初中相遇和追及问题
(完整版)追及与相遇问题(含答案)
追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2、理清两大关系:时间关系、位移关系。
3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。
5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。
七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题【2 】追及问题:(相向而行):追及旅程/追及速度和=追实时光(同向而行):追及旅程/追及速度差=追实时光根本概念:行程问题是研讨物体活动的,它研讨的是物体速度.时光.行程三者之间的关系.根本公式:旅程=速度×时光;旅程÷时光=速度;旅程÷速度=时光症结问题:肯定行程进程中的地位相遇问题:速度和×相遇时光=相遇旅程(请写出其他公式)追击问题:追击时光=旅程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时光逆水行程=(船速-水速)×逆水时光顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:症结是肯定物体所活动的速度,参照以上公式.过桥问题:症结是肯定物体所活动的旅程,参照以上公式.【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数.【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数.【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数.【平均数问题公式】总数目÷总份数=平均数.【一般行程问题公式】平均速度×时光=旅程;旅程÷时光=平均速度;旅程÷平均速度=时光.【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地动身,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式解答:(速度和)×相遇(离)时光=相遇(离)旅程;相遇(离)旅程÷(速度和)=相遇(离)时光;相遇(离)旅程÷相遇(离)时光=速度和.【同向行程问题公式】追及(拉开)旅程÷(速度差)=追及(拉开)时光;追及(拉开)旅程÷追及(拉开)时光=速度差;(速度差)×追及(拉开)时光=追及(拉开)旅程.【列车过桥问题公式】(桥长+列车长)÷速度=过桥时光;(桥长+列车长)÷过桥时光=速度;速度×过桥时光=桥.车长度之和.【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速.(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.相遇问题A,B两地的旅程=(甲的速度+乙的速度)×相遇时光=速度和×相遇时光。
行程问题九大题型初中公式
行程问题九大题型初中公式
在解决行程问题时,初中阶段主要涉及到的公式主要包括以下九大题型:
1. 相遇问题:
公式:总路程 = (甲速度 + 乙速度) × 相遇时间
2. 追及问题:
公式:追及时间 = 追及路程 / (快速 - 慢速)
公式:追及路程 = (快速 - 慢速) × 追及时间
3. 环形跑道上的相遇与追及:
公式:外圈路程 - 内圈路程 = 快者速度× 时间 - 慢者速度× 时间
4. 行程问题中的正反比例关系:
公式:路程一定,速度与时间成反比
5. 航行问题:
公式:顺水速度 = 静水速度 + 水流速度
公式:逆水速度 = 静水速度 - 水流速度
6. 火车过桥问题:
公式:车长 + 桥长 = 火车速度× 火车过桥时间
7. 流水问题:
公式:船速的(1 - 水速/船速)× 时间 = (顺水路程 / 顺水时间)× 时间
8. 行程问题中的比例关系:
公式:路程一定时,时间和速度成反比
9. 行程问题中的线性关系:
公式:速度一定时,路程和时间成正比
在解决具体问题时,需要根据问题的具体情况选择合适的公式进行计算。
同时,理解和掌握这些公式的含义和应用方法,对于提高解决实际问题的能力非常重要。
初一数学相遇与追及问题公式
初一数学相遇与追及问题公式(一)相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
(二)追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
扩展资料:
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路程三者数量之间的关系。
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路
