立体几何点线面位置关系习题精选
(完整word)立体几何第二章空间点线面的位置关系单元测试题(含详细答案解析)
第二章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线l1∥l2,在l1上取3个点,在l2上取2个点,由这5个点能确定平面的个数为错误!() A.5 B.4C.9 D.1[答案]D[解析] 由经过两条平行直线有且只有一个平面可知分别在两平行直线上的5个点只能确定一个平面.2.教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线错误!() A.平行B.垂直C.相交D.异面[答案]B[解析] 当直尺垂直于地面时,A不对;当直尺平行于地面时,C不对;当直尺位于地面上时,D不对.3.已知m、n是两条不同直线,α、β是两个不同平面,则下列命题正确的是错误!()A.若α、β垂直于同一平面,则α与β平行B.若m、n平行于同一平面,则m与n平行C.若α、β不平行...与β平行的直线...,则在α内不存在D.若m、n不平行...,则m与n不可能...垂直于同一平面[答案] D[解析]A项,α、β可能相交,故错误;B项,直线m、n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m、n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.已知α、β是两个平面,直线l⊄α,l⊄β,若以①l⊥α;②l∥β;③α⊥β中两个为条件,另一个为结论构成三个命题,则其中正确的命题有导学号 92180600( )A.①③⇒②;①②⇒③B.①③⇒②;②③⇒①C.①②⇒③;②③⇒①D.①③⇒②;①②⇒③;②③⇒①[答案]A[解析]因为α⊥β,所以在β内找到一条直线m,使m⊥α,又因为l⊥α,所以l∥m。
又因为l⊄β,所以l∥β,即①③⇒②;因为l∥β,所以过l可作一平面γ∩β=n,所以l∥n,又因为l⊥α,所以n⊥α,又因为n⊂β,所以α⊥β,即①②⇒③.5.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,若过C1作C1H⊥平面ABC,垂足为H,则点H 一定在错误!( )A.直线AC上B.直线AB上C.直线BC上D.△ABC的内部[答案] B[解析] ∵∠BAC=90°,∴BA⊥AC.又∵BC1⊥AC,∴AC⊥平面ABC1,∴平面ABC⊥平面ABC1。
第8章立体几何专题2 点线面的位置关系常考题型专题练习——【含答案】
旗开得胜点线面的位置关系【知识总结】1、平面的基本性质基本事实1:如果一条直线上的两点在一个平面内,那么这条直线就在此平面内基本事实2:经过不在同一条直线的三点,有且只有一个平面基本事实3:如果不重合的两个平面有一个公共点,那么它们有且仅有一条过该点的公共直线推论1:经过一条直线和这条直线外一点,有且只有一个平面推论2:经过两条相交直线,有且只有一个平面推论3:经过两条平行直线,有且只有一个平面基本事实4:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.注意事项:(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法(3)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线1旗开得胜 12、直线与直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内3、直线与平面的位置关系有平行、相交、在平面内三种情况.4、平面与平面的位置关系有平行、相交两种情况.【巩固练习】1、(1)下列说法错误的是( )A.平面α与平面β相交,它们只有有限个公共点B.经过一条直线和这条直线外的一点,有且只有一个平面C.经过两条相交直线,有且只有一个平面D.如果两个平面有三个不共线的公共点,那么这两个平面重合(2)下列结论中不正确的是( )A.若两个平面有一个公共点,则它们有无数个公共点B.若已知四个点不共面,则其中任意三点不共线C.若点A既在平面α内,又在平面β内,则α与β相交于b,且点A在b上D.任意两条直线不能确定一个平面【答案】(1)A(2)D【解析】A. 平面α与平面β相交,它们只有有限个公共点平面与平面相交成一条直线,因此它们有无限个公共点.A错误.B. 经过一条直线和这条直线外的一点,有且只有一个平面直线和直线外一点确定一个平面,B正确C. 经过两条相交直线,有且只有一个平面两条相交直线确定一个平面,C正确D. 如果两个平面有三个不共线的公共点,那么这两个平面重合不共线的三点确定一个平面,D正确故答案选A.(2)由平面基本性质可知,若两个不重合的平面有一个公共点,则两平面相交于过这一点的一条直线,有无数个公共点,因此选项A,C正确;当平面四个点中,有三点共线,由直线与直线外一点确定一个平面可得此四个点共面,故假设不成立,即其中任意三点不共线,因此选项B正确;若两条直线平行或相交,则可以确定一个平面,因此选项D错误.故选D.2、一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )11A .1或3B .1或4C .3或4D .1、3或4【答案】D【解析】直线之外不共线的三点记为A ,B ,C .当直线在A ,B ,C 所确定的平面内时,它们只能够只确定一个平面;当A ,B ,C 三点中有两点与直线共面时,能确定平面有3个;当A ,B ,C 三点中没有两点与直线共面时,这样可确定的平面最多就可以达到4个.故选:D .3、已知//,a b αα⊂,则直线a 与直线b 的位置关系是( )A .平行B .相交或异面C .异面D .平行或异面 【答案】D【解析】∵a ∥α,∴a 与α没有公共点,∵b ⊂α,∴a 、b 没有公共点,∴a 、b 平行或异面.故答案为:D4、若直线a,b,c 满足a ∥b,a,c 异面,则b 与c ( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线 【答案】C【解析】由于//a b ,,a c 异面,此时,b 和c 可能相交,也即共面,如图所示b 与c 相交;b 和c 也可能异面,如图所示'b 与c 异面.综上所述,b 与c 不可能是平行直线.故选C.。
立体几何点线面位置关系习题精选
同步练习第I 卷(选择题)1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A 、若m ∥,n α∥α,则m ∥nB 、若,αγβγ⊥⊥,则α∥βC 、若n ∥,n α∥β,则α∥βD 、若,m n αα⊥⊥,则m ∥n 2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面, 则下列命题中正确的是 ( ) A .//,//m n αα,则//m n B .,m m αβ⊥⊥,则//αβ C .//,//m n m α,则//n α D .,αγβγ⊥⊥,则//αβ3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( ) A .若α∥β,m ∥α,则m ∥β B .若α⊥β,m ⊥β,则m ⊥α C .若m ⊥α,m ⊥β,则α∥β D .若m ∥α,m ⊥n ,则n ⊥α4.已知l ,m 是两条不同的直线,α是一个平面, 则下列命题正确的是( )A .若l α⊥,m α⊂,则l m ⊥B .若l m ⊥,m α⊂,则l α⊥C .若l ∥α,m α⊂,则l ∥mD .若l ∥α,m ∥α,则l ∥m 5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l α⊥,l m //,则m α⊥ B .若l m ⊥,m α⊂,则l α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m // 6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( ) A .若α⊥a 且b a ⊥,则α//bB .若αγ⊥且βγ⊥,则βα//C .若α//a 且β//a ,则βα//D .若αγ//且βγ//,则βα//7.关于空间两条直线a 、b 和平面α,下列命题正确的是( ) A .若//a b ,b α⊂,则//a α B .若//a α,b α⊂,则//a b C .若//a α,//b α,则//a b D .若a α⊥,b α⊥,则//a b8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( )①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α⊄,m β⊥,则//m α ③若m β⊥,m α⊂,则αβ⊥ ④若αβ⊥,m α⊂,n β⊂,则m n ⊥ A .0个B .1个C .2个D .3个10.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题: ①若//,m n m n αα⊥⊥,则; ②若,,//m m αβαβ⊥⊥则; ③若,//,,m m n n αβαβ⊥⊂⊥则; ④若//,//m n m n ααβ⋂=,则. 其中正确命题的个数是( )A.0B.1C.2D.311.已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是 A. ,////m n m n αα⊂⇒ B. ,m n m n αα⊂⊥⇒⊥ C. ,,////m n m n αβαβ⊂⊂⇒ D. ,n n βααβ⊂⊥⇒⊥12.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥(C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ13.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是 A.若,,mm αβ则αβ B. .若,,m m αβ则αβ⊥C.若,,m m αβ⊥⊥则αβ D. 若,,m m αβ⊥⊥则αβ⊥14.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是( ) A .若l ∥m ,m α⊂,则l ∥α; B .若,,,l m l n m n α⊥⊥⊂,则l α⊥; C .若l ∥α,l ∥β,m αβ=,则l ∥m ; D .若,,l m l m αβ⊂⊂⊥,则αβ⊥.15.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,a b b α⊂,则//a α C.若//,,,a b αβαγβγ==则//a b D.若,,//,//a b a b ββαα⊂⊂,则//βα第II 卷(非选择题)二、解答题(本题共7道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分别为PC 、BD 的中点.(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:平面PDC ⊥平面PAD ;BA17.(本题10分)如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA ∥平面BDE ; (2)BD ⊥平面PAC .18.(本小题8分)如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且2PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ;(3) 求二面角B PD C --的正切值.PO ECDBACBAD1B1A1C19.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==. (Ⅰ)求证:1//AC 平面1AB D ; (Ⅱ)求点A 1 到平面1AB D 的距离.20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠= E 、F 分别是PB 、CD 的中点,且4PB PC PD ===. (1)求证:PA ABCD ⊥平面; (2)求证://EF 平面PAD ; (3)求二面角A PB C --的余弦值.21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (Ⅰ)求证://EF 平面PAD ; (Ⅱ)求证:EF CD ⊥;(Ⅲ)设PD=AD=a, 求三棱锥B-EFC 的体积.BA22.(本小题满分10分)P-中,底面ABCD是矩形,如图,在四棱锥ABCDAP=,E,F分别是PB,PC的中点.PA⊥平面ABCD,AB(Ⅰ)证明:EF∥平面PAD;AE⊥.(Ⅱ)求证:PC评卷人得分三、解答题(本题共3道小题,每小题10分,共30分)评卷人得分四、填空题(本题共4道小题,每小题0分,共0分)23.已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题序号是______24.设,m n是两条不同的直线,,αβ是两个不同的平面,下列正确命题的序号是__________。
必修2 第一章 立体几何初步 1.2点、线、面之间的位置关系专题训练
