27.1图形的相似公开课__第1课时

合集下载

人教版数学九年级下册27.1图形的相似第一课时教学课件(共30张PPT)

人教版数学九年级下册27.1图形的相似第一课时教学课件(共30张PPT)
1.通过实例知道相似图形的意义. 2.经历观察、猜想和分析过程, 知道相似多边形对应角相等, 对应边的比相等,反之亦然.
学习重难点
1.重点:相似图形和相似多边形的 意义. 2.难点:探索相似多边形对应角相 等,对应边的比相等.
回顾旧知
全等图形
A
C B
A
B
C
形状、 大小完全相 同的图形是 全等图形。
[活动4]
如图中的两个相似三角形和相似四边形, 它们的对应角和对应边有什么关系?
为了验证你的猜想, 可以用刻度尺和量 角器量一量.
归纳
相似多边形
zxxk
对应角相等,对应边成比例。
(对应边的比相等)
相似比
相似多边形对应边的比。 ( k > 0)
若相似比k =1 ,相 似图形有什么关系?
当相似比k =1时, 相似图形即是全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
[活动1]
请观察下列几幅图片: 你能发现些什么?你能对观察到的图片特 点进行归纳吗?
学科网
归纳
两个图形的形状 完全相同 ________,但图形 的大小位置 不一定相同 __________,这样的图形叫 做相似图形。
2. 五边形ABCDE相似于五边形 A′B′C′D′E′,它们的相似比为1 : 3,(1)若 ∠D=135°,则∠D′= ______。 135° 5 。 (2)若A′B′=15cm,则AB= ______
3. 一个多边形的边长分别是2、3、4、 5、6,另一个和它相似的多边形的最短边 18 长为6,则这个多边形的示的两个矩形相似吗?为什么? 如果相似,相似比是多少?

27.1图形的相似(第1课时)教学设计

27.1图形的相似(第1课时)教学设计

课题:图形的相似(第1课时)教学设计一、教学目标知识技能1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.过程与方法1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。

2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。

3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。

4.能针对他人所提的问题进行反思,初步形成评价与反思的意识。

情感态度价值观1.积极参与数学活动,对数学有好奇心和求知欲。

2.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。

3.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。

4.敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。

二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形(稍停)它们叫相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章).(二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义生:……(让几名同学回答)(师出示下面的板书)形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说生:……(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面与胶片上的图形是相似图形;实际的建筑物与它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形(1) (2) (3)(4) (5)(6)2.如图,图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗(四)尝试指导,讲授新课(师出示下图)师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′.(生答师板书:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′)师:(指图)这两个相似三角形的边有什么关系(让生思考一会儿) 师:(指准图)AB 与A ′B ′的比是AB A B (板书:AB A B),BC 与B ′C ′的比是BC B C (板书:BC B C ),CA 与C ′A ′的比是CA C A (板书:CA C A),这三个比相等吗生:(齐答)相等.师:为什么相等(稍停后指准图)△A ′B ′C ′可以看成是△ABC 缩小得到的,假如AB 是A ′B ′的2倍,那么可以想象,BC 也是B ′C ′的2倍,CA 也是C ′A ′的2倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子. (师出示下图)师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′.(生答师板书:∠///B A C CBA ////A B C D D A B CA=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′)师:(指图)这两个相似四边形的边有什么关系 生:AB A B =BC B C =CA C A =DA D A .(生答师板书:AB A B =BC B C =CA C A =DA D A) 师:(指式子)这四个比为什么相等(稍停后指准图)四边形A ′B ′C ′D ′可以看成是四边形ABCD 放大得到的,假如AB 是A ′B ′的一半,那么可以想象,BC 也是B ′C ′的一半,CD 也是C ′D ′的一半,DA 也是D ′A ′的一半,所以这四个比相等.师:从这两个例子,大家想一想,你能得出一个什么结论(等到有一部分同学举手再叫学生)生:……(多让几名学生发表看法)(师出示下面的板书)相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说生:……(让几名学生说)(师出示下面的板书)对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义.(师出示下面的板书)对应角相等,对应边的比也相等的两个多边形叫做相似多边形. 师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,回授调节3.如图,△ABC 与△A ′B ′C ′相似,则∠C ′= °,B ′C ′= .4.判断正误:对的画“√”,错的画“×”.(1)两个等边三角形一定相似; ( )C /11053//B A A B C(2)两个正方形一定相似;()(3)两个矩形一定相似;()(4)两个菱形一定相似. ()(六)归纳小结,布置作业师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形.(作业:P35练习习题.)教学反思:注意讲课节奏,对学困生要跟踪辅导注意少讲多练,提高课堂效率;注意调动学生的积极性,培养认真细致,勤奋钻研的品质。

