土方方格网计算公式

合集下载

用方格网法计算土方步骤

用方格网法计算土方步骤

用方格网法计算土方步骤方格网法是一种常用的土方计算方法,可以用于计算土方的体积和步骤。

方格网法的基本原理是将土地划分为一系列方格,并测量每个方格的高程差。

然后,通过计算每个方格的体积,并将其累加,即可得到土方的总体积。

下面将详细介绍方格网法的计算步骤。

第一步:测量区域边界首先,需要准确测量土地或施工场地的边界线,并在各个角点处标记测量点。

这些测量点将作为方格网中每个方格的角点。

第二步:确定网格间距根据实际情况,确定方格网的间距。

间距的选择应该根据场地尺寸和地形的复杂程度进行合理调整。

通常情况下,间距可以选择为1米或更小。

第三步:建立方格网使用测量点确定的位置,可以使用绳子或钉子等工具在地面上建立方格网。

确保方格网的边缘和角点都严格平行和垂直。

第四步:测量高程差使用水准仪或其他测量工具,对方格网中的每个角点进行高程测量。

记录每个位置的高程数值。

第五步:计算体积根据高程差测量结果,可以计算每个方格的土方体积。

通常情况下,每个方格的土方体积计算公式为:V=(A1+A2+A3+A4)/4*h,其中A为方格四个角点的高程数值,h为方格中心点的高程数值。

第六步:累加体积将每个方格的土方体积累加,即可得到整个土地或施工场地的土方体积。

如果方格网是等距的,可以直接将每个方格的体积相加。

如果方格网是非等距的,需要按照实际情况进行体积调整。

方格网法可以用于计算多个区域的土方体积。

例如,可以将场地划分为不同的区域,然后按照上述步骤逐个计算每个区域的土方体积,并将结果累加得到总体积。

需要注意的是,方格网法只适用于地形平坦的场地。

如果场地地形复杂或存在斜坡等情况,则需要使用其他方法进行土方计算,如三角测量法或通过地形测量仪器获取高程数据。

总结起来,方格网法是一种简单而实用的土方计算方法,适用于平坦的场地。

通过将场地划分为一系列方格,并测量各个角点的高程数值,然后计算每个方格的土方体积并累加,可以得到土方的总体积。

方格网法计算土方

方格网法计算土方

方格网法常用方格网计算公式横截面计算步骤及方法1.方格网法方格网计算步骤及方法图示计算步骤方法适用范围1.划方格网根据地形图划分方格网,尽量使其与测量或施工坐标网重合,方格一般采用20m×20m~40m×40m,将相应设计标高和自然地面标高分别标注在方格点的右上角和右下角,求出各点的施工高度(挖或填),填在方格网左上角,挖方为(+),填方为(-)。

2.计算零点位置计算确定方格网中两端角点施工高度符号不同的方格边上零点位置,标于方格网上,联接零点,即得填方与挖方区的分界线。

零点的位置按下式计算,见图(a):;式中、——角点至零点的距离 m;、——相邻两角点的高程 m,均用绝对值;a——方格网的边长 m。

零点亦可采用图解法求出,如图(b)用尺在各角上标出相应比例,用尺相接,与方格相交点即为零点位置。

3.计算土方工程量按方格网底面图形和下表体积计算公式,计算每个方格内的挖方或填方量。

4.汇总分别将挖方区和填方区所有方格计算土方量汇总,即得该建筑场地挖方区和填方区的总土方量。

适于地形较平缓或台阶宽度较大的地段采用计算方法较为复杂,但作为平整场地土方量计算,精度较高。

2. 常用方格网计算公式项目图示计算公式一点填方或挖方(三角形)当时,二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。

2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

3. 横截面计算步骤及方法图示计算步骤方法适用范围1.划分横截面根据地形图、竖向布置图或现场检测,将要计算的场地划分为若干个横截面; ; ……,使截面尽量垂直等高线或建筑物边长;截面间距可不等,一般取10 m或20 m,但最大不大于100 m.2.划横截面按比例绘制每个横截面的自然地面和设计地面的轮廓线。

网格法土方量计算公式

网格法土方量计算公式

网格法平整场地土方量计算公式:1、方格四个角点全部为填土式挖方,其土方量:2a)h?h?(h?h?Vh,h,h,h为角点填方高度,为绝对值。

)(注:4321432142、方格的相邻两角点为挖方,另两角点为填方。

其挖方部分工程量:21)??(V4h?hh?h3214222hha其222hha填方部分工程量:34)(?V?4h?hh?h3421h,hhh,为需填方角点填方高度。