必修2 第一章 立体几何初步 1.2点、线、面之间的位置关系专题训练 学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定2.已知平面α⊥平面β,l αβ⋂=,点A A l α∈∉,,直线//AB l ,直线AC l ⊥,直线////m m αβ,,则下列四种位置关系中,不一定成立的是( )A.//AB mB.AC m ⊥C.//AB βD.AC β⊥3.如图,在斜三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ⊥,过点1C 作平面ABC 的垂线,则垂足H 必在( )A.直线AB 上B.直线BC 上C.直线CA 上D.ABC △内部4.已知,m n 表示两条不同的直线, ,,αβγ表示三个不同的平面,下列命题中正确的个数是( ) ①若,m n αγβγ⋂=⋂=,且//m n ,则//αβ;②若,m n 相交且都在,αβ外, //,//,//m m n αβα;③若//,//m n αβ,且//m n ,则//αβ.A.1B.2C.3D.05.设平面//α平面,,,A B C βαβ∈∈是AB 的中点,当,?A B 分别在,αβ内运动时,所有的动点 C ( )A.不共面B.当且仅当,?A B 在两条相交直线上移动时才共面C.当且仅当,?A B 在两条给定的平行直线上移动时才共面D.共面6.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.若直线1l 与2l 是异面直线, 1l 在平面α内, 2l 在平面β内, l 是平面α与β平面的交线,则下列命题正确的是( )A. l 至少与12,l l 中的一条相交B. l 与12,l l 都相交C. l 至多与12,l l 中的一条相交D. l 与12,l l 都不相交8.如图,点A α∈,点B α∈,点P ,PB α⊥, C 是α内异于A 和B 的动点,且PC AC ⊥,则动点 C 在平面α内的轨迹是( )A.—条线段,但要去掉两个点B.—个圆,但要去掉两个点C.两条平行直线D.半圆,但要去掉两个点9.已知 m 和n 是两条不同的直线, α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m β⊥的是( )A. //αβ,且m α⊂B. //m n ,且n β⊥C. m n ⊥,且n β⊂D. m n ⊥,且//n β10.若111AOB AO B ∠=∠,且11//OA O A,射线11,OA O A ,的方向相同,则下列结论中正确的是( ) A. 11//OB O B ,且射线11,OB O B 的方向相同B. 11//OB O BC. OB 与11O B 不平行D. OB 与11O B 不一定平行二、填空题11.如图,边长为a 的正三角形ABC 的边,AB AC 的中点分别为,E F , 将AEF ∆沿EF 折起至A EF ∆'位置,使平面'A EF ⊥平面BEFC ,则 'A B =__________.12.如图, P 为所在平面外一点, E 为AD 的中点, F 为PC 上一点,若//PA 平面EBF ,则PF FC =__________.13.三个平面两两垂直,它们的交线交于一点O ,且点P 到三个平面的距离分别为3,4,5,则OP 的长为__________.14.α、β、γ是三个两两平行的平面,且α与β之间的距离为3,α与γ之间的距离为4,则β与γ之间的距离为__________.15.如下图所示, P 是ABC ∆所在平面外一点, ,,E F G 分别是,,AB BC PC 的中点,则图中与过,,E F G 的截面平行的线段是__________.三、解答题16.如图, ABC ∆为正三角形, EC ⊥平面ABC ,//BD CE ,且2CE CA BD ==,M 是EA 的中点.1.求证: DE DA =;2.求证:平面BDM ⊥平面ECA ;3.求证:平面DEA ⊥平面ECA .17.如图所示,△ABC 和△A B C '''的对应顶点的连线',','AA BB CC 交于同一点 O ,且23AO BO CO OA OB OC =''=='.。
数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题1理
第八章立体几何第二讲空间点、直线、平面之间的位置关系练好题·考点自测1。
下列说法正确的是()A.梯形一定是平面图形B.过三点确定一个平面C.三条直线两两相交确定一个平面D。
若两个平面有三个公共点,则这两个平面重合2.[广东高考,5分]若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A。
l与l1,l2都不相交B。
l与l1,l2都相交C.l至多与l1,l2中的一条相交D。
l至少与l1,l2中的一条相交3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA⃗⃗⃗⃗⃗ 与O1A1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的方向相同,则下列结论中正确的是()A。
OB∥O1B1且OB⃗⃗⃗⃗⃗ 与O1B1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的方向相同B。
OB∥O1B1C。
OB与O1B1不平行D.OB与O1B1不一定平行4.[2017全国卷Ⅰ,6,5分]如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A B C D5.[2020长春市第四次质量监测]已知正方体ABCD—A1B1C1D1的棱长为2,点N是棱CC1的中点,则异面直线AN与BC所成角的余弦值为。
6.[2016全国卷Ⅱ,14,5分][理]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β。
②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β。
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等。
其中正确的命题有.(填写所有正确命题的编号)拓展变式1。
如图8-2-4所示,E,F分别是正方体ABCD—A1B1C1D1的棱CC1,AA1的中点,试画出平面BED1F与平面ABCD的交线。
2.如图8—2-7为正方体表面的一种展开图,则在原正方体的四条线段AB,CD,EF,GH所在直线中,互为异面直线的有对。
立体几何高考专题之空间点线面的位置关系(原卷版含解析)
专题08 立体几何第二十讲空间点线面的位置关系2019年1.(2019全国III文8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2.(2019全国1文19)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.3.(2019全国II文7)设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面4.(2019北京文13)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.5.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .6.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.7.(2019全国III 文19)图1是由矩形ADEB 、Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.8.(2019北京文18)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点. (Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.9.(2019天津文17)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.10.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .11.(2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.12.(2019北京文18)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点. (Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.13.(2019全国1文16)已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为___________.14.(2019全国1文19)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.15.(2019天津文17)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ;(Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.16.(2019浙江8)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β17.(2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.2015-2018年一、选择题1.(2018全国卷Ⅱ)在正方体1111-ABCD A B C D 中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .22B .32C .52D .722.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2017新课标Ⅰ)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是4.(2017新课标Ⅲ)在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥5.(2016年全国I 卷)平面α过正方体ABCDA 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α平面ABCD =m ,α平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为A 3B .22 C3 D .136.(2016年浙江)已知互相垂直的平面αβ, 交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则 A .m ∥l B .m ∥nC .n ⊥lD .m ⊥n三、解答题7.(2018全国卷Ⅱ)如图,在三棱锥-P ABC 中,22==AB BC4====PA PB PC AC ,O 为AC 的中点.O MPCBA(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2=MC MB ,求点C 到平面POM 的距离.8.(2018全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.ABCD M9(2018北京)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.PFEDCBA(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .10.(2018天津)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,2AB =,AD =90BAD ∠=.(1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.M A BCD11.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.D 11B 1A 1DCBA求证:(1)AB ∥平面11A B C ;(2)平面11ABB A ⊥平面1A BC .12.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.C 1B 1A 1CBA(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.13.(2017新课标Ⅱ)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=. DCBA P(1)证明:直线BC ∥平面PAD ;(2)若PCD ∆的面积为P ABCD -的体积。
立体几何-点线面的位置关系考试试题简单
