮酸氧化脱羧生成乙酰CoA (线粒体)限速酶:丙酮酸脱氢酶复合体三羧酸循环(线粒体)实质乙酰CoA的彻底氧化分解概念TAC ,从乙酰CoA 与草酰乙酸缩合生成含有三个羧基的柠檬酸开始,经过一系列的酶促反应,乙酰CoA被氧化分解成水和二氧化碳,而草酰乙酸得以再生,同时生成大量能量的过程。

特点一次底物水平磷酸化两次脱羧,生成两分子二氧化碳三个限速酶,催化三次不可逆反应柠檬酸合酶异柠檬酸脱氢酶α-酮戊二酸脱氢酶复合四次脱氢三次生成NADH和H+一次生成FADH2三羧酸循环一次共生成 10分子ATP在循环中,中间产物本身无量的变化,由于中间产物进入其他代谢途径影响循环的进程,需补充以保证循环的正常运转生理意义是机体获取能量供应的主要方式三羧酸循环是三大营养素彻底氧化分解的共同途径是糖、脂、蛋白质代谢联系的枢纽小结每分子葡萄糖彻底氧化可净生成30或32分子ATP3.磷酸戊糖途径实质葡萄糖分解代谢的另一途径,其主要意义不是生成ATP,而是生成磷酸核糖和NADPH唯一限速酶6-磷酸葡萄糖脱氢酶缺乏此限速酶会导致NADPH和G-SH减少,红细胞易破裂,产生溶血性贫血。

生物化学课件7糖代谢

生物化学课件7糖代谢
1. 代谢的概念
指生物活体与外界环境不断进行的物质 (包括气体、液体和固体)和能量的交换过程。 其本质是活细胞中发生一系列化学变化,每一 变化均由酶催化。
包括: 分解代谢、合成代谢
2. 分解代谢和合成代谢
生 物 体 内 新 陈 代 谢
合成代谢 (同化作用)
小分子合成大分子
需要能量
分解代谢
释放能量
能 量 代 谢
依赖型(Ⅰ型)和非胰岛素依赖型(Ⅱ型)。
第2节 葡萄糖的分解代谢
糖酵解 糖的有氧氧化 磷酸戊糖途径
一 糖酵解(glycolysis)
在无氧情况下,细胞液中葡萄糖降解为乳酸并伴随着少 量ATP生成的一系列反应称为糖的无氧分解。因与酵母 菌使糖生醇发酵(脱羧还原)的过程相似,因而又称为 糖酵解。
糖 酵 解 肌乳酸 血乳酸
糖 6-磷酸葡萄糖 异 生 丙酮酸 乳酸
(3)丙酮酸的去路
乙醇发酵
NADH+H+ NAD+ H+ CO2
乙醇 乙醛
O2
丙酮酸
TPP
乙酸
厌氧有机体(如酵母或其他微生物)把酵 解生成的NADH中的氢交给丙酮酸脱羧生成的 乙醛,使之形成乙醇——酒精发酵。
(4) 糖酵解能量的生成
+ATP
3-磷酸甘油酸 2-磷酸甘油酸
烯醇化酶
磷酸烯醇式丙酮酸 乙醇 乙醛
丙酮酸激 酶
+ATP
由1分子G在无氧条 件下氧化分解,最 终产生2分子ATP。 如果从糖原开始, 则可得到3分子ATP
乳酸
丙酮酸
乳酸脱氢酶
(5)巴斯德效应和克雷布特里效应
巴斯德效应:氧抑制糖酵解的现象。酵
母细胞暴露在有氧环境时,葡萄糖的消

糖代谢 04

糖代谢 04
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
CO
磷酸丙糖异构酶
C H 2O H
(phosphotriose isomerase)
磷酸二羟丙酮
CH OH
CH2 O P 3-磷酸甘油醛
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
Glu
ATP
ADP
G-6-P
F-6-P
ATP
蔗 糖 (sucrose):葡萄糖 — 果糖
乳 糖 (lactose):葡萄糖 — 半乳糖
多糖——能水解生成多个分子单糖的糖。
常见的多糖有: 淀粉 (starch) 糖原 (glycogen) 纤维素 (cellulose)
• 淀粉——是植物中养分的储存形式。
淀粉 颗粒
• 糖原——是动物体内葡萄糖的储存形式。
➢ 糖酵解的反应部位:胞浆
一、糖无氧氧化反应过程分为糖酵 解途径和乳酸生成两个阶段
糖酵解分为两个阶段:
➢ 第一阶段:由葡萄糖分解成丙酮酸(pyruvate), 称之为糖酵解途径(glycolytic pathway)。
➢ 第二阶段:由丙酮酸转变成乳酸。
Glu
ATP
ADP
G-6-P
(一)葡萄糖经酵解途径分解为 两分子丙酮酸
2,6-双磷酸果糖是6-磷酸果糖激酶-1最强的变 构激活剂;
其作用是与AMP一起取消ATP、柠檬酸对6磷酸果糖激酶-1的变构抑制作用。
(二)丙酮酸激酶是糖酵解的第二个重要的 调节点
别构调节
➢ 别构激活剂:1,6-双磷酸果糖 ➢ 别构抑制剂:ATP, 丙氨酸