皆为绝对值。

(注:为需挖方角点挖方高度,)43213、方格的三个角点为挖方,另一个角点为填方。

其填方部分工程量:4?V46(h?h)(h?h)43142a其挖方32ha部分工程量:V?h)??2hh?2hV?(4143,1,2326hhh,h,为需填方角点填方高度。

皆为绝对值。

)(注:为需挖方角点挖方高度,43124、方格的一个角点为挖方,相对的角点为填方。

另两个角点为零点时2a(零线为方格的对角线),其挖填方工程量为:hV?b4/ 142 /常用方格网计算公式2.计算公式项目图示一点填方或挖方(三角形)当时,二点填方或挖方(梯)形三点填方或挖方(五角形)四点填方正(或挖方方形)4/ 3注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h,h,h,h方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的——1423)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

2。

挖方或填方体积,用绝对值代入; ,m总和——,m4/ 4。

土方工程量计算-方格网法

土方工程量计算-方格网法

绘制土方平衡表、土方调配表及土方调配图
从土方平衡表上可以一目了然地了解各个区的出土量和需土量、调拨关系和土方平衡情况。在土方调配表上则可更清楚地看到各区的土方盈缺情况。土方调配图上清楚地看到土方的调拨量,调拨方向和距离。
挖填方区划图
方格编号
挖方/m3
填方/m3
备注
VⅠ
32.3
16.5
VⅡ
17.6
施工标高+0.80
设计标高36.00
⑨ 角点编号
35.00 原地形标高
Hx=Ha±xh/L
当方格交叉点不在等高线上就要采用插入法计算出原地形标高。插入法求标高公式如下:
Ha——位于低边的等高线高程(m); x——角点至低边等高线的距离(m); h——等高距(m); L——相邻两等高线间最短距离(m)。
1
1
假设4-3点的设计标高是x,根据场地的坡度求出其他点的标高,标在角点上,如图;再求出每角点的设计标高。
5.求各角点的设计标高
H0′=4N(∑h1′+2∑h2′+3∑h3′+4∑h4′) ∑h1′=x-0.8+x-0.8+x-1.1+x-1.1+x-1.3+x-1.3 =6x-6.4m 2∑h2′=(x-0.4+x+x-0.4+x-1.0+x-1.0+x-0.9)×2 =12x-7.4m 3∑h3′=(x-0.7+x-0.7) ×3 =6x-4.2m 4∑h4′=(x-0.3+x-0.6)×4 =8x-3.6m H0′=4*8 (6x-6.4+12x-7.4+6x-4.2+8x-3.6)= x-0.675 H0′=X-0.675=H0 ∵ H0 ≈ 20.06 ∴ X=20.06+0.675≈20.74

建筑工程技术土方量(方格网)计算

建筑工程技术土方量(方格网)计算

建筑工程技术土方量(方格网)计算一、方格网识图:方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示.图1-3 方格网法计算土方工程量图二、场地平整土方计算考虑的因素:① 满足生产工艺和运输的要求;② 尽量利用地形,减少挖填方数量;③争取在场区内挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求.⑤场地设计标高一般在设计文件上规定,如无规定:A.小型场地――挖填平衡法;B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。

1、初步标高(按挖填平衡),也就是设计标高。

如果已知设计标高,1.2步可跳过。

场地初步标高:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高.M ——方格个数.2、地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为: Hn = H0 ± Li②双向排水时,各方格角点设计标高为:Hn = H0 ± Lx ix ± L yi y3.计算场地各个角点的施工高度施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m;n------方格的角点编号(自然数列1,2,3,…,n).Hn------角点设计高程,H------角点原地面高程.4.计算“零点”位置,确定零线方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).图1-4 零点位置零点位置按下式计算:式中x1、x2 ——角点至零点的距离,m;h1、h2 ——相邻两角点的施工高度(均用绝对值),m;a —方格网的边长,m.5.计算方格土方工程量按方格底面积图形和表1-3所列计算公式,逐格计算每个方格内的挖方量或填方量.表1-3 常用方格网点计算公式6.边坡土方量计算场地的挖方区和填方区的边沿都需要做成边坡,以保证挖方土壁和填方区的稳定。

方格网计算土方公式

方格网计算土方公式

方格网计算步骤及方法图示计算步骤方法适用范围1.划方格网根据地形图划分方格网,尽量使其与测量或施工坐标网重合,方格一般采用20m×20m~40m×40m,将相应设计标高和自然地面标高分别标注在方格点的右上角和右下角,求出各点的施工高度(挖或填),填在方格网左上角,挖方为(+),填方为(-)。