姓名:__________ 日期:__________ 成绩:__________时间: 120分钟 满分: 150分 试卷类型: A 考试内容: 点线面的位置关系 . 一、选择题(本大题共10个小题,每个小题5分,共50分) 1.下列说法正确的是( )A .任意三点可确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .一条直线和一个点确定一个平面 2.已知,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列4个命题: ①若,//,//m n m n αα⊂则 ②若,//,m n m n αα⊥⊥则 ③若,,//m m αβαβ⊥⊥则 ④若//,//,//m n m n αα则 其中真命题的序号为( )A .①②B .②③C .③④D .①④3.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,下列命题中错误的是( ) A .若,m m αβ⊥⊥,则α∥β B .若α∥γ,β∥γ,则α∥β C .若,,m n m αβ⊂⊂∥n ,则α∥βD .若,m n 是异面直线,,,m n m αβ⊂⊂∥β,n ∥α,则α∥β4.设m ,n 是两条不同的直线,,,αβγ是三个不同的平 面,则下列为假.命题的是( ) A 、若,//m n αα⊥,则m n ⊥ B 、若//,//,,m m αββγαγ⊥⊥则 C 、若,,//m m αβαβ⊥⊥则 D 、若,,//αγβγαβ⊥⊥则 5.对于平面α与共面的直线m ,n ,下列命题为真命题的是( )A .若m ,n 与α所成的角相等,则m//nB .若m//α,n//α,则m//nC .若m n ⊥,m α⊥,则n //αD .若m α⊂,n//α,则m//n 6.已知:b αβ= ,a α//,a β//,则a 与b 的位置关系是( )A .a b //B .a b ⊥C .a ,b 相交但不垂直D .a ,b 异面7.若,,a b c 是空间三条不同的直线,,αβ是空间中不同的平面,则下列命题中不正确的是( ) A .若c α⊥,c β⊥,则//αβB .若b α⊂,b β⊥,则αβ⊥C .当,b a αα⊂⊄且c 是a 在α内的射影,若b c ⊥,则a b ⊥D .当b α⊂且c α⊄时,若//c α,则//b c8.设a 、b 是两条不同的直线,α、β是两个不同的平面,是下列命题中正确的是( ) A .若//a b ,//a α,则//b α B .若αβ⊥,//a α,则a β⊥C .若αβ⊥,a β⊥,则//a αD .若a b ⊥,a α⊥,b β⊥,则αβ⊥AB FED N CM9.关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n ; 其中真命题的序号是( )A .①②B .③④C .①④D .②③10.棱长为1的正方体ABCD A 1B 1C 1D 1中,点M,N 分别在线段AB 1,BC 1上, 且AM=BN,给出以下结论:①AA 1⊥MN ; ②异面直线AB 1,BC 1所成的角为60° ③四面体B 1 D 1CA 的体积为31; ④A 1C ⊥AB 1,A 1C ⊥BC 1. 其中正确的结论的个数为( ) A .1 B.2 C .3 D .4二、填空题(本大题共5个小题,每个小题5分,共25分)11.如果三个平面把空间分成六个部分,那么这三个平面的位置关系是 . 12.关于直线,m n 和平面,αβ,有如下四个命题: (1)若||,||,||m n αβαβ,则||m n ; (2)若||m n ,,n n αβ⊂⊥,则αβ⊥; (3)若,||m m n αβ= ,则||n β且||n β; (4)若,m n m αβ⊥= ,则n α⊥或n β⊥. 其中真命题的个数是 .13.已知:l m ,是不同的直线,βα,是不同的平面,给出下列五个命题:①若l 垂直于α内的两条直线,则α⊥l ; ②若α//l ,则l 平行于α内的所有直线; ③若,,βα⊂⊂l m 且,m l ⊥则βα⊥; ④若,β⊂l 且,α⊥l 则βα⊥; ⑤若βα⊂⊂l m ,且,//βα则l m //.其中正确命题的序号是 . 14.如图是正方体的平面展开图,在这个正方体中, ①//BM 平面DE ; ②//CN 平面AF ;③平面BDM //平面AFN ; ④平面BDE //平面NCF .以上四个命题中,正确命题的序号是 .F EDC BA P15.设,αβ为使互不重合的平面,,m n 是互不重合的直线,给出下列四个命题: ①//,,//m n n m αα⊂若则;②,,//////m n m n ααββαβ⊂⊂若,,则; ③//,,//m n m n αβαβ⊂⊂若,则;④若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则. 其中正确命题的序号为 . 三、解答题(本大题共6个小题,共75分) 16.(本小题满分12分)如图,四棱锥P ABCD -的底面为平行四边形,PD ⊥平面ABCD ,M 为PC 中点. (1)求证://AP 平面MBD ; (2)若AD PB ⊥,求证:BD ⊥平面PAD .17.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分 别为PC 、BD 的中点.(1)求证:EF //平面PAD ;(2) 求证:平面PDC ⊥平面PAD .P M B C DASDCBA如图,四边形A BCD 与A'ABB'都是边长为a 的正方形,点E 是A'A 的中点,AA 'ABCD ⊥平面 (1)求证:A 'C //BDE 平面;(2)求证:平面A 'AC BDE ⊥平面; (3)求体积ABCD A V -'与ABD E V -的比值.19.(本小题满分12分)已知ABC ∆中90ACB ∠= ,SA ⊥面ABC ,AD SC ⊥. 求证:AD ⊥面SBC .如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点. (1)求证:⊥AB 平面CDE ;(2)若G 为ADC ∆的重心,试在线段AE 上确定一点F ,使得GF//平面CDE .如图,在正四棱锥ABCD P -中,底面是边长为2的正方形,侧棱6=PA ,E 为BC 的中点,F 是侧棱PD 上的一动点。
精选-高考数学二轮复习专题三立体几何第2讲空间点线面的位置关系练习
第2讲空间点、线、面的位置关系高考定位1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择、填空题的形式,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并常与几何体的表面积、体积相渗透.真题感悟1.(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析法一对于选项B,如图(1)所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.因此A项中直线AB与平面MNQ不平行.图(1)图(2)法二对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行.A项中直线AB与平面MNQ不平行.答案A2.(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A.334 B.233 C.324 D.32解析 如图,依题意,平面α与棱BA ,BC ,BB 1所在直线所成角都相等,容易得到平面AB 1C 符合题意,进而所有平行于平面AB 1C 的平面均符合题意.由对称性,知过正方体ABCD -A 1B 1C 1D 1中心的平面面积应取最大值,此时截面为正六边形EFGHIJ .正六边形EFGHIJ 的边长为22,将该正六边形分成6个边长为22的正三角形.故其面积为6×34×⎝ ⎛⎭⎪⎫222=334. 答案A3.(2017·全国Ⅰ卷)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积. (1)证明 ∵∠BAP =∠CDP =90°, ∴AB ⊥PA ,CD ⊥PD . ∵AB ∥CD ,∴AB ⊥PD .又∵PA ∩PD =P ,PA ,PD ⊂平面PAD , ∴AB ⊥平面PAD . ∵AB ⊂平面PAB , ∴平面PAB ⊥平面PAD .(2)解 取AD 的中点E , 连接PE .∵PA =PD ,∴PE ⊥AD .由(1)知,AB ⊥平面PAD ,PE ⊂平面PAD ,故AB ⊥PE ,又AB ∩AD =A ,可得PE ⊥平面ABCD . 设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而PA =PD =AB =DC =2,AD =BC =22,PB =PC =22, 可得四棱锥P -ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+23. 考点整合1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α. (2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β. (4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.热点一 空间点、线、面位置关系的判定【例1】(2018·成都诊断)已知m ,n 是空间中两条不同的直线,α,β是两个不同的平面,且m ⊂α,n ⊂β.有下列命题: ①若α∥β,则m ∥n ; ②若α∥β,则m ∥β;③若α∩β=l ,且m ⊥l ,n ⊥l ,则α⊥β; ④若α∩β=l ,且m ⊥l ,m ⊥n ,则α⊥β. 其中真命题的个数是() A.0 B.1 C.2 D.3解析 ①若α∥β,则m ∥n 或m ,n 异面,不正确;②若α∥β,根据平面与平面平行的性质,可得m ∥β,正确;③若α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,不正确;④若α∩β=l,且m⊥l,m⊥n,l与n不一定相交,不能推出α⊥β,不正确.答案B探究提高1.判断与空间位置关系有关的命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.2.两点注意:(1)平面几何中的结论不能完全引用到立体几何中;(2)当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.【训练1】(1)(2018·石家庄调研)如图,在三棱台ABC-A1B1C1的6个顶点中任取3个点作平面α,设α∩平面ABC=l,若l∥A1C1,则这3个点可以是()A.B,C,A1B.B1,C1,AC.A1,B1,CD.A1,B,C1(2)(2018·菏泽模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,n∥β,则α∥βD.若m⊥α,n⊥α,则m∥n解析(1)在棱台中,AC∥A1C1,l∥A1C1,则l∥AC或l为直线AC.因此平面α可以过点A1,B,C1,选项D正确.(2)结合长方体模型,易判定选项A,B,C不正确.由线面垂直的性质,当m⊥α,n⊥α时,有m∥n,D项正确.答案(1)D(2)D热点二空间平行、垂直关系的证明【例2】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明(1)∵平面PAD⊥底面ABCD,且PA 垂直于这两个平面的交线AD ,PA ⊂平面PAD , ∴PA ⊥底面ABCD .(2)∵AB ∥CD ,CD =2AB ,E 为CD 的中点, ∴AB ∥DE ,且AB =DE . ∴四边形ABED 为平行四边形. ∴BE ∥AD .又∵BE ⊄平面PAD ,AD ⊂平面PAD , ∴BE ∥平面PAD .(3)∵AB ⊥AD ,而且ABED 为平行四边形. ∴BE ⊥CD ,AD ⊥CD ,由(1)知PA ⊥底面ABCD ,且CD ⊂平面ABCD , ∴PA ⊥CD ,且PA ∩AD =A ,PA ,AD ⊂平面PAD , ∴CD ⊥平面PAD ,又PD ⊂平面PAD , ∴CD ⊥PD .∵E 和F 分别是CD 和PC 的中点,∴PD ∥EF . ∴CD ⊥EF ,又BE ⊥CD 且EF ∩BE =E , ∴CD ⊥平面BEF ,又CD ⊂平面PCD , ∴平面BEF ⊥平面PCD .【迁移探究1】 在本例条件下,证明平面BEF ⊥平面ABCD .证明 如图,连接AC ,设AC ∩BE =O ,连接FO ,AE .∵AB ∥CD ,CD =2AB ,CE =12CD , ∴AB 綉CE .∴四边形ABCE 为平行四边形.∴O 为AC 的中点,又F 为PC 的中点,则FO ∥PA ,又PA ⊥平面ABCD , ∴FO ⊥平面ABCD .又FO ⊂平面BEF , ∴平面BEF ⊥平面ABCD .【迁移探究2】 在本例条件下,若AB =BC ,求证:BE ⊥平面PAC . 证明 连接AC ,设AC ∩BE =O .。
高考数学立体几何专题2空间点、直线、平面之间的位置关系试题(含答案)
C. 1䁠 5
D. 3 3
. 正四面体 ABCD 中,M 是棱 AD 的中点,O 是点 A 在底面 BCD 内的射影,则异面 直线 BM 与 AO 所成角的余弦值为
A. 2
B. 2 3
C. 2 4
二、填空题(本大题共 4 小题,共 20.0 分)
7. 如图,在三棱锥
th 中,底面 ABC 为等边三角形,
线所成角为 䁠๖ 2 ,
可知
1 2
t1
5,
2
1 2
th1
2;
2
作 BC 中点 Q,则
E 为直角三角形, E
1, E
1 2
h,
th 中,由余弦定理得 h2 t2 th2 2 t th cos th
第 3页,共 5页
41221
1 2
7, h
7, E 7,
2
E2
E2
11;
2
在
中,由余弦定理得 cos
2
2
______.
三、解答题(本大题共 1 小题,共 10.0 分)
11. 如图,四棱锥
th 的底面是矩形,
的中点,且
.