人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例

人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例
2.问题导向的教学策略:教师在课堂上提出一系列具有启发性的问题,引导学生思考和探索相似图形的性质。这种问题导向的教学策略能够培养学生的独立思考能力,提高他们的逻辑思维能力。
3.小组合作的学习方式:教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。这种小组合作的学习方式能够培养学生的合作精神,提高他们的沟通能力和团队协作能力。
4.教师组织小组汇报、展示等活动,让学生在分享成果的同时,提高自己的表达能力和合作能力。
(四)反思与评价
1.教师引导学生回顾本节课的学习内容,总结相似图形的性质及其应用。
2.教师设计反思性题目,让学生思考自己在学习过程中的优点和不足,明确今后的学习方向。
3.教师组织学生进行自我评价、同伴评价,让学生了解自己的学习状况,提高自我监控能力。
(二)过程与方法
1.采用自主学习、合作交流的教学模式,引导学生主动探究相似图形的性质。
2.利用多媒体课件、实物模型等教学资源,为学生提供丰富的感性材料,增强他们的空间想象力。
3.设计一系列具有层次性的数学题目,让学生在解决实际问题的过程中,逐步掌握相似图形的性质。
4.注重培养学生的问题提出、问题解决、归纳总结的能力,提高他们的逻辑思维能力。
4.教师及时给予反馈,引导学生反思自己的思考过程,及时调整学习策略。
(三)小组合作
1.教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。
2.教师设计具有挑战性的数学题目,让学生在合作交流中,提高自己的数学素养。
3.教师关注每个小组的学习进度,及时给予指导,帮助学生克服学习中的困难。
三、教学策略
(一)情景创设
1.利用多媒体课件展示生活中的实际例子,如建筑物的立面图、电路图等,让学生感受到相似图形在实际应用中的重要性。

《27.1 图形的相似》教案1

《27.1 图形的相似》教案1

《27.1图形的相似》教案第一课时一、教学目标1、理解并掌握两个图形相似的概念.2、了解成比例线段的概念,会确定线段的比.二、重点、难点1、重点:相似图形的概念与成比例线段的概念.2、难点:成比例线段概念.3、难点的突破方法(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d成比例,记作或a:b=c:d;⑤若四条线段满足,则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,则有?或其它七种表达形式).三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m、cm、mm三种不同的长度单位,求得的的值相等,使学生明确:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求线段的比的题,要使学生对比例尺有进一步的认识:比例尺=?而求图上距离与实际距离的比就是求两条线段的比.四、课堂引入1、(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P36引入.(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.2、问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.3、成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.注意:(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段满足,则有ad=bc.五、例题讲解例1(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?(1)如果a=125cm,b=75cm,那么长与宽的比是多少?(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?解:略.小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.例2(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?分析:根据比例尺=?可求出北京到上海的实际距离.解:略答:北京到上海的实际距离大约是1120km.六、课堂练习1、教材P37的观察.2、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.3、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?4、AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?第二课时一、教学目标1、知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2、会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、重点、难点1、重点:相似多边形的主要特征与识别.2、难点:运用相似多边形的特征进行相关的计算.3、难点的突破方法(1)判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似(见例1),也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识.(2)由相似多边形的特征可知,如果已知两个多边形相似,就等于知道它们的对应角相等,对应边的比相等(对应边成比例),在计算时要能灵活运用.(3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数).三、例题的意图本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2是教材P39的例题,它主要考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用(使用方程思想)的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以巩固相似多边形的性质.四、课堂引入1、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.2、问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.3、结论:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.五、例题讲解例1(补充)(选择题)下列说法正确的是()A.所有的平行四边形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D 说法正确,因此此题应选D.例2(教材P38例题).分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.解:略六、课堂练习1、教材P39练习1、2、3.2、教材P39习题4.3、(选择题)下列所给的条件中,能确定相似的有()(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A.3个B.4个C.5个D.6个4、已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?。

27.1 图形的相似课件(共30张PPT)

27.1  图形的相似课件(共30张PPT)

比)与另两条线段的比相等,如
a b
c
d(即
ad
=
bc),我们就说这四
条线段成比
27.1 图形的相似
观察与思考 1.观察多面体模型与五棱柱教具中的正五边形回答下列问题
27.1 图形的相似
问题1 这些正五边形两两之间相似吗?
相似
问题2 在这两个正五边形中,是否有对应相等的内角?