2.计算零点位置计算确定方格网中两端角点施工高度符号不同的方格边上零点位置,标于方格网上,联接零点,即得填方与挖方区的分界线。

零点的位置按下式计算,见图(a):;式中、——角点至零点的距离 m;、——相邻两角点的高程 m,均用绝对值;a——方格网的边长 m。

零点亦可采用图解法求出,如图(b)用尺在各角上标出相应比例,适于地形较平缓或台阶宽度较大的地段采用计算方法较为复杂,但作为平整场地土方量计算,精度较高。

1 / 13用尺相接,与方格相交点即为零点位置。

3.计算土方工程量按方格网底面图形和下表体积计算公式,计算每个方格内的挖方或填方量。

4.汇总分别将挖方区和填方区所有方格计算土方量汇总,即得该建筑场地挖方区和填方区的总土方量。

2. 常用方格网计算公式项目图示计算公式一点填方或挖方(三角形)2 / 13当时,二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方3 / 13(正方形)注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。

2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

4 / 133. 横截面计算步骤及方法图示计算步骤方法适用范围1.划分横截面根据地形图、竖向布置图或现场检测,将要计算的场地划分为若干个横截面; ; ……,使截面尽量垂直等高线或建筑物边长;截面间距可不等,一般取10 m或20 m,但最大不大于100 m.2.划横截面按比例绘制每个横截面的自然地面和设计地面的轮廓线。

土方工程量计算--方格网法

土方工程量计算--方格网法

上图所示的角点1—1属于上述第一种情况,过点1—1作相 邻二等高线间的距离最短的线段。用比例尺量得L=12.6m, x=7.4m, 等高差h=0.5m,代人前面插入法求两相邻等高线 之间任意点高程的公式,得 Hx=Ha+xh/L
=〔20.00 +(7.4×0.5)/12.6〕= 20.29 m
பைடு நூலகம்
2.标方格网角点 3.将角点测设到图纸上或用插入法求角点高程。
hx∶h=x∶L hx=xh/L ∴Hx=Ha+xh/L (2) 待求点标高Hx在低边等高线Ha的下方(如下图②) hx∶h=x∶L hx=xh/L ∴Hx=Ha-xh/L (3) 待求点标高Hx在高边等高线Hb的上方(如下图③) hx∶h=x∶L hx=xh/L ∴Hx=Ha+xh/L
(3)填入设计标高 根据设计平面图上相应位置的标高情况,在方格网点的右
1 H0′=4N(∑h1′+2∑h2′+3∑h3′+4∑h4′)
∑h1′=x-0.8+x-0.8+x-1.1+x-1.1+x-1.3+x-1.3 =6x-6.4m 2∑h2′=(x-0.4+x+x-0.4+x-1.0+x-1.0+x-0.9)×2 =12x-7.4m 3∑h3′=(x-0.7+x-0.7) ×3 =6x-4.2m
(6)土方量计算
根据方格网中各 个方格的填挖情况, 分别计算出每一方 格土方量。由于每 一方格内的填挖情 况不同,计算所依 据的图式也不同。 计算中,应按方格 内的填挖具体情况, 选用相应的图式, 并分别将标高数字 代入相应的公式中 进行计算。
例题:某公园为了满足游人游园的需要,拟将如图地面平整为三

土方方格网计算公式

土方方格网计算公式
设计标高与原地形标高的差值 :
• •
(1-6)
• 式中:

zi'—— i角点的原地形标高。

• 若Hi为正值,则该点为填方,Hi为负值则为挖方。
2021年4月21日2时52
13

§1.2.3 设 计 标 高 调 整
• 设计标高的调整 • 实际工程中,对计算所得的设计标高,还应考虑下述因素进行调整,此工作
。 a ——方格网的边长 m
3.计算土方工程量 按方格网底面图形和下表体积计算公式, 计算每个方格内的挖方或填方量。
4.汇总 分别将挖方区和填方区所有方格计算土方量汇总,即
。 得该建筑场地挖方区和填方区的总土方量 20
• 方格网零线及零点的确定
• 零线即挖方区与填方区的交线,在该线上,施工高度为0。零线的确定方法是: 在相邻角点施工高度为一挖一填的方格边线上,用插入法求出零点(0)的位置 (图1-5),将各相邻的零点连接起来即为零线。
• 在用式(1-3)计算z0的过程中类似11角点的标高仅加一次,类似12号角点的标 • 高加两次,类似22号角点的标高则加四次,这种在计算过程中被应用的次数Pi, • 反映了各角点标高对计算结果的影响程度,测量上的术语称为“权”。
• 考虑各角点标高的“权”,式(1-3)可改写成更便于计算的形式: •
2.计算零点位置 计算确定方格网中两端角点施工高度符号不 同的方格边上零点位置,标于方格网上,联接零点,即得填方 与挖方区的分界线。零点的位置按下式计算,见图(a):
式中
、 ——角点至零点的距离 m; 、 ——相邻两角点的高程 m,均用绝对值;
适于地 形较平 缓或台 阶宽度 较大的 地段采 用计算 方法较 为复杂, 但作为 平整场 地土方 量计算, 精度较 高。