程三者数量之间关系的问题。
它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
相遇问题的关系式是:速度和×相遇时间=路程;路程÷速度和=
相遇时间;路程÷相遇时间=速度和。
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
追及和相遇问题公式
追及和相遇问题公式追及和相遇问题是数学中常见的问题之一,涉及到两个物体在不同速度下的运动轨迹。
在这篇文章中,我们将探讨追及和相遇问题的公式和应用。
追及和相遇问题是指两个物体在同一直线上运动,其中一个物体正朝着另一个物体追赶,最终两者相遇的问题。
这个问题可以通过建立数学模型来解决。
我们来讨论两个物体在同一直线上的运动。
假设物体A的初始位置为x1,速度为v1;物体B的初始位置为x2,速度为v2。
我们需要找到一个公式来表示两个物体的位置关系。
根据物体的速度和时间之间的关系,我们可以得到物体A和物体B 的位置分别为x1 = v1 * t + x1,x2 = v2 * t + x2,其中t表示时间。
由于两个物体在同一直线上运动,它们的位置之差始终保持不变,即x2 - x1 = v2 * t + x2 - (v1 * t + x1)。
化简上述公式,我们可以得到x2 - x1 = (v2 - v1) * t + (x2 - x1)。
由于x2 - x1始终保持不变,我们可以将其表示为d,即d = (v2 - v1) * t。
这个公式就是追及和相遇问题的基本公式。
接下来,我们可以通过解这个方程来求解物体A和物体B相遇的时间t。
如果我们已知物体A和物体B的初始位置和速度,可以代入这些值,通过解方程求解t的值。
解这个方程的方法有很多,其中一种常见的方法是使用代数解法。
我们将方程化简为t = d / (v2 - v1),这样就可以得到两个物体相遇的时间。
除了求解相遇的时间,我们还可以通过代入时间t到位置公式中,求解相遇的位置。
将时间t代入物体A的位置公式,我们可以得到物体A和物体B相遇时的位置x1 = v1 * t + x1。
同样地,将时间t 代入物体B的位置公式,可以得到物体A和物体B相遇时的位置x2 = v2 * t + x2。
追及和相遇问题在实际生活中有很多应用。
例如,我们可以通过解这个问题来计算两辆车相遇的时间和位置,或者计算两个人相遇的时间和位置。
七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题追及问题:(相向而行):追及路程/追及速度与=追及时间(同向而行):追及路程/追及速度差=追及时间基本概念:行程问题就是研究物体运动的,它研究的就是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度与×相遇时间=相遇路程(请写出其她公式)追击问题:追击时间=路程差÷速度差(写出其她公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键就是确定物体所运动的速度,参照以上公式。
过桥问题:关键就是确定物体所运动的路程,参照以上公式。
【与差问题公式】(与+差)÷2=较大数;(与-差)÷2=较小数。
【与倍问题公式】与÷(倍数+1)=一倍数;一倍数×倍数=另一数,或与-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】二人从两地出发,相向而行)与“相离问反向行程问题可以分为“相遇问题”(题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度与)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度与)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度与。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
七年级数轴相遇追及问题应用题
七年级数轴相遇追及问题应用题一、数轴相遇问题。
1. 甲、乙两人在数轴上运动,甲位于数轴上表示 -5的点,乙位于数轴上表示3的点。
甲以每秒2个单位长度的速度向右运动,乙以每秒1个单位长度的速度向左运动,设运动时间为t秒。
- t秒后甲表示的数为多少?乙表示的数为多少?- 解析:甲位于 - 5点,向右运动,速度为每秒2个单位长度,t秒后甲表示的数为-5 + 2t;乙位于3点,向左运动,速度为每秒1个单位长度,t秒后乙表示的数为3 - t。
- 经过多少秒两人相遇?- 解析:两人相遇时,他们在数轴上表示的数相同,即-5+2t = 3 - t,移项可得2t+t=3 + 5,3t = 8,解得t=(8)/(3)秒。
2. A、B两点在数轴上,A点表示的数为 - 2,B点表示的数为4。