问题3 在这两个正五边形中,对应内角的两边是否成比例?
78° 83°
B
C
F
α G
27.1 图形的相似
解:∵ 四边形 ABCD 和 EFGH 相似, ∴ 它们的对应角相等.由此可得
∠α = ∠C = 83°,∠A = ∠E=118°.
在四边形 ABCD 中,
β = 360°-(78°+83°+118°) = 81°.
21 D
A
β
18
78° 83°
B
C
x E
27.1 图形的相似 如果放在教室最后面展示又有什么不同? 2. 图形的放大:
两个图形相似,其中一个图形可以 看作由另一个图形放大或缩小得到.
通过上面两 组图形的观 察,发现了 什么?
27.1 图形的相似 例1 放大镜观察学具的一个角和原来的角有什么关系?
放大之后的角与原来的 角是相似关系
27.1 图形的相似
118° 24
F
H
α G
27.1 图形的相似
∵ 四边形 ABCD 和四边形 EFGH 相似, ∴它们的对应边成比例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.

相似教案(27.1图形的相似第1课时)

相似教案(27.1图形的相似第1课时)

第二十七章相似27.1图形的相似(第一课时)教学目标:知识与技能:1.通过具体实例认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的性质定理,掌握相似图形的判定定理.过程与方法1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似图形的概念的形成过程,培养学生观察能力及归纳总结能力.情感态度与价值观1.通过观察识别相似图形,渗透生活和数学中美的教育.2.通过小组合作交流,培养学生共同探究的合作意识.3.通过识别生活中的相似图形,激发学生探究数学问题的兴趣.教学重点理解并掌握相似图形的概念及特征.教学难点理解相似图形的特征,掌握识别相似图形的方法.教学过程一、新课导入(1)汽车和它的模型(2)大小不同的两个足球(3)大小不同的两张照片问题:上面各组图片的共同之处是什么?这些图形涉及的就是我们这章要学习的相似形问题.二、新知构建1、认识相似图形【思考1】以上展示的图片之间有什么特点?它们的形状和大小有怎样的关系?【师生活动】学生观察思考,教师引导点拨它们形状相同、大小不等.共同归纳本节课学习重点——相似形的概念.【结论】形状相同的图形叫做相似图形.【思考2】全等形一定是相似图形吗?相似图形一定全等吗?它们之间有什么关系?【师生活动】学生通过观察导入中图片,独立思考后小组交流,教师对学生回答进行点评,归纳全等形与相似形之间的关系.【结论】全等图形是相似图形的一种特殊情况.全等图形一定相似,相似图形不一定全等.【思考3】你能举出现实生活中一些相似图形的例子吗?2、相似图形的特征观察下列每组图形,是不是相似图形?【思考】(1)两个相似的平面图形之间有什么关系?(2)两个相似图形的主要特征是什么?(3)如何判定两个图形是相似图形?(4)相似图形的大小是不是一定相等?(5)相似图形是否可以看作其中一个图形是由另一个图形放大或缩小得到的?【结论】相似图形的特征是:形状相同.两个图形的形状相同,则两个图形就是相似图形.相似图形的大小不一定相等,其中一个图形可以看作是由另一个图形放大或缩小得到的.3、例题讲解如图所示的是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?【思考】(1)在平面镜中的像与物体的形状 ,大小,则从平面镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).(2)哈哈镜里看到的形象,有的被“压扁”了,有的被“拉长”了,所以哈哈镜中的像与物体的形状 ,大小,则从哈哈镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).观察下列图形,哪些是相似图形?第一组:第二组:[知识拓展]所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.三、课堂小结1.相似图形定义:形状相同的图形叫做相似图形.2.相似图形与全等形之间的关系.3.相似图形的特征:形状相同.四、检测反馈1.下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似.正确的有A.2个B.3个C.4个D.1个2.下列图形是相似图形的是()A.①②③B.②③④C.①③④D.①②④3.下列图形不是相似图形的是()A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图4.如图所示,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换五、板书设计图形的相似(第一课时)1.认识相似图形2.相似图形的特征3.例题讲解例1 例2六、课堂作业教材第27页习题27.1第4题.教学反思:。