土方方格网计算公式图示及推导

土方方格网计算公式图示及推导

方格网土方计算公式推导:1、两点开挖工程量计算公式:如上图示:d=A*h2/(h1+h2); e=A*h3/(h3+h4); S1=d*h2/2; S2=e*h3/2S0=(d+e)/2*(h2+h3)/2/2根据拟柱体体积计算公式:V=B/6*(S1+4*S0+S2)将上面已知数代入公式可得:V=B/6*{A*h2/(h1+h2)*h2/2+4*[A*h2/(h1+h2)+A*h3/(h3+h4)]/2*(h2+h3)/2/2+h3*A*h3/(h3+h4)/2}=A*B/6*{h2*h2/(h1+h2)+ h2*(h2+h3)/(h1+h2)+ h3*(h2+h3)/(h3+h4)+h3*h3/(h3+h4)}/2=A*B/12*{(2h2^2+h2*h3)/ (h1+h2)+(2*h3^2+h2*h3)/(h3+h4)}2、三点开挖的挖方量计算公式:由图分解可得,挖方体积=v1+v2-(v3-v4),由拟柱体体积计算公式可以得出:V1={A*(h3+h4)/2+4*A/2*(h3+h2+h2+h4)/4}*B/6=A*B/12*{h3+h4+2*h2+h3+h4}=A*B*(h2+h3+h4)/6V2、V3、V4分别按四棱锥、三棱锥、三棱锥体积计算公式进行计算(体积=底面积*高/3)V2= [√(A^2+B^2)]*1/2*1/3*[√(A^2+B^2)]*(h2+h4)/2= (A^2+B^2)*(h2+h4) /12V3=A*B/2/3*h1=A*B*h1/6V4=h1/3*(B*h1/(h1+h4)*A*h1/(h1+h2)/2=A*B/6*h1^3/(h1+h2)/(h1+h4)V=V1+V2-V3+V4= A*B*(h2+h3+h4)/6+(A^2+B^2)*(h2+h4) /6+A*B/6*h1^2/(h1+h2)/(h1+h4)- A*B*h1/6= A*B /6*[ h2+h3+h4-h1+h1^3/(h1+h2)/(h1+h4)] +(A^2+B^2)*(h2+h4) /123、不机邻两点回填方量计算公式推导:如图示:从h1和h3处将图形分成平面为两个直角三角形体:h4侧的体积公式如下:Vh4=V1+V3-V2根据锥体体积公式:底面积*高/3可得V1=(h1+h3)/2*[√(A^2+B^2)] /3*[√(A^2+B^2)]/2=(h1+h3)*(A^2+B^2) /12 V2=A*B/2*h4/3= A*B*h4/6V3= h4/3*(B*h4/(h4+h1)*A*h4/(h4+h3)/2=A*B/6*h4^3/(h4+h1)/(h4+h3) V=(h1+h3)*(A^2+B^2) /12- A*B*h4/6+ A*B/6*h4^3/(h4+h1)/(h4+h3)= A*B/6*[h4^3/(h4+h1)/(h4+h3)-h4]+ (h1+h3)*(A^2+B^2) /12h2侧的体积公式推导方法h4侧的体积公式:Vh2=A*B/6*[h2^3/(h2+h1)/(h2+h3)-h2]+ (h1+h3)*(A^2+B^2) /12V=Vh2+Vh4=A*B/6*[h2^3/(h2+h1)/(h2+h3)-h2]+ (h1+h3)*(A^2+B^2) /12+ A*B/6*[h4^3/(h4+h1)/(h4+h3)-h4]+ (h1+h3)*(A^2+B^2) /12= A*B/6*[ h2^3/(h2+h1)/(h2+h3) + h4^3/(h4+h1)/(h4+h3) -h2-h4]+ (h1+h3)*(A^2+B^2) /6。