第4章糖代谢

第4章糖代谢
(2)蛋白多糖 蛋白多糖是糖胺聚糖与核 心蛋白结合而形成的复合物。主要成分是糖胺多 糖,占80%~95%。蛋白多糖主要作为结构成分。
(3)糖脂 糖脂是由单糖或寡糖与脂类结 合而成,包括鞘糖脂和甘油糖脂两类。
二、糖的生理功能
(一)氧化供能 正常情况下机体所需能量 的50%~70%由糖氧化供给。1g糖在体内完全氧化 可释放16.7kJ(4.1kcal)的能量。
三、三羧酸循环的特点
1. 必需在有氧条件下进行,因脱下的 H要与O2结合生成H2O。
2. 反应不可逆,属于单向循环,朝一 个方向周而复始地进行,每循环一次相当 于消耗1分子乙酰CoA,其中柠檬酸合成酶、 异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系是限 速酶。
3. 有四次脱氢,二次脱羧, 产生2CO2 以NAD+为受氢体的三次, 3NADH 9ATP 以FAD为受氢体的一次, FADH2 2ATP
1,6-二磷酸果糖
醛缩酶
磷酸二羟丙酮
3-磷酸甘油醛
特点:
反应可逆,且生成的磷酸二羟丙 酮和3-磷酸甘油醛可相互转化。
2
3-磷酸甘油醛
3-磷酸×甘油醛脱氢酶
NAD+ NADH+H+
丙 酮 酸
1,3-二磷酸甘油酸
ADP 磷酸甘油酸激酶
ATP
3-磷酸甘油酸
特点:
1. 是糖酵解的产能阶 段,产生2×2ATP。
4. 产能 1分子乙酰CoA经三羧酸循环产生 12ATP,其中11分子经氧化磷酸化产生,1分子 经底物水平磷酸化产生。
5. 中间产物的补充 由于三羧酸循环的中间 产物还可进行其他代谢,因此必需补充消耗的 中间产物,保证三羧酸循环的速度。
四、ATP生成的计算
38(36)ATP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 高血糖及糖尿的病理和生理原因
a. 持续性高血糖和糖尿,主要见于糖尿病 糖尿病可分为二型: Ⅰ型 (胰岛素依赖型) Ⅱ型 (非胰岛素依赖型)

b. 血糖正常而出现糖尿,见于慢性肾炎、肾病综合 征等引起肾对糖的吸收障碍。——肾性糖尿
c. 生理性高血糖和糖尿可因情绪激动而出现。
糖耐量试验 glucose tolerance test, GTT
7.4 血糖水平的调节
血糖及血糖水平的概念
* 血糖,指血液中的葡萄糖。 * 血糖水平,即血糖浓度。
正常血糖浓度 :3.89~6.11mmol/L (70~110mg%)
血糖的来源与去路
二、血糖水平的调节
* 主要依靠激素的调节
主要调 节激素
降低血糖:胰岛素 insulin
升高血糖:胰高血糖素 glucagon、 糖皮质激素、肾上腺素
三、血糖水平异常
(一) 高血糖和糖尿病 1. 高血糖 hyperglycemia
空腹血糖浓度高于6.9mmol/L(125mg%)称为高血糖。
2. 肾糖阈
当血糖浓度高于8.89~10.00mmol/L(160~180mg%) 时,超过了肾小管的重吸收能力,则可出现糖尿。 这一血糖水平称为肾糖阈。
目的:临床上用来诊断病人有无糖代谢异常。
糖 耐 量 曲 线
“三多一少”
多食 多尿 多饮 体重减少
(二)低血糖
1. 低血糖 hypoglycemia
空腹血糖浓度低于3.00mmol/L(54mg%)时称为低血糖。
2. 低血糖的影响
血糖水平过低,会影响脑细胞的功能,从而出 现头晕、倦怠无力、心悸等症状,严重时出现昏迷, 称为低血糖休克。
相关文档
最新文档