《图形的位似》图形的相似PPT(第1课时)教学课件

《图形的位似》图形的相似PPT(第1课时)教学课件
作位似图形:关键是确定位似中心、 相似比和找关键点的对应点.
导入新课
第四章 图形的相似
图形的位似
第2课时
讲授新课
当堂练习
课堂小结
学习目标
1.理解位似图形的坐标变换规律.(难点) 2.能熟练在坐标系中根据坐标的变化规律做出位似图形.(重点)
导入新课
问题:将图(1)图形如何变换得到图(2)?
y
y
O
例1:在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,
0),B(3,6),C(-3,3).以原点O为位似中心,画出四边形OABC的位似图形,使
它与四边形OABC的相似是2:3.
画法一:如右图所示,
解:将四边形OABC各顶点的坐标都
2
乘 ;在平3面直角坐标系中描点
C C'
yB
OA'
连接的直线A相交于点O. OA
, OB' OB
, OC' OC
, OD' OD
,
OE' OE
有什么关系?
A'
B
E
E'
B'
O
D'
D
C'
C
OA' OB' OC' OD' OE' . OA OB OC OD OE
A
A'
B
E
E'
B'
O
如果C两个相似多D边形任意一组对C应' 顶点PD,' P̍ 所在的直线都过同一点O,且
当堂练习
1.选出下面不同于其他三组的图形( B )
A
B

公开课教案 相似图形

公开课教案   相似图形

第二十七章相似27.1 图形的相似第1课时相似图形1.通过对事物的图形的观察、思考和分析,认识理解相似的图形.2.经历动手操作的活动过程,增强学生的观察、动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识.阅读教材P24-25,弄清楚相似图形的概念,能正确判断两个图形是否相似;自学反馈学生独立完成后集体订正①把图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形和得到的.③从放大镜里看到的三角板和原来的三角板相似吗?④哈哈镜中人的形象与本人相似吗?⑤全等三角形相似吗?⑥生活中哪些地方会见到相似图形?研究几何主要是研究几何图形的形状、大小与位置,只要形状相同的两个图形就叫做相似图形.活动1 小组讨论例下列各图中哪组图形是相似图形( C )观察图形,要从本质入手,如C,将小图的位置稍加旋转就可以发现它们是相似图形. 活动2 跟踪训练(独立完成后展示学习成果)1.下列说法中,不正确的是( )A.两幅比例不同的中国行政地图是相似图形B.两个图形相似与形状有关而与位置无关C.哈哈镜中人的形象与本人是相似的D.同一底片洗出来的不同尺寸的照片是相似的2.下列各组多边形每一组中各取两个大小不同的多边形,一定是相似图形的是.①三角形;②等边三角形;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦梯形;⑧直角三角形. 活动3 课堂小结本节课学习的数学知识:形状相同的图形是相似图形;两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.本节学习的数学方法:观察类比法.教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①形状相同的图形②放大缩小③相似④不相似⑤相似⑥略【合作探究】活动2 跟踪训练1.C2.②⑥第二十九章投影与视图29.1 投影第1课时投影1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.阅读教材P87-88页,自学“投影”、“平行投影”、“中心投影”的内容,区分清楚概念.自学反馈独立完成后小组内交流①光线照射物体,在某个平面(地面或墙壁等)上得到的,叫做物体的投影,照射光线叫做,投影所在的平面叫做.②由光线形成的投影叫做平行投影,由发出的光线形成的影子就是中心投影.③皮影戏是利用(填“平行投影”或“中心投影”)的一种表演艺术.④“平行投影”与“中心投影”的投影线有何区别?⑤教材P88页练习题.影子的形成需要“光线”、“物体”、“形成影子的面”三个条件;本章中所提的“投影面”是一个平面,生活中的影子不一定在同一个平面上;而光线的平行与否是区分“平行投影”和“中心投影”的条件.活动1 小组讨论例1 太阳光照射到日晷上形成的投影与灯光照射到三角尺在墙面上形成的投影有何不同?解:太阳光形成的投影是平行投影,灯光形成的投影是中心投影.太阳光是平行光线,由此形成的投影是平行投影;灯光是从一点发出的光线,它形成的投影叫做中心投影.例 2 如图中①②③④是木杆一天中四个不同时刻在地面上的影子,将它们按时间先后顺序排列为.解:④③②①.一天当中影子的变化情况是:正西—北偏西—正北—北偏东—正东.活动2 跟踪训练(独立完成后展示学习成果)1.请判断如图所示的两根电线杆的影子是灯光还是太阳光形成的.可画出光线,根据光线的方向来判断,若光线平行则是太阳光照射形成的平行投影;若交于一点则是灯光照射形成的中心投影.2.身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子 .活动1 小组讨论例3 如图,小强家后院有一根电线杆和一棵大树.①请根据树在阳光下的影子,画出电线杆的影子;(用线段表示)②若此时大树的影子长为6 m ,电线杆高8 m,其影长为10 m ,求大树的高度.解:①如图,线段AB 即为所求;②设大树的高度为x m,则有6x =810.∴x=4.8. 答:大树的高度为4.8 m.①小题首先要确定太阳光为光源,投影线是平行的,可以根据树和它的影子确定光线,从而画出电线杆的影子;②在同一时刻,物体的影长与实际长度的比值是定值.活动2 跟踪训练(独立完成后展示学习成果)如图,我国某大使馆内有一单杠支架,支架高2.8 m,在大使办公楼前竖立着高28 m的旗杆,旗杆底部离大使办公楼墙根的垂直距离为17 m,在一个阳光灿烂的某一时刻,单杠支架的影长为2.24 m,大使办公窗口离地面5 m,问此刻中华人民共和国国旗的影子是否能达到大使办公室的窗口?可先画出旗杆在办公楼上的投影,通过同一时刻,同一物体的影长与物长的比是一个定值这一规律计算出旗杆投影到墙上的影长,跟5 m进行比较就可得出结论.活动3 课堂小结学生试述:这节课你学到了什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①影子投影线投影面②平行同一点(点光源)③平行投影④略⑤略【合作探究1】活动2 跟踪训练1.灯光2.短【合作探究2】活动2 跟踪训练旗杆的影长应为22.4 m,投在墙上的影长为6.75 m>5 m,所以影子能达到大使办公室的窗口。