平面 ABCD,E,F 分别是 AB,PD
1 求证: t 平面 PEC; 2 求证:平面 h 平面 PCD.
第 2页,共 5页
答案和解析
1.【答案】A
【分析】本题考查空间中线面平行的判定定理,属于中档题.
设 M、N、P 分别为 AB,tt1和t1h1的中点,得出 t1、th1夹角为 MN 和 NP 夹角或
其补角;根据中位线定理,结合余弦定理求出 AC、MQ,MP 和
的余弦值即可.
解:如图所示,
设 M、N、P 分别为 AB,tt1和t1h1的中点,
2024年高考数学一轮复习专题八立体几何2空间点线面的位置关系专题检测含解析新人教A版
空间点、线、面的位置关系专题检测1.(2024江西八校4月联考,5)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下面四个命题:①若α⊥β,β⊥γ,则α∥γ;②若α⊥β,m⊂α,n⊂β,则m⊥n;③若m∥α,n⊂α,则m ∥n;④若α∥β,γ∩α=m,γ∩β=n,则m∥n.其中正确命题的序号是()A.①④B.①②C.②③④D.④答案D对于①,垂直于同一个平面的两个平面可能相交,也可能平行,所以命题①错误;对于②,在两个相互垂直的平面内的两条直线可能平行,可能相交,也可能异面,所以命题②错误;对于③,若m∥α,n⊂α,则直线m与n可能平行,也可能异面,所以③错误;对于④,由面面平行的性质定理可知命题④正确,故选D.方法总结对点、线、面的位置关系的推断,常采纳穷举法,即对各种位置关系都进行考虑,要充分利用几何模型的直观性.2.(2024广西桂林高三4月联考,6)已知平面α,β,γ两两垂直,直线a,b,c满意a⊂α,b ⊂β,c⊂γ,则直线a,b,c的位置关系不行能是()A.两两平行B.两两垂直C.两两相交D.两两异面答案A假设a,b,c三条直线两两平行,如图所示,设α∩β=l,∵a∥b,a⊄β,b⊂β,∴a∥β.又知a⊂α,α∩β=l,∴a∥l,又知α⊥γ,β⊥γ,α∩β=l,∴l⊥γ,又知a∥b,a∥l,∴a⊥γ,又知c⊂γ,∴a⊥c,所以假设不成立.故三条直线a,b,c不行能两两平行,因此选A.3.(2024湖南益阳、湘潭两市联考,10)如图,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有()A.①③B.②③C.②④D.②③④答案C由题意可知题图①中,GH∥MN,因此直线GH与MN共面;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此直线GH与MN共面;题图④中,G,M,N三点共面,但H∉平面GMN,所以直线GH与MN异面.故选C.4.(2024北京西城二模,10)佩香囊是端午节传统习俗之一.香囊内通常填充一些中草药,有芳香、驱虫、开窍的功效,因地方习俗的差异,香囊常用丝布做成各种不同的形态,形形色色,玲珑夺目.图1的▱ABCD由六个正三角形构成.将它沿虚线折起来,可得如图2所示的六面体形态的香囊,那么在图2这个六面体中,棱AB与CD所在直线的位置关系为()图1图2A.平行B.相交C.异面且垂直D.异面且不垂直答案B将图1标上字母如图所示,图1沿虚线折起后如图2.图2由图可知,点D 、E 重合,点A 、C 重合,点B 、F 重合,△ABD 为等边三角形,所以棱AB 与CD 所在直线相交且夹角为60°.故选B .解后反思 本题考查折叠问题,主要弄清折叠前后点、线、角度的改变.5.(2017内蒙古包头十校联考)在正方体ABCD -A 1B 1C 1D 1中,点P 在线段AD 1上运动,则异面直线CP 与BA 1所成角θ的取值范围是( )A.0<θ<π2 B.0<θ≤π2 C.0≤θ≤π3 D.0<θ≤π3答案 D 如图,因为A 1B ∥CD 1,所以∠D 1CP (或其补角)即为异面直线CP 与BA 1所成的角,由题意知点P 不能与D 1重合,当点P 无限与D 1靠近时,∠D 1CP 无限接近于0,当点P 由点D 1向点A 移动时,∠D 1CP 变大,当点P 与点A 重合时,∠D 1CP 最大,为π3,故∠D 1CP 的取值范围是(0,π3],所以异面直线CP 与BA 1所成角θ的取值范围是(0,π3],选D.6.(2024福建四地七校10月联考,10)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P ,Q 分别是线段AD 1和B 1C 上的动点,且满意AP =B 1Q ,则下列命题错误的是 ( )A.存在P ,Q 在某一位置时,AB ∥PQB.△BPQ 的面积为定值C.当PA >0时,直线PB 1与AQ 是异面直线D.无论P ,Q 运动到任何位置,均有BC ⊥PQ答案 B 对于A,当P ,Q 分别为AD 1和B 1C 的中点时,AB ∥PQ ,故A 正确.对于B,当点P 在点A 处时,△BPQ 的面积为12;当点P 在AD 1的中点处时,△BPQ 的面积为√24,所以△BPQ 的面积不为定值,故B错误.对于C,当PA>0时,假设直线PB1与AQ是共面直线,则AP与B1Q共面,与已知AP和B1Q异面相冲突,所以直线PB1与AQ是异面直线,故C正确;对于D,BC垂直于PQ在平面ABCD内的射影,由三垂线定理得BC⊥PQ,故D正确.综上,本题选B.7.(2017辽宁五市八校其次次联考)设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC,平面ABA1,平面ADA1的距离相等,则符合条件的点P()A.仅有一个B.有有限多个C.有无限多个D.不存在答案A与平面ABC,平面ABA1距离相等的点位于平面ABC1D1上;与平面ABC,平面ADA1距离相等的点位于平面AB1C1D上;与平面ABA1,平面ADA1距离相等的点位于平面ACC1A1上.据此可知,满意题意的点位于平面ABC1D1,平面AB1C1D,平面ACC1A1的公共点处,满意题意的点仅有一个,为正方体的中心.选A.8.(2024云南名校高三开学考试,12)棱长为2的正方体ABCD-A1B1C1D1中,E,F,G分别是AD,AB,BB1的中点,那么正方体内过E,F,G的截面面积为()A.3√2B.3√3C.2√3D.2√2答案B如图所示,过点E,F,G的截面是一个边长为√2的正六边形,其面积为6×√34×(√2)2=3√3.故选B.9.(2024贵州遵义绥阳一模,11)如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为()A.√222B.√53C.1316D.√113答案 D 本题以圆锥为载体进行设题,考查异面直线所成角的定义及求法,正切函数,平行线分线段成比例,考查逻辑推理、数学运算的核心素养,考查学生的空间想象实力和分析问题、解决问题的实力.如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)即为异面直线SC 与OE 所成的角.∵SE =14SB ,∴SE =13BE ,又OB =3,∴OF =13OB =1.∵SO ⊥OC ,SO =OC =3,∴SC =3√2.∵SO ⊥OF ,∴SF =√SS 2+SS 2=√10.∵OC ⊥OF ,∴CF =√10.∴在等腰△SCF 中,tan ∠CSF =√(√10)2-(3√22)23√22=√113.故选D.方法总结 解决异面直线成角问题常用平移法,平移直线有三种方法:中位线、平行四边形、补体平移.本题可过点S 作SF ∥OE ,交AB 于点F ,并连接CF ,得出∠CSF (或其补角)为异面直线SC 与OE 所成的角,依据数量关系可得出tan ∠CSF 的值.10.(2024河北衡水三模,12)已知在高为2,底面边长为3的正三棱柱ABC -A 1B 1C 1中,点E ,F ,G 分别是A 1C 1,A 1B 1,AB 上的点,且有C 1E =A 1F =BG =1,则过点E ,F ,G 的平面截正三棱柱所得的截面的面积为 ( )A.√154B.√152C.3√154D.5√154答案 D 如图所示,在平面ABB 1A 1内,连接GF 并延长与AA 1的延长线交于点P ,∵A 1F =BG =1,AB =3,∴AG =2,A 1F ∥AG 且A 1F =12AG ,∴A 1为AP 的中点.连接PE 并延长与AC 的延长线交于点H ,交线段CC 1于点N ,∵A 1E ∥AC ,A 1为AP 的中点,∴E 为PH 的中点,∵C 1E =1,A 1C 1=3,∴A 1E =2,AH =4,CH =1,∴N 为CC 1的中点,连接GH 交BC 于点M ,连接MN ,则EF ∥GH.由连线知平面GMNEF 为所求截面.∵∠EA 1F =60°,A 1E =2,A 1F =1,∴EF ⊥A 1B 1,∴GH ⊥AB ,又知EF ⊥A 1A ,A 1A ∩A 1B 1=A 1,∴EF ⊥平面ABB 1A 1.又∵∠ABC =60°,∴BM =2,则CM =1,在Rt △PEF 中,PF =√5,EF =√3,∴S △PEF =12×√3×√5=√152.在Rt △PGH 中,PG =2√5,GH =2√3,∴S △PGH=12×2√3×2√5=2√15.在△MNH 中,NH =NM =√2,MH =√3,∴S △MNH =12×√3×√52=√154,∴截面的面积S =S △PGH -S △PEF -S △MNH =2√15-√152-√154=5√154.故选D .11.(2016广西南宁二模,16)已知两条不同的直线m ,n 和两个不同的平面α,β,给出下列四个命题:①若m ∥α,n ∥β,且α∥β,则m ∥n ; ②若m ∥α,n ⊥β,且α⊥β,则m ∥n ; ③若m ⊥α,n ∥β,且α∥β,则m ⊥n ; ④若m ⊥α,n ⊥β,且α⊥β,则m ⊥n. 其中正确命题的个数为 . 答案 2解析 ①中m ,n 可能异面或相交,故不正确;②因为m ∥α,n ⊥β,且α⊥β成立时,m ,n 两直线的位置关系可能是相交、平行、异面,故不正确;③因为m ⊥α,α∥β可得出m ⊥β,再由n ∥β可得出m ⊥n ,故正确;④分别垂直于两个垂直平面的两条直线肯定垂直,正确.故③④正确.评析 本题考查了立体几何的几种基本关系,空间思维实力.12.(2017广西柳州模拟,15)如图,在直三棱柱ABC -A 1B 1C 1中,AC =2,BC =AA 1=2√2,AB =2√3,D 是线段AB 上一点,且AC 1∥平面CDB 1,则直线AC 1与CD 所成角的余弦值为 .答案 13解析 连接BC 1交B 1C 于点O ,则O 为BC 1的中点,连接OD.因为AC 1∥平面CDB 1,AC 1⊂平面AC 1B ,平面CDB 1∩平面AC 1B =OD ,所以AC 1∥OD ,则D 为AB 的中点,于是∠ODC 或其补角即为直线AC 1与CD 所成的角.由AC =2,BC =2√2,AB =2√3,得AB 2=AC 2+BC 2,则∠ACB =90°,所以DC =12AB =√3.由BC =AA 1=BB 1=2√2,得CB 1=4.则OC =12CB 1=2.由AC =2,CC 1=AA 1=2√2,得AC 1=2√3,所以DO =12AC 1=√3,所以cos ∠ODC =SS 2+SS 2-SS 22SS ·SS=2×√3×√3=13.13.(2024皖南八校联考,15)已知正方体ABCD -A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于点B ,C ),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD -A 1B 1C 1D 1所得的截面为四边形,则线段BM 长的取值范围为 . 答案 (0,12]解析 当点M 为线段BC 的中点时,由题意可知,截面为四边形AMND 1,从而当0<BM ≤12时,截面为四边形,当BM >12时,平面AMN 与平面A 1B 1C 1D 1也有交线,故截面为五边形,所以若平面AMN 截正方体ABCD -A 1B 1C 1D 1所得的截面为四边形,则线段BM 长的取值范围为(0,12].。