A点以每秒1.5个单位长度的速度向右运动,B点以每秒0.5个单位长度的速度向左运动。
- t秒后A点表示的数是多少?B点表示的数是多少?- 解析:A点原来表示 - 2,向右运动,速度为每秒1.5个单位长度,t秒后A点表示的数为-2+1.5t;B点原来表示4,向左运动,速度为每秒0.5个单位长度,t秒后B点表示的数为4 - 0.5t。
- 经过多少秒两点相遇?- 解析:相遇时-2 + 1.5t=4-0.5t,移项得1.5t+0.5t = 4 + 2,2t=6,解得t = 3秒。
3. 数轴上有两点M、N,M点表示 - 3,N点表示5。
M点以每秒3个单位长度的速度向右运动,N点以每秒2个单位长度的速度向左运动。
- t秒后M点表示的数为多少?N点表示的数为多少?- 解析:M点原来表示 - 3,向右运动,速度为每秒3个单位长度,t秒后M点表示的数为-3+3t;N点原来表示5,向左运动,速度为每秒2个单位长度,t秒后N点表示的数为5-2t。
- 经过多少秒M、N两点相遇?- 解析:相遇时-3+3t = 5-2t,移项得3t+2t = 5 + 3,5t = 8,解得t=(8)/(5)=1.6秒。
七年级追击和相遇问题的知识点
七年级追击和相遇问题的知识点在七年级的学习中,数学中有一部分知识点可以用来解决追击和相遇问题。
下面将介绍这些知识点。
一、平均速度与运动运动是物体相对于观察者发生的位置变化。
我们可以用速度来描述运动:速度是物体单位时间内的位移。
在追击问题中,我们需要确定追击方和被追方的速度。
如果追击方和被追方速度相等,则追上的可能性很小。
如果追击方速度小于被追方,则永远无法追上。
因此我们需要知道平均速度的概念。
平均速度是物体在一段时间内位移与时间的比值。
对于追击问题,我们可以根据平均速度计算出追击方和被追方在一段时间内的位移,从而推断是否会相遇。
二、比例和方程在解决追击问题时,我们需要利用比例和方程,来确定追击方和被追方的速度关系。
比例是两个量之间的关系。
在追击问题中,追击方运动的速度与被追方运动速度之间应该是一个比例。
例如:如果追击方的速度是被追方速度的一半,那么我们可以表示为:追击方速度/被追方速度=1/2。
方程式则是可以求解未知量的算式。
在追击问题中,我们经常用到方程:路程=速度×时间。
通过这个方程,我们可以计算出追击方和被追方在一段时间内的位移。
三、相遇时的时间在追击问题中,我们需要确定追击方和被追方相遇的时间。
这需要我们在问题中找到相遇时的条件,然后解方程求解。
例如:小明骑自行车向东行驶,速度v1,10分钟后来到一个路口。
小红骑自行车向西行驶,速度v2,20分钟后在这个路口等候。
如果小明和小红在路口相遇,那么我们要求他们相遇时的时间。
解题思路:由于小明向东行驶,小红向西,两者相对运动速度为v1+v2,路程相等,则有方程式:(v1+v2)×t=路程。
由于在10分钟后小明和小红相遇,所以t=10/60小时。
最终,我们可以求出t=1/6小时,也就是10分钟。
这就是追击和相遇问题中的一些基本知识点。
希望同学们在掌握这些知识点的同时,能够善于运用,真正做到灵活运用,提高自己的解决问题的能力。
初一数学相遇和追及问题解析
初一数学相遇和追及问题解析一、相遇问题的基本概念相遇问题是指在两个或多个物体或人在同一直线上运动,并在某个时间点相遇的问题。
在数学中,我们通常用速度、时间、距离等变量来描述相遇问题。
二、追及问题的基本概念追及问题是指两个或多个物体或人在同一直线上运动,其中一人或物体追赶另一个物体或人,并最终追上的问题。
在数学中,我们通常用速度、时间、距离等变量来描述追及问题。
三、相遇问题的解决方法解决相遇问题的关键是找到相遇时各个物体或人行驶的距离总和等于两物体或人的初始距离。
具体解决方法如下:1. 找到两物体或人的初始距离。
2. 计算两物体或人相遇时各自行驶的距离。
3. 计算两物体或人相遇时的总距离。
4. 根据总距离和初始距离的关系,确定相遇时各个物体或人的速度、时间等变量。
四、追及问题的解决方法解决追及问题的关键是找到追及时各个物体或人行驶的距离差等于两物体或人的初始距离。
具体解决方法如下:1. 找到两物体或人的初始距离。
2. 计算追及时各个物体或人行驶的距离差。
3. 根据初始距离和行驶的距离差的关系,确定追及时各个物体或人的速度、时间等变量。
五、相遇和追及问题的应用实例相遇和追及问题在现实生活中很常见,比如两个人同时从两地出发相向而行,或者一个人从后面追赶另一个人等。
这些问题的解决方法都可以从初一数学的角度来解析。
六、相遇和追及问题的常见陷阱在解决相遇和追及问题时,学生容易犯的错误主要有以下几个方面:1. 没有考虑到相遇或追及的时刻是否已经过去,导致计算错误。
2. 没有考虑到物体的速度是否相同或相等,导致计算错误。
3. 没有考虑到物体的初始位置是否相同,导致计算错误。
4. 没有考虑到物体的行驶方向是否相同或相反,导致计算错误。
七、如何提高解决相遇和追及问题的能力为了提高解决相遇和追及问题的能力,学生可以采取以下措施:1. 熟悉相遇和追及问题的基本概念和解决方法,掌握相关的数学知识和技能。