人教版九年级数学下册27.1《 图形的相似》 课件 (共29张PPT)

人教版九年级数学下册27.1《 图形的相似》 课件 (共29张PPT)

练一练
2.下列说法正确的是
( C)
A.相似形是全等形;
B.不相似的图形可能是全等形;C.全等形是相似形;D.不全等的图形不是相似形.
练一练
(1) (2)
(3)
下列各组图形 相似吗?
什么样的两个多边形是相似的?
二、相似多边形
1、定义:两个边数相同的多边形,如果它们的角分 别相等,对应边的比相等,那么这两个多边形叫做相 似多边形 2、相似比:相似多边形对应边的比叫做相似比
读着△ABC相似于△ A'B’C’
∽读作“相似于”通常把对应顶点写在对应位置上
ABC 和 DEF相似
4 CD E
7
12 14
6
AB DE
BC DF
AC EF
2 A BF
∠A =∠_E____, ∠B =∠_D____, ∠C =∠_F____;
△ABC的三条边的长分别为6、8、 10,与△ABC相似的△A/B/C/的最长 边为30。则△A/B/C/的最短边的长 为___1_8___。
ABC 和 EDF 相似
AB BC AC K ED DF EF
C DE
K表示这两个相似三角形
的相似比
F
相似比就是它们的对应边的比
AB
☺ 它有顺序关系
ABC ∽ EDF 它的相似比为
AB K ED
EDF∽ ABC 它的相似比为
ED 1 AB K
判断下列两个三角形是否相似?简单说明理由, 如果相似,写出对应边的比例
探索
请观察下面展示的图片的大 小和形状有什么关系?
观察
探索
日归常纳生活中我们会碰到很多这样形状 相同、大小不一定相同的图形,在数 学上,我们把具有相同形状的图形称 为相似形

人教版数学九年级下册27.1《图形的相似》课件(共17张PPT)

人教版数学九年级下册27.1《图形的相似》课件(共17张PPT)