立体几何点线面的关系及练习题
专题一立体几何立体几何的知识是高中数学的主干内容之一,它主要研究简单空间几何体的位置和数量关系.本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体的结构,三是空间向量与立体几何.在本专题中,我们将首先复习空间点、直线、平面之间的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题.§1-1 点、直线、平面之间的位置关系【知识要点】1.空间直线和平面的位置关系:(1)空间两条直线:①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交.②无公共点:平行或异面.平行,记作:a∥b.异面中特殊位置关系:异面垂直.(2)空间直线与平面:①有公共点:直线在平面内或直线与平面相交.直线在平面内,记作:a⊂α .直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交.②无公共点:直线与平面平行,记作:a∥α .(3)空间两个平面:①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交.②无公共点:平行,记作:α ∥β .2.空间作为推理依据的公理和定理:(1)四个公理与等角定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)空间中线面平行、垂直的性质与判定定理:①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图:【复习要求】1.了解四个公理与等角定理;2.理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 【例题分析】例1 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AA 1的中点. 求证:(Ⅰ)E 、C 、D 1、F 四点共面;(Ⅱ)CE 、DA 、D 1F 三线共点.【分析】对于(Ⅰ)中证明“E 、C 、D 1、F 四点共面”,可由这四点连接成两条直线,证明它们平行或相交即可;对于(Ⅱ)中证明“CE 、DA 、D 1F 三线共点”,可证其中两条相交直线的交点位于第三条直线上.证明:(Ⅰ)连接D 1C 、A 1B 、EF . ∵E ,F 分另是AB ,AA 1的中点,∴EF ∥A 1B ,,211B A EF =又A 1D 1∥BC ,A 1D 1=BC , ∴A 1D 1CB 是平行四边形. ∴A 1B ∥D 1C ,EF ∥D 1C , ∴E 、C 、D 1、F 四点共面. (Ⅱ)由(Ⅰ)得EF ∥CD 1,,211CD EF =∴直线CE 与直线D 1F 必相交,记CE ∩ D 1F =P , ∵P ∈D 1F ⊂平面A 1ADD 1,P ∈CE ⊂平面ABCD , ∴点P 是平面A 1ADD 1和平面ABCD 的一个公共点. ∵平面A 1ADD 1∩平面ABCD =AD , ∴P ∈AD ,∴CE 、DA 、D 1F 三线共点.【评述】1、证明多点共面、多点共线、多线共面的主要依据: (1)证明多点共面常用公理2及其推论;(2)证明多点共线常用公理3,即证明点在两个平面内,从而点在这两个平面的交线上; (3)证明多线共面,首先由其中两直线确定平面,再证其余直线在此平面内. 2、证明a ,b ,c 三线交于一点的主要依据:(1)证明a 与b 相交,c 与b 相交,再证明两交点重合; (2)先证明a 与b 相交于点P ,再证明P ∈c .例2 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面P AD .【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA = ∵E 是PD 的中点, ∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .又AE ⊂平面P AD ,MN ⊄平面P AD , ∴MN ∥平面P AD .方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD , ∴平面MNF ∥平面P AD , ∴MN ∥平面P AD .【评述】关于直线和平面平行的问题,可归纳如下方法: a ∥c ,b ∥c ,a ∥α,a ⊂β α∥βa ⊥α,b ⊥αα∩β=bγ ∩α=a ,γ ∩β=b⇒a ∥b⇒a ∥b⇒a ∥b⇒a ∥b(2)a ∩α=∅a ∥b α∥βb ⊂α,a ⊄αa ⊂β⇒a ∥α ⇒a ∥α ⇒a ∥αα∩β=∅a∥β,b∥βa⊥α,a⊥βα∥γ ,β∥γa,b⊂α,a∩b=A⇒α∥β⇒α∥β⇒α∥β⇒α∥β例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC ⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面P AB⊥平面ABC,平面P AB∩平面ABC=AB,且AB⊥BC,∴BC ⊥平面P AB , ∴AP ⊥BC . 又AP ⊥PB ,∴AP ⊥平面PBC , 又AP ⊂平面P AC ,∴平面P AC ⊥平面PBC .【评述】关于直线和平面垂直的问题,可归纳如下方法: a ⊥c ,b ∥c ,a ⊥αb ⊂α ⇒a ⊥b⇒a ⊥b a ⊥m ,a ⊥n a ∥b ,b ⊥αα∥β,a ⊥βα⊥β,α∩β=l m ,n ⊂α,m ∩n =Aa ⊂β,a ⊥l ⇒a ⊥α⇒a ⊥α⇒a ⊥α⇒a ⊥αa ⊥β,a ⊂α ⇒α⊥β例5 如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点,∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C . ∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下:连接EG ,FG . ∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .练习1-1一、选择题:1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( ) (A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则( ) (A)n ⊥β (B)n ∥β ,或n ⊂β (C)n ⊥α (D)n ∥α ,或n ⊂α3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是( ) (A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ⊂α ,b ⊥β ,α ∥β (D)a ⊂α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是( ) (A)在平面α 内有且只有一条直线与直线m 垂直 (B)过直线m 有且只有一个平面与平面α 垂直 (C)与直线m 垂直的直线不可能与平面α 平行 (D)与直线m 平行的平面不可能与平面α 垂直 二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______. 8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______. 三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:P A ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为F A ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .。
高中数学《点线面的位置关系》专题训练30题(含解析)
高中数学《点线面的位置关系》专题训练30题(含解析)高中数学《点线面的位置关系》专题训练30题(含解析)1.如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x 轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.2.如图,四边形为矩形,且平面,,为的中点.(1)求证:;(2)求三棱锥的体积;(3)探究在上是否存在点,使得平面,并说明理由.【答案】(1)见解析;(2);(3)见解析.【解析】【分析】(1)连结,由几何体的空间结构可证得,利用线面垂直的定义可知.(2)由(1)知为腰长为1的等腰直角三角形,结合题意转化顶点可得.(3)在上存在中点,使得.取的中点,连结.易证得四边形EGHC是平行四边形,所以EG//CH,结合线面平行的判断定理可知EG//平面PCD.【详解】(1)连结,∵为的中点, ,∴为等腰直角三角形,则,同理可得,∴,∴,又,且,∴,?又∵,∴,又,∴.(2)由(1)知为腰长为1的等腰直角三角形,∴,而是三棱锥的高,∴.(3)在上存在中点,使得.理由如下:取的中点,连结.∵是的中点,∴,且,?又因为E为BC的中点,且四边形ABCD为矩形,所以EC//AD,且EC=AD,所以EC//GH,且EC=GH,所以四边形EGHC是平行四边形,所以EG//CH,又EG平面PCD,CH平面PCD,所以EG//平面PCD.【点睛】本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.3.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.【详解】(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.如图,在三棱锥中,平面平面,,,若为的中点.(1)证明:平面;(2)求异面直线和所成角;(3)设线段上有一点,当与平面所成角的正弦值为时,求的长.【答案】(1)证明见解析;(2)(3).【解析】【分析】(1)先证明平面平面,再证明平面;(2)分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,利用向量法求异面直线和所成角;(3)设,,利用向量法得到,解方程即得t的值和的长.【详解】(1)∵,,∴,∵平面平面,平面平面,平面,∴平面.(2)∵,,∴,,如图,分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,∵,,,,∴,,∵,∴异面直线和所成角为.(3)设为平面的法向量,∵,,∴,即,设,,∴,设与平面所成角为,∵,∴,,,,(舍),,∴的长为.【点睛】本题主要考查空间直线和平面位置关系的证明,考查异面直线所成的角和线面角的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.如图,在三棱锥中,,,为的中点.?(1)证明:平面;?(2)若点在棱上,且,求点到平面的距离.【答案】(1)详见解析(2).【解析】【详解】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM 的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM= ,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【答案】(1)见解析;(2).