2. 多做练习题,通过反复练习加深对知识的理解和掌握程度。
初一追及问题六大公式
初一追及问题六大公式导言初中数学中的追及问题是一类常见的物理运动问题,也是数学中的经典题型。
通过学习追及问题,我们不仅可以提高对物理运动的理解,还可以培养解决问题的能力和思维逻辑。
本文将介绍初一阶段常见的追及问题,并总结出六大解题公式,帮助同学们更好地掌握和应用这类题型。
一、两物相向而行问题某一时刻,两物体相隔一定距离,同时朝着对方方向开始运动,速度分别为v1和v2。
求它们相遇需要多少时间。
解题方法:1.建立关系式:时间t乘以v1,等于时间t乘以v2;2.解方程:根据关系式得到方程t*v1=t*v2,化简并解方程求得t。
公式一:两物相向而行问题公式dt=--------v1-v2二、两物先后出发问题某一时刻,物体A以速度v1出发,过了一段时间后,物体B以速度v2出发。
求物体B追上物体A需要多少时间。
解题方法:1.建立关系式:时间t加上A先行的时间,等于B行程的时间;2.解方程:根据关系式得到方程t+(t*v1)=t*v2,化简并解方程求得t。
公式二:两物先后出发问题公式dt=---------v2-v1三、正向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,在距离x处相遇。
求A出发后多长时间会与B相遇。
解题方法:1.建立关系式:时间t加上x除以速度v1,等于时间t乘以速度v2;2.解方程:根据关系式得到方程t+(x/v1)=t*v2,化简并解方程求得t。
公式三:正向相遇问题公式xt=---------v2-v1四、追上问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,求A多长时间能追上B。
解题方法:1.建立关系式:时间t乘以速度v1,等于时间t加上t乘以速度v2;2.解方程:根据关系式得到方程t*v1=t+(t*v2),化简并解方程求得t。
公式四:追上问题公式tv1=-----1-v2五、反向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,它们相遇后,A往回走,B继续向前,求B追上A需要多长时间。
相遇公式和追及问题公式
相遇公式和追及问题公式
接下来是追及问题公式。
假设有两个物体,它们分别以速度v1和v2沿着同一直线运动,但是它们之间有一个相对速度u,表示其中一个物体在追另一个物体。
那么追及问题中常常需要求解它们相遇时的位置和时间关系。
这个问题可以通过下面的公式来描述,t = (s2 s1) / (v1 v2),其中s1和s2分别表示两个物体的起始位置。
这个公式的推导也可以通过将两个物体的位移方程相减得到,然后解方程得到相遇时间t。
需要注意的是,在使用这些公式时,要确保速度和位移的单位是一致的,通常情况下我们会使用米和秒作为单位。
此外,这些公式都是建立在一维运动的基础上,如果是二维或三维运动,则需要考虑向量的加法和减法。
另外,在实际问题中,还需要考虑到空气阻力、摩擦力等因素,这些因素会对相遇时间和位置产生影响,需要进行更复杂的分析和计算。
总之,相遇公式和追及问题公式是描述物体运动相遇和追及关系的重要工具,它们在物理学和数学中有着广泛的应用。
通过这些公式,我们可以更好地理解和分析物体之间的相对运动关系,为实际问题的求解提供了重要的理论基础。
关于追击问题和相遇问题的解决方法
关于追击问题和相遇问题的解决方法
1.追及问题的解决方法:这类问题一般是同向的、速度快的追慢的,或者后走的追先走的一类问题。
如果由同一地点出发,追上时两者的路程相等,难理解得是你走他也走,总觉得动态很乱套,但只要理解和运用好速度之差,就不难了。
如果求时间:就用该路程除以两者速度之差;如果求路程:就用某一速度乘以其走得时间;若求某一速度:就要先找出其走的路程,再除以所用得时间。
2.相遇问题的解决方法:这类问题一般是从甲乙两地相向而行,相遇时两者的路程之和等于甲乙间的距离。
若求相遇的时间:就用两者的距离除以两者速度之和;若求两地的距离:就用两者速度之和乘以相遇时用的时间;若求某一速度:就要先找出其走的路程,再除以所用得时间。
追和和相遇问题
长时间两车相距最远?此时距离是多少?
解法二 用数学求极值措施来求解
设汽车在追上自行车之前经过t时间两车相距最远
∵△x=x1-x2=v自t - at2/2 (位移关系) ∴ △x=6t -3t2/2 由二次函数求极值条件知
t= -b/2a = 6/3s = 2s时, △x最大
成旳三角形面积与标有斜线旳三角形面积相等时,两车
旳位移相等(即相遇)。所以由图得相遇时,ቤተ መጻሕፍቲ ባይዱ
t′=2t=4 s v′ = 2v自=12 m/s
②匀速运动旳物体追赶同向匀加速直线运动旳物体,追赶 时两者距离最小(涉及追及)旳条件为:追赶者旳速度等 于被追赶者旳速度.