探究相似图形的关系
图形的放大 图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以看作 由另一个图形放大或缩小得到。
随堂练习
1、教材P25.练习
补充:
1、你认为下列属于选项中哪个才是相似图形的本质属性(D )
A.大小不同
B.大小相同
C.形状不同
D.形状相同
2、下列说法:
①全等的图形一定相似;
归纳总结
所有的直角三角形不一定是相似图形 所以的等腰三角形不一定是相似图形 所有的锐角三角形不一定是相似图形 所有的等边三角形是相似图形 所有的等腰直角三角形是相似图形
相似图形的形状必须完全相同 相似图形与图形的大小、颜色、位置无关
购买楼房时,消费者只能根据户型平面图 纸选房,并且建筑工人建筑是严格按照图纸进 行施工,你认为选好的楼房结构可靠吗?
②相似图形一定全等;
③关于某条直线轴对称的两个图形一定相似;
④关于某个点中心对称的两个图形相似。
正确的有:__①_②_③____
课堂小结
相似图形的定义:
形状相同的图形叫做相似图形。
两个图形相似,如果大小不同, 其中一个图形可以看作由另一个 图形放大或缩小得到。
小练习
1.在下列图形中找出相似图形。
解后思考:
F
位置不同, 但形状相同
F
2.判断下列各组图形是否相似
等 腰 直 角 三 角 形
(1)
等腰Βιβλιοθήκη 直角三角

(3)

















人教版九年级下册数学27.1:相似多边形 课件(共16张PPT)

人教版九年级下册数学27.1:相似多边形 课件(共16张PPT)

对于图中两个相似的四边形,它们的对应角、对应边是否有同样的结论?
∠C=∠G= 900, ∠D=∠H= 900
在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是30cm,求两地的实际距离
相似多边形的判定方法:
(2)正方形ABCD与正方形EFGH. ∴AB=BC=CD=DA
x
∴∠A=∠E= 900, ∠B=∠F= 900
D
∴AB=BC=CD=DA
EF=FG=GH=HE
B
C
∴ ABBCCDDA.
E
H
EF FGGHHE
F
G
探究
1. 下图是两个相似的三角形,猜想它们的对 应角、对应边的比是否相等?
2. 对于图中两个相似的四边形,它们的对应 角、对应边是否有同样的结论?
问题:任意两个相似的多边形有什么性质?
相似多边形性质: 相似多边形对应角相等,对应边的比相等.
118°
18cm 例 如图,四边形ABCD和EFGH相似,求角α,β的大小和EH的长度x
x = 300000000 答: 甲,乙两地的实际距离为30000千米
解:四边形ABCD和EFGH相似,它们的对应角相等.由此可得
78° 83° ∠β=360°-(78°+83°+118°)=81°.
我们把相似多边形对应边的比称为相似比.
EF=FG=GH=HE ∠α=∠C=83°,∠A=∠E=118°
的比相等,那么这两个多边形相似. 解得 x=28(cm)
四边形ABCD和EFGH相似,它们的对应边的比相等.由此可得 我们把相似多边形对应边的比称为相似比.
答: 甲,乙两地的实际距离为30000千米 答: 甲,乙两地的实际距离为30000千米 (2)正方形ABCD与正方形EFGH. ∴∠A=∠E= 900, ∠B=∠F= 900

最新27.1图形的相似教案(含1.2课时)

最新27.1图形的相似教案(含1.2课时)