【解析】【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C到平面的距离,得到结果.【详解】(1)连接,,分别为,中点?为的中位线且又为中点,且且四边形为平行四边形,又平面,平面平面(2)在菱形中,为中点,所以,根据题意有,,因为棱柱为直棱柱,所以有平面,所以,所以,设点C到平面的距离为,根据题意有,则有,解得,所以点C到平面的距离为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.7.如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底面,是的中点.(1)证明:直线平面;(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】【详解】试题分析:(1)取的中点,连结,,由题意证得∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:,,然后利用空间向量的相关结论可求得二面角的余弦值为.试题解析:(1)取中点,连结,.因为为的中点,所以,,由得,又所以.四边形为平行四边形,.又,,故(2)由已知得,以A为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系A-xyz,则则,,,,,则因为BM与底面ABCD所成的角为45°,而是底面ABC D的法向量,所以,即(x-1)2+y2-z2=0又M在棱PC上,设由①,②得所以M,从而设是平面ABM的法向量,则所以可取.于是因此二面角M-AB-D的余弦值为点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与互补或相等,故有|cosθ|=|cos<m,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.8.如图,在四棱锥P?ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A?PB?C的余弦值.【答案】(1)见解析;(2).【解析】【详解】(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.9.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)利用长方体的性质,可以知道侧面,利用线面垂直的性质可以证明出,这样可以利用线面垂直的判定定理,证明出平面;(2)以点坐标原点,以分别为轴,建立空间直角坐标系,设正方形的边长为,,求出相应点的坐标,利用,可以求出之间的关系,分别求出平面、平面的法向量,利用空间向量的数量积公式求出二面角的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角的正弦值.【详解】证明(1)因为是长方体,所以侧面,而平面,所以又,,平面,因此平面;(2)以点坐标原点,以分别为轴,建立如下图所示的空间直角坐标系,,因为,所以,所以,,设是平面的法向量,所以,设是平面的法向量,所以,二面角的余弦值的绝对值为,所以二面角的正弦值为.【点睛】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.10.如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,,由平面知识可知,,由相似比可求出,再根据四棱锥的体积公式即可求出.【详解】(1)因为底面,平面,所以,又,,所以平面,而平面,所以平面平面.(2)[方法一]:相似三角形法由(1)可知.于是,故.因为,所以,即.故四棱锥的体积.[方法二]:平面直角坐标系垂直垂直法?由(2)知,所以.建立如图所示的平面直角坐标系,设.因为,所以,,,.从而.所以,即.下同方法一.[方法三]【最优解】:空间直角坐标系法?建立如图所示的空间直角坐标系,设,所以,,,,.所以,,.所以.所以,即.下同方法一.[方法四]:空间向量法?由,得.所以.即.又底面,在平面内,因此,所以.所以,由于四边形是矩形,根据数量积的几何意义,得,即.所以,即.下同方法一.【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.11.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN ,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1 AMN所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由分别为,的中点,,根据条件可得,可证,要证平面平面,只需证明平面即可;(2)连接,先求证四边形是平行四边形,根据几何关系求得,在截取,由(1)平面,可得为与平面所成角,即可求得答案.【详解】(1)分别为,的中点,,又,,在中,为中点,则,又侧面为矩形,,,,由,平面,平面,又,且平面,平面,平面,又平面,且平面平面,,又平面,平面,平面,平面平面.(2)[方法一]:几何法如图,过O作的平行线分别交于点,联结,由于平面,平面,,平面,面,所以平面平面.又因平面平面,平面平面,所以.因为,,,所以面.又因,所以面,所以与平面所成的角为.令,则,由于O为的中心,故.在中,,由勾股定理得.所以.由于,直线与平面所成角的正弦值也为.[方法二]【最优解】:几何法因为平面,平面平面,所以.因为,所以四边形为平行四边形.由(Ⅰ)知平面,则为平面的垂线.所以在平面的射影为.从而与所成角的正弦值即为所求.在梯形中,设,过E 作,垂足为G,则.在直角三角形中,.[方法三]:向量法由(Ⅰ)知,平面,则为平面的法向量.因为平面,平面,且平面平面,所以.由(Ⅰ)知,即四边形为平行四边形,则.因为O为正的中心,故.由面面平行的性质得,所以四边形为等腰梯形.由P,N为等腰梯形两底的中点,得,则.设直线与平面所成角为,,则.所以直线与平面所成角的正弦值.[方法四]:基底法不妨设,则在直角中,.以向量为基底,从而,,.,,则,.所以.由(Ⅰ)知平面,所以向量为平面的法向量.设直线与平面所成角,则.故直线与平面所成角的正弦值为.【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法;方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.12.如图,长方体ABCD–A1B1C1D1的底ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积.【答案】(1)见详解;(2)18【解析】【分析】(1)先由长方体得,平面,得到,再由,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为,根据题中条件求出;再取中点,连结,证明平面,根据四棱锥的体积公式,即可求出结果.【详解】(1)因为在长方体中,平面;平面,所以,又,,且平面,平面,所以平面;?(2)设长方体侧棱长为,则,由(1)可得;所以,即,又,所以,即,解得;取中点,连结,因为,则;所以平面,所以四棱锥的体积为.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.13.如图,在长方体中,点分别在棱上,且,.(1)证明:点在平面内;(2)若,,,求二面角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)方法一:连接、,证明出四边形为平行四边形,进而可证得点在平面内;(2)方法一:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可计算出二面角的余弦值,进而可求得二面角的正弦值.【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱上取点,使得,连接、、、,如图1所示.在长方体中,,所以四边形为平行四边形,则,而,所以,所以四边形为平行四边形,即有,同理可证四边形为平行四边形,,,因此点在平面内.[方法二]:空间向量共线定理以分别为x轴,y轴,z轴,建立空间直角坐标系,如图2所示.设,则.所以.故.所以,点在平面内.[方法三]:平面向量基本定理同方法二建系,并得,所以.故.所以点在平面内.[方法四]:根据题意,如图3,设.在平面内,因为,所以.延长交于G,平面,平面.,所以平面平面①.延长交于H,同理平面平面②.由①②得,平面平面.连接,根据相似三角形知识可得.在中,.同理,在中,.如图4,在中,.所以,即G,,H三点共线.因为平面,所以平面,得证.[方法五]:如图5,连接,则四边形为平行四边形,设与相交于点O,则O 为的中点.联结,由长方体知识知,体对角线交于一点,且为它们的中点,即,则经过点O,故点在平面内.(2)[方法一]【最优解】:坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,如图2.则、、、,,,,,设平面的一个法向量为,由,得取,得,则,设平面的一个法向量为,由,得,取,得,,则,,设二面角的平面角为,则,.因此,二面角的正弦值为.[方法二]:定义法在中,,即,所以.在中,,如图6,设的中点分别为M,N,连接,则,所以为二面角的平面角.?在中,.所以,则.[方法三]:向量法由题意得,由于,所以.如图7,在平面内作,垂足为G,则与的夹角即为二面角的大小.由,得.其中,,解得,.所以二面角的正弦值.[方法四]:三面角公式由题易得,.所以...设为二面角的平面角,由二面角的三个面角公式,得,所以.【整体点评】(1)方法一:通过证明直线,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出.14.如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.【答案】(1)见解析.(2)1.【解析】【详解】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC =CM=AB=3,DA=.又,所以.作QE⊥AC,垂足为E,则.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE =1.因此,三棱锥的体积为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.15.如图,在四棱锥中,底面为矩形,平面平面,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求证:平面.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(1)欲证,只需证明即可;(2)先证平面,再证平面平面;(3)取中点,连接,证明,则平面.【详解】(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴;(Ⅱ)∵底面为矩形,∴.∵平面平面,平面平面,平面,∴平面,又平面,∴.又,,、平面,平面,∵平面,∴平面平面;(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴,又平面,平面,∴平面.【点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法.证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.16.