情境设置
例2、一车从静止开始以1m/s2旳加速度迈进,车后相 距x0为25m处,某人同步开始以6m/s旳速度匀速追车, 能否追上?如追不上,求人、车间旳最小距离。
t v=6
m/s
t v v0 6 20 s 28s a 0.5
在这段时间内,s A=v0t′+
1at′2=364 m
2
sB= vt′=168 m
sA- sB=196 m>180 m,所以两车相撞.
另外,本题也能够用不等式求解:设在t 时刻两物体相遇,则
有:v0t+
1 2
at2=180+
x人=v人t=6×6=36m
x车=at′2/2=1×62/2=18m
△x=x0+x车-x人=25+18-36=7m
结论:速度大者减速追赶速度小者,追上前在两 个物体速度相等时,有最小距离.即必须在此之前 追上,不然就不能追上.
解析:作汽车与人旳运动草图如下图甲和v-t图象如下图乙所 示.因v-t图象不能看出物体运动旳初位置,故在图乙中标上两 物体旳前、后.由图乙可知:在0~6 s时间内背面旳人速度大, 运动得快;前面旳汽车运动得慢.即0~6 s内两者间距越来越 近.因而速度相等时两者旳位置关系,是判断人能否追上汽车 旳条件.
初一数学追及问题和相遇问题列方程的技巧
初一数学追及问题和相遇问题列方程的技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。
此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
相离问题两个运动着的动体,从同一地点相背而行。
若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。
它与相遇问题类似,只是运动的方向有所改变。
解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。
初一数学_相遇与追击问题
相遇与追击问题
1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。
(1)若两车同时相向而行,请问B车行了多长时间后与A车相遇?
(2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?
2、 A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
(1)若两车相向而行,请问B车行了多长时间后与A车相遇?
(2)若两车相向而行,请问B车行了多长时间后两车相距10千米?
3、小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。
(1)爸爸追上小明用了多少时间?
(2)追上小明时,距离学校还有多远?
4、 A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?
5、小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米,叔叔每秒跑7.5米。
(1)若两人同时同地反向出发,多长时间两人首次相遇?
(2)若两人同时同地同向出发,多长时间两人首次相遇?。
初中七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题追及问题:(相向而行):追及路程/追及速度和=追及时间(同向而行):追及路程/追及速度差=追及时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相遇和追及问题
相遇问题
1、甲乙两地相距1200m,A .B两个人从甲乙两地同时出发,分别以4m/s和6m/s 的速度沿直线相向而行,问经过多长时间二人能相遇?
2、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?
3、甲、乙两人从相距15km的两地同时出发,相向而行,甲的速度为3km/h,乙的速度为2km/h,甲带一条狗,同甲一起出发,狗的速度4km/h,狗碰到乙后又往甲方向走,碰到甲后它又往乙方向走,这样持续下去,直到甲乙相遇时,这条狗一共走了_________km。
追及问题
4、甲、乙同时起跑,绕300米的环行跑道跑,甲每秒跑6米,乙每秒跑4米,当甲追上乙时,甲跑了几圈?
5、公共汽车从车站开出以4m/s的速度匀速沿平直公路行驶,20s后一辆摩托车从同一车站开出以12m/s的速度匀速追赶。
试问(1)摩托车出发后,经多少时间赶上汽车?(2)摩托车追上汽车时,离出发点多远?
6、队伍(纵队)长120m,正以某一速度匀速前进。
现因有事传达,一通讯员队尾跑到排头,然后立即掉头以大小不变的速度从排头跑回队尾。
已知在这一过程中队伍前进了160m,通讯员在这一过程中往返共跑了多少米?
某船在静水中航速为36km/h,船在河中逆流而上,经过一座桥时,船上的一只木箱不慎被碰落水中,经过2min船上的人才发现,立即调转船头追赶,在距离600m处追上木箱,则水的流速是多少?
小明的家与学校之间有一座山,每天上学的过程中,有2/5的路程是上坡路,其余的是下坡路,小明从家到学校要走36min。
如果小明上坡行走速度不变,下坡行走速度也不变,而且上坡行走速度是下坡行走速度的2/3,那么小明放学回家要走多长时间?。