九年级数学图形的相似集体备课教案陈军27.1图形的相似(第1课时)【教学任务分析】【教学环节安排】问题 1.五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?问题2.什么是相似图形?【当堂达标自测题】一、填空题1.观察下列图形,指出是相似图形.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,是形状不同的图形.二、选择题1.(1)☺☹;(2)✶✷;(3)→↑;(4) .在上述各种符号中,形状相同的符号有几组?()A.一组B.二组C.三组D.四组2.下列说法中,正确的是()A.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同C.形状相同的两个图形的面积一定相等D.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()A.形状大小都一样B.形状一样,大小不一样C.形状不一样,大小一样D.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()A.不能够互相重合B.形状相同,大小也一定相同C.形状不一样D.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.九年级数学图形的相似集体备课教案陈军27.1图形的相似(第2课时)【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题1. 矩形ABCD 中AB=CD=8,AD=BC=6,矩形EFGH 中,EF=GH=3,EH=FG=4,这两个矩形_____2.△ABC 的三条边之比为2:5:6,与其相似的另一个△A•′B•′C•′最大边长为18cm ,则另两边长的和为_______.3.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为63cm ,则这两个三角形的周长分别是________. 4. ΔABC 与△DEF 中,∠A=65°,∠B=42°,∠D=65°,∠F=73°,AB=3,AC=5,BC=6,DE=6,DF=10,EF=12,则△DEF 与△ABC_____ 二、选择题5.△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ). A .32 B .23 C .52 D .94 6.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A .3个 B .4个 C .5个 D .6个7.把mn=pq (mn ≠0)写成比例式,写错的是( )A .m q p n = B .p n m q= C .q n m p = D .m p n q =8.在一张比例尺为1:15000的平面图上,一块多边形地区的其中一边长为5cm ,那么这块地区实际上和这一边相对应的长度应为( )A .750cmB .75000cmC .3000cmD .300cm 三、解答题9.小红准备在一张宽16cm ,长20cm 的风景图片的四周镶上一条2cm 宽的金色纸边,如图27.1—6问金色纸边的内外边缘所成的矩形相似吗?为什么?10.如图27.1—7,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长.。

初三下册数学第27章第1节图形的相似公开课

初三下册数学第27章第1节图形的相似公开课

D1 C1
探究二
再看看图中两个相似的五边形,是否与你观察所得到的结果一样?(图看下页)
5.相似多边形的概念
两个边数相同的多边形 如果他们的角分别相等 边成比例,那么这两个 多边形叫做相似多边形, 相似多边形对应边的比 叫做相似比。
1.相似图形:形状相同的图形 2.相似多边形:对应角相等,对应边成比例 3.相似比:相似多边形对应边的比
作业1:1.五边形ABCDE相似与五边形OEFGH它们的相似
比为1:3
(1)若∠D=135°,则∠G=(
)
(2)若OE=15cm,则AB=(

2.一个多边形的边长分别是2,3,4,5,6,另
一个和它相似的多边形的最短边长为6,则这
个多边形的最长边为(

作业2:对应边,对应角分别有什么关系?
正六边形 A
3
4
菱形
4
THANKS! Goodbye
A
D
E
H
2
1
F
G
B
C
作业4:判断
(1)任意俩个矩形都是相似图形 。
(
)
(2)任意俩个圆形是相似图形。
(
)
(3)俩个正五边形是相似多边形。
(
)
(4)两个全等三角形是相似多边形。
(
)
(5)两个菱形是相似多边形。
(
)
(6)对应角相等的两个四边形是相似多边形。 (
)
作业5:判断两个多边形是否相似?
3
正方形
B
F E
放大
A1 B1
F1 E1
C
D
点击此处添加正文,文字是您思想的提炼,为了演示 发布的良好效果,请言简意赅的阐述您的观点。

(初三数学课件)人教版初中九年级数学下册第27章相似27.1 图形的相似教学课件

(初三数学课件)人教版初中九年级数学下册第27章相似27.1 图形的相似教学课件
两个正六边形相似,它们的对应角相等,对应边成比例. 从上述两个问题的探索中你能得到什么结论? 两个边数相等的正多边形相似,且对应角相等、对
应边成比例.
探究新知 任意两个相似三角形,它们的对应角相等吗?对
应边成比例吗?
【结论】任意两个相似三角形,它们的对应角相等!对 应边成比例!
探究新知
图中两个四边形是相似形,仔细观察这两个图形,它们的对 应边之间是否有以上的关系呢?对应角之间又有什么关系?
课堂检测
拓广探索题
如图,把矩形 ABCD 对折,折痕为 EF,若矩形ABCD 与
矩形 EABF 相似,AB = 1.
A
E
D
(1)求BC长;
解:∵ E 是 AD 的中点,

AE
1 2
AD
1 2
BC.
B
F
C
又∵矩形 ABCD 与矩形 EABF相似,AB=1,
∴ AB BC ,∴ AB2 = AE·BC,
人教版 数学 九年级 下册
27.1 图形的相似
导入新知
导入新知
导入新知
导入新知
我们刚才所见到的图形有什么联系? 其中一个图形可以看作是另一个图形放大或者缩小得到的.
学习目标
3.能根据多边形相似进行相关的计算. 2.理解相似多边形的定义. 1.了解相似图形和相似比的概念.
探究新知 知识点 1
【结论】任意两个相似多边形,它们的对应角相等!对应边 成比例!
探究新知
归纳: 相似多边形的定义: 各角分别相等、各边成比例的两个多边形 叫做相似多边形. 相似多边形的特征: 相似多边形的对应角相等,对应边成比例.
相似比: 相似多边形的对应边的比叫做相似比.
探究新知 【思考】任意的两个菱形(或矩形)是否相似?为什么?