如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P?ABC的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据已知可得,进而有≌,可得,即,从而证得平面,即可证得结论;(2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.【详解】(1)连接,为圆锥顶点,为底面圆心,平面,在上,,是圆内接正三角形,,≌,,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,,解得,,在等腰直角三角形中,,在中,,三棱锥的体积为.?【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.17.如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.【答案】(1)证明见解析(2)存在,理由见解析【解析】【详解】分析:(1)先证,再证,进而完成证明.(2)判断出P为AM中点,,证明MC∥OP,然后进行证明即可.详解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D 的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM 中点,所以MC∥OP.MC平面PBD,OP平面PBD,所以MC∥平面PBD.点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P为AM中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.18.四棱锥中,侧面为等边三角形且垂直于底面,(1)证明:直线平面;(2)若△面积为,求四棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取中点,由于平面为等边三角形,则,利用面面垂直的性质定理可推出底面ABCD,设,表示相关的长度,利用的面积为,求出四棱锥的体积.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】19.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,(Ⅰ)设分别为的中点,求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.【答案】(I)见解析;(II)见解析;(III).【解析】【分析】(I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果;(II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果;(III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果.【详解】(I)证明:连接,易知,,又由,故,又因为平面,。
2024届高考数学立体几何专项练(3)-空间点、直线、平面之间的位置关系
2024届高考数学立体几何专项练——(3)空间点、直线、平面之间的位置关系1.已知平面α,β,γ两两垂直,直线a ,b ,c 满足a α⊂,b β⊂,c γ⊂,则直线a ,b ,c 不可能满足以下哪种关系()A.两两垂直B.两两平行C.两两相交D.两两异面2.如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为π3,2AB =,则棱1AA ,1CC 的夹角为()A.π3B.π4C.2π3D.π23.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A.π2B.π3C.π4D.π64.已知三棱柱111ABC A B C -的所有棱长均为2,1AA ⊥平面ABC ,则异面直线1A B ,1AC 所成角的余弦值为() A.14B.64C.104D.1545.在正四面体ABCD 中,已知,E F 分别是,AB CD 上的点(不含端点),则()A.不存在,E F ,使得EF CD ⊥ B.存在E ,使得DE CD⊥C.存在E ,使得DE ⊥平面ABC D.存在,E F ,使得平面CDE ⊥平面ABF6.下列结论中不正确的是()A.若两个平面有一个公共点,则它们有无数个公共点B.若已知四个点不共面,则其中任意三点不共线C.若点A 既在平面α内,又在平面β内,则α与β相交于b ,且点A 在b 上D.任意两条直线不能确定一个平面7.若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A.至多等于3B.至多等于4C.等于5D.大于58.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线9.如图,正方体1111ABCD A B C D -中,E ,F ,M ,N 分别为11111,,,BC CC A D C D 的中点,则直线EF ,MN 所成角的大小为()A.π6B.π4C.π3D.π210.(多选)若a ,b ,c 表示空间中三条不同的直线,γ表示平面,则下列命题正确的有()A.若//a b ,//b c ,则//a cB.若a γ⊥,b γ⊥,则//a bC.//a γ,//b γ,则//a bD.若a b ⊥,b c ⊥,则a c⊥11.(多选)已知正方体1111ABCD A B C D -,则()A.直线1BC 与1DA 所成的角为90︒B.直线1BC 与1CA 所成的角为90︒C.直线1BC 与平面11BB D D 所成的角为45︒D.直线1BC 与平面ABCD 所成的角为45︒12.(多选)将正方形ABCD 沿对角线BD 折成直二面角A BD C --,下列四个结论中正确的是()A.AC BD⊥B.ACD △是等边二角形C.直线AB 与平面BCD 所成的角是60°D.AB 与CD 所成的角为60°13.若一个角两边和另一个角两边分别平行,一个角为45°,则另一个角为_________.14.已知α与β是两个不重合的平面,则下列推理正确个数是__________.①,,,A l A B l B l ααα∈∈∈∈⇒⊂;②,,,A A B B AB αβαβαβ∈∈∈∈⇒⋂=;③,l A l A αα⊄∈⇒∉;④,A l l A αα∈⊂⇒∈.15.正方体1111ABCD A B C D -中,M 是AB 的中点,则1DB 与CM 所成角的余弦值为___________.16.,αβ是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥,②αβ⊥,③m β⊥,④n α⊥.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:_______________.17.如图所示,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有__________(填序号).18.已知E,F,G,H分别是三棱锥A BCD-棱AB,BC,CD,DA的中点,AC与BD 所成角为60°,且2==,则EG=____________.AC BD答案以及解析1.答案:B解析:设l αβ=I ,且l 与a ,b 均不重合,假设////a b c ,由//a b 可得//a β,//b α,又l αβ=I ,可知//a l ,//b l ,又////a b c ,可得//c l ,因为α,β,γ两两互相垂直,所以l 与γ相交,即l 与c 相交或异面,若l 与a 或b 重合,同理可得l 与c 相交或异面,可知假设错误,由此可知三条直线不能两两平行.故选B.2.答案:D解析:如图,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC .在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为π3,2AB =,所以PAB △是边长为2的等边三角形,所以2PA PC ==.又22AC =,所以222AC PA PC =+,所以PA PC ⊥,所以棱1AA ,1CC 的夹角为π2,故选D.3.答案:D解析:如图,记正方体的棱长为a ,则1111112AD C B AC B D a ====,所以1122B P PC a ==,221162BP B P B B a =+=,在1BC P △中,由余弦定理得22211113cos 22PB C B PC PBC PB C B +-∠==⋅,所以1π6PBC ∠=.又因为11//AD BC ,所以1PBC ∠即为直线PB 与1AD 所成的角,所以直线PB 与1AD 所成的角为π6.故选D.解析:如图,设F 是线段BC 的中点,连接1AC 交1AC 于点N ,连接NF ,AF ,由题意知,四边形11ACC A 为正方形,∴N 是1AC 的中点,1//NF A B ∴,ANF ∴∠是异面直线1A B ,1AC 所成的角或其补角,1AA ⊥ 平面ABC ,三棱柱111ABC A B C -的所有棱长均为2,1122AC A B ∴==,3AF =,1122AN AC ∴==,1122NF A B ==,222(2)(2)(3)1cos 4222ANF +-∴∠==⨯⨯,∴异面直线1A B ,1AC 所成角的余弦值为14.故选A.5.答案:D解析:为了方便解题,将正四面体ABCD 放入正方体中,如图所示.连接,HG OD ,对于选项A ,取,E F 分别为,AB CD 的中点,则易知EF CD ⊥,所以选项A 不正确;对于选项B ,在正方体中,易知CD ⊥平面ABHG ,因为过点D 且与平面ABHG 平行的平面不经过点E ,所以不存在E ,使得DE CD ⊥,故选项B 不正确;对于选项C ,在正方体中,易证OD ⊥平面ABC ,所以不存在E ,使得DE ⊥平面ABC ,故选项C 不正确;对于选项D ,设OD 与平面ABC 的交点为K ,连接CK ,只要令平面CDK 与AB 的交点为E 即可得平面CDE ⊥平面ABF ,故选项D 正确.解析:由基本事实3可知,如果两个不重合的平面有一个公共点,则它们相交于过这一点的一条直线,有无数个公共点,因此选项A 正确;选项B 正确;选项C 符合基本事实3,因此选项C 正确;若两条直线平行或相交,则可以确定一个平面,因此选项D 错误.7.答案:B解析:当3n =时,显然成立,排除C ,D ;当4n =时(正四面体)也满足,排除A ,故选B.8.答案:B解析:如图,连接BD ,BE .N 为正方形ABCD 的中心,N BD ∴∈.又M 是ED 的中点,M ED ∴∈,M ∴,N ∈平面BED .∴由图知BM 与EN 相交.设ED DC a ==,则2BD a =,2EB a =.在EBD △中,由中线定理得()22222124EN ED EB BD a ⎡⎤=+-=⎣⎦,EN a ∴=.又72BM a =,BM EN ∴≠.故选B.9.答案:C 解析:略10.答案:AB解析:A 项,空间中线线平行有传递性,如图1,故A 项正确;B 项,如图2,故B 项正确;C 项,如图3,故C 项错误;D 项,如图4,故D 项错误.11.答案:ABD解析:A 项,如图,易证11//A D B C ,显然11BC B C ⊥,所以11BC DA ⊥,故A 项正确;B 项,因为11BC B C ⊥,111BC A B ⊥,所以1BC ⊥平面11A B CD ,从而11BC CA ⊥,故B 项正确;C 项,如图,设1111A C BD O = ,则111C O B D ⊥,11C O BB ⊥,所以1C O ⊥平面11BB D D ,从而1C BO ∠即为直线1BC 与平面11BB D D 所成的角,易证11A BC △为正三角形,O 为11A C 的中点,所以130C BO ∠=︒,故C 项错误;D 项,显然1C BC ∠即为直线1BC 与平面ABCD 所成的角,且145C BC ∠=︒,故D 项正确.12.