《土石方方格网》计算,很全啊

《土石方方格网》计算,很全啊

一、读识方格网图方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1—3所示。

图1-3 方格网法计算土方工程量图二、场地平整土方计算考虑的因素:① 满足生产工艺和运输的要求;② 尽量利用地形,减少挖填方数量;③争取在场区内挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求。

⑤场地设计标高一般在设计文件上规定,如无规定:A。

小型场地――挖填平衡法;B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。

1、初步标高(按挖填平衡),也就是设计标高。

如果已知设计标高,1.2步可跳过。

场地初步标高:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高。

M—-方格个数.2、地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为: Hn = H0 ±Li②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y3.计算场地各个角点的施工高度施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中hn—-—---角点施工高度即填挖高度(以“+”为填,“—”为挖),m;n-——-—-方格的角点编号(自然数列1,2,3,…,n).Hn——-—--角点设计高程,H———---角点原地面高程。

4。

计算“零点"位置,确定零线方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1—4所示).图1-4 零点位置零点位置按下式计算:式中x1、x2 —-角点至零点的距离,m;h1、h2 -—相邻两角点的施工高度(均用绝对值),m;a -方格网的边长,m。

方格网法土方计算

方格网法土方计算

方格网法土方计算适用于地形变化比较平缓的地形情况,用于计算场地平整的土方量计算较为精确。

具体做法如下:
首先建立地形的坐标方格网,方格网的一边与地形等高线或场地坐标网平行,大小根据地形变化的复杂程序和设计要求的精度确定,边长一般常采用20m×20m或40m×40m(地形平坦、机械化施工时也可采用100m×100m)。

然后求出方格各个角点的自然标高、设计标高以及施工高程。

计算零点位置,在每相邻的填方点和挖方点之间总存在一个零点,零点的确定方法如下:
说明:
X t:零点据填方角顶的距离;X w:零点据挖方角顶的距离
h t:填方高度;h w:挖方高度;a:方格边长
连接每个方格上的相邻两个零点,根据零线将方格划分的情况,采用相应公式来计算,如表11‑2所示。

汇总,分别将填方区、挖方区所有土方汇总,得到填、挖土方总量。

四个角点全填方(或全挖方)
一个角点填方(或挖方),另外三个角点挖方(或填方)
一侧两个角点填方(或挖方),另一侧两个角点挖方(或填方)
相对两个角点填方(或挖方),另外相对两个角点挖方(或填方)
表11‑2 方格网法土方计算公式
说明:
a:方格边长(m)
h1、h2、h3、h4:方格网角点的施工高度,正值代表填方,负值代表挖方
V+、V-:填方(或挖方)的体积(m3)
一个简易的方格网土方计算公式表,使用方便,计算准确,供大家参考学习!。

土方工程量计算方格网法课件

土方工程量计算方格网法课件
Hx=Ha±xh/L 式中: Hx——角点原地形标高(m);
Ha——位于低边的等高线高程(m); x——角点至低边等高线的距离(m); h——等高距(m); L——相邻两等高线间最短距离(m)。
土方工程量计算方格网法
插入法求高程通常会遇到3种情况: (1) 待求点标高Hx在二等高线之间(如下图①)
=〔(S1+Sn)/2+S2+S3+…+Sn-1土方〕工程*量h计1算方+格S网法n*h2/3
无论是垂直断面法还是水平断面法,不规则的断面面 积的计算工作总是比较繁琐的。一般说来,对不规则 面积的计算可采用以下几种方法: (1)求积仪法 运用求积仪进行测量,此法比较简便,精确度也比较 高。 (2)方格纸法 用方格纸蒙在图纸上,通过数方格数,再乘以每个方 格的面积而求取。此法方格网越密,精度越大。 一般在数方格数时,测量对象占方格单元超过1/2, 按一整个方格计;小于1/2者不计。最后进行方格数 的累加,再求取面积既可。
§ ∑h1=角点之和 =(20.29+20.23+19.37+19.64+18.79+19.32)=117.75
§ 2∑h2=2*(边点之和) =2*(20.54+20.89+21.00+19.50+19.39+19.35)=241.34
§ 3∑h3=3*(拐点之和) =3*(19.91+20.15)=120.18
土方工程量计算方格网法
土方工程量计算方格网法
土方工程量计算方格网法
三、方格网法 方格网法是一种相对比较精确的方法。 多用于平整场地,将原来高低不平、比较破碎的地 形按设计要求整理成平坦的具有一定坡度的场地。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档