27.1 图形的相似 课件 2024-2025学年人教版(2012)九年级下册数学

27.1 图形的相似  课件 2024-2025学年人教版(2012)九年级下册数学
比为 35, 则ABEE(AE<BE)的值为___12____.
课堂小结
图形的相似
相似多边形的定义 相似多边形的性质
相似 图形
四条线段成比例 相似比
综合应用创新
题型 1 利用比例的性质解决比例尺问题
例 7 某市的两个旅游景区之间的距离为105 km,则在一 张比例尺为1∶2 000 000 的交通旅游图上,它们之间 的距离大约相当于( ) A. 一根火柴的长度 B. 一支体温计的长度 C. 一支铅笔的长度 D. 一根筷子的长度
知2-讲
感悟新知
3. 比例的性质:若ab=dc,则ad=bc.
知2-讲
感悟新知
知2-讲
温馨提示 成比例线段是有顺序的,即若线段a,b,c,d成比例,
则有a∶b=c∶d或ab=dc,不能随意更改位置.
感悟新知
拓展 1. 合比性质:
知2-讲
若ab=dc, 则a±b b=c±d d. 2. 等比性质:
感悟新知
解:不相似. 理由如下:
知3-练
∵在矩形ABCD 中,AB=1.5 m,AD=3 m,镶在其外围的
木质边框宽7 .5 cm=0.075 m,∴EF=1.5+2×0.075=
1.65(m),EH=3+2×0.075=3.15(m).∴AEFB=11..655=1101,AEHD

3 3.15
综合应用创新
题型 2 利用比例的性质求值
例 8 如图27.1-3,在线段AB上取C,D两点,已知AB= 6 cm,AC=1 cm,且线段AC,CD,DB,AB 是成比 例线段,求线段CD的长.
综合应用创新
思路引导:
解:设CD=x cm,则DB=AB-AC-CD=6-1-x=(5- x) cm. ∵线段AC,CD,DB,AB 是成比例线段, ∴CACD=DABB. ∴1x=5-6 x.∴ x(5-x)=6,解得x=2 或x=3. 经检验,x=2 或x=3 均是原方程的解. 故线段CD的长为2 cm或3 cm.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
相似
不相似 不相似
练习
1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?
相似
2.如图,图形a ~ f中,哪些是与图形(1)或(2)相似的?
3.下图是一张视力表,表中哪些图形是全等形?那些图形是相似性?
• 相似图形 ——相同形状的图形
问题1:两个图形相似,其中一个图形可以看作由 另一个图形 __放_大___或___缩_小____得到,
问题2:举出现实生活中的几个相似图形的例子
例如:放映电影时,投在屏幕上的画面就是胶片上的 图形的放大;
实际的建筑物和它的模型是相似的;
用复印机把一个图形放大或缩小所所得 的图 形,也都与原来的图形相似.
§27.1 图形的相似
第一课时
学习要求
• 1.学会相似的概念。 • 2.能够准确判断两个多边形是否相似。 • 3. 熟记相似多边形的特征。
下列同一类的图形有什么特点?
能够完全重合的两个 图形叫做全等形。即形状、
大小都相同
下面的图形还是全等形吗?这些图形都有什么共同特征?
共同特征:形状相同,大小不同.
●利用相似放大或缩小图形
1.相似图形:我们把这种形状相同的图形说成 是相似图形
ቤተ መጻሕፍቲ ባይዱ
议一议
2.全等形与相似形有什么关系?
① 两个全等形也是相似形. ② 两个相似形未必是全等形.
注:全等图形是相似图形的特殊情况。
3、图形的相似具有传递性;
图形 A
图形 B
图形 C
如果图形A与图形B相似,图形B与图形C相似, 那么图形A与图形C相似。
相关文档
最新文档