答案:ABD解析:设正方形的边长为1,取BD 的中点O ,连接OA ,CO ,可得OC BD ⊥,OA BD ⊥,OC OA O = ,BD ∴⊥平面AOC .AC ⊂ 平面AOC ,BD AC ∴⊥,A 正确.正方形ABCD 沿对角线BD 折成直二面角A BD C --,即平面ABD ⊥平面BCD .OC BD ⊥ ,平面ABD 平面BCD BD =,OC ∴⊥平面ABD ,同理OA ⊥平面BCD ,OC OA ∴⊥.在Rt OAC △中,22OC OA ==,221AC OA OC ∴=+=,故ACD △为等边三角形,故B 正确.OA ⊥ 平面BCD ,ABO ∴∠为直线AB 与平面BCD 所成的角,而45ABO ∠=︒,故C错误.过点D 作//DE AB 且DE AB =,连接CE ,OE ,则CDE ∠或其补角为AB 与CD 所成的角.在ODE △中,1DE =,22OD =,3π4EDO ∠=,由余弦定理得2223π52cos42OE OD DE OD DE =++⋅⋅=.易知CO ⊥平面ABD ,OE ⊂平面ABD ,CO OE ∴⊥.在Rt COE △中,2223CE OE OC =+=.又1DE CD ==,由余弦定理得2221cos 22CD DE CE CDE CD DE +-∠==-⋅,120CDE ∴∠=︒,即AB 与CD 所成的角为60°,故D正确.故选ABD.13.答案:45°或135°解析:若一个角两边和另一个角两边分别平行,则这两个角相等或互补,由一个角为45°,则另一个角为45°或135°.14.答案:3解析:由基本事实2知,①正确;由基本事实3知,②正确;若l A α⋂=,显然有,l A l α⊂∈/,但是A α∈,③错误;④正确.15.答案:1515解析:将正方体1111ABCD A B C D -补成一个长方体,连接1111,,//CE ME DB CE ,所以1MCE ∠是异面直线1DB 与CM 所成角(或其补角),设正方体的棱长为a .在三角形1MCE 中,11513,3,22CM a CE a ME a ===,那么222151331544cos 155232a a a MCE a a+-∠==⨯⨯.16.答案:若②③④则①或若①③④则②解析:若①m n ⊥,②αβ⊥,③m β⊥成立,则n 与α可能平行也可能相交,也可能n α⊂,即④n α⊥不一定成立;若①m n ⊥,②αβ⊥,④n α⊥成立,则m 与β可能平行也可能相交,也可能m β⊂,即③m β⊥不一定成立.若①m n ⊥,③m β⊥,④n α⊥成立,则②αβ⊥成立.若②αβ⊥,③m β⊥,④n α⊥成立,则①m n ⊥成立.17.答案:②④解析:如题干图①中,直线//GH MN ;题干图②中,G ,H ,N 三点共面,但M ∉平面GHN ,因此直线GH 与MN 异面;题干图③中,连接MG(图略),//GM HN ,因此,GH 与MN 共面;题干图④中G ,M ,N 三点共面,但H ∉平面GMN ,所以GH 与MN 异面.18.答案:1或3解析:因为E ,F ,G ,H 分别是三棱锥A BCD -棱AB ,BC ,CD ,DA 的中点,所以EF 为ABC △的中位线,故//EF AC 且12EF AC =,同理GH 为ACD △的中位线,故//GH AC 且12GH AC =,所以EF 平行且等于GH ,所以四边形EFGH 是平行四边形且112EF AC ==,同理//FG BD 且112FG BD ==,因为AC 与BD 所成角为60°,所以60EFG ∠=︒或120°,当60EFG ∠=︒时,1EG =.当120EFG ∠=︒时,3EG =.。
高中数学立体几何点线面位置关系精选题目(附答案)
2.下列说法正确的是()
A.用一平面去截圆台,截面一定是圆面
B.在圆台的上、下底面圆周上各取一点,则两点的连线就是圆台的母线
C.圆台的任意两条母线延长后相交于同一点
A.36πB.64π
C.100πD.144π
解析:选A三棱锥ABCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它和三棱锥ABCD的外接球是同一个,且体对角线的长为球的直径,若设球的半径为R,则2R= =6,故R=3,∴外接球的表面积S=4πR2=36π,故选A.
三、空间点、线、面位置关系的判断与证明
(3)(2017·山东高考)由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为________.
[解析]
(1)如图所示,该几何体的表面积S=1×1+ ×1×1×2+2× ×(1+2)×1+ × × =5+ ,故选A.
(2)①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCDA1B1C1D1中的四面体ACB1D1;②错误,因为球的直径必过球心;③错误,必须是相邻的两个侧面.
4.一个几何体的三视图如图所示,则该几何体的表面积S为________.
解析:根据三视图,可知题中的几何体是由一个长方体挖去一个圆柱得到的,所以S=2×(4×1+3×1+4×3)+2π-2π=38.
答案:38
二、与球有关的问题
球的表面积与体积
(1)球的表面积公式S球=4πR2.
(2)球的体积公式V球= πR3.
(2)旋转体的表面积:
①S圆柱=2πrl+2πr2;
②S圆锥=πrl+πr2;
8.2点线面的位置关系-高考数学历年(十年)真题题型归纳+模拟预测(原卷版)
第八章立体几何与空间向量8.2 点线面的位置关系立体几何问题既是高考的必考点,也是考查的难点,其在高考中的命题形式较为稳定,保持“一小一大”或“两小一大”的格局.多以选择题或者填空题的形式考查空间内点线面的关系为主,空间几何体的体积或表面积的计算.题型一.点线面的位置关系1.(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n 2.(2015•福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(2019•新课标Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线4.(2017•新课标Ⅲ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.5.(2017•新课标Ⅲ)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC 6.(2021•浙江)如图,已知正方体ABCD﹣A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1题型二.证明平行1.(2016•新课标Ⅲ)如图,四棱锥P﹣ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅲ)证明:MN∥平面P AB;(Ⅲ)求四面体N﹣BCM的体积.2.(2013•新课标Ⅲ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅲ)证明:BC1∥平面A1CD;(Ⅲ)AA1=AC=CB=2,AB=2√2,求三棱锥C﹣A1DE的体积.3.(2014•安徽)如图,四棱锥P﹣ABCD的底面是边长为8的正方形,四条侧棱长均为2√17,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(Ⅲ)证明:GH∥EF;(Ⅲ)若EB=2,求四边形GEFH的面积.4.(2011•安徽)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形(Ⅲ)证明直线BC∥EF;(Ⅲ)求棱锥F﹣OBED的体积.题型三.证明垂直1.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.2.(2019•新课标Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.3.(2019•北京)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E 为CD的中点.(Ⅲ)求证:BD⊥平面P AC;(Ⅲ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.̂所在平面垂直,M是CD̂上异于4.(2018•新课标Ⅲ)如图,矩形ABCD所在平面与半圆弧CDC,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.5.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM,证明:平面P AM⊥平面PBD.6.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1,已知D为棱A1B1上的点,证明:BF⊥DE.一.选择题(共4小题)1.已知α,β是两个不同的平面,直线m ⊂α,下列命题中正确的是( )A .若α⊥β,则m ∥βB .若α⊥β,则m ⊥βC .若m ∥β,则α∥βD .若m ⊥β,则α⊥β2.在正方体ABCD ﹣A 1B 1C 1D 1中,点P ,Q 分别为A 1D 1,D 1C 1的中点,在平面ABCD 中,过AB 的中点M 作平面DPQ 的平行线交直线BC 于N ,则BN BC 的值为( )A .13B .12C .1D .233.已知直线l ⊄平面α,直线m ⊂平面α,给出下面四个结论:①若l 与m 不垂直,则l 与α一定不垂直;②若l 与m 所成的角为30°,则l 与α所成的角也为30°;③l ∥m 是l ∥α的必要不充分条件;④若l 与α相交,则l 与m 一定是异面直线.其中正确结论的个数为( )A .1B .2C .3D .44.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,P ,Q 分别是线段AD 1和B 1C 上的动点,且满足AP =B 1Q ,则下列命题错误的是( )A .存在P ,Q 的某一位置,使AB ∥PQB .△BPQ 的面积为定值C .当P A >0时,直线PB 1与AQ 是异面直线D .无论P ,Q 运动到任何位置,均有BC ⊥PQ二.多选题(共2小题)5.在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F ,G 分别为棱A 1D 1,D 1D ,A 1B 1的中点.则下列结论正确的是( )A .AC 1⊥EGB .GC ∥EDC .B 1F ⊥平面BGC 1D .EF 和BB 1所成角为π46.一个正方体纸盒展开后如图所示,则在原正方体纸盒中下列结论正确的是( )A.AB⊥EF B.AB与CM所成的角为60°C.MN∥CD D.EF与MN所成的角为60°三.解答题(共5小题)7.如图,四棱柱ABCD﹣A1B1C1D1中,平面A1ADD1⊥平面ABCD,底面ABCD为直角梯形,且∠ADC=π2,AB∥CD.点E为棱D1D上的一点(异于点D1).(1)求证:C1D1∥平面ABE;(2)求证:平面ABE⊥平面A1ADD1.8.如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,N是BC的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上的一点.(1)求证:M,N,A1,C1四点共面;(2)若DE∥平面A1MC1,求CEEB;(3)求直线BC和平面A1MC1所成的角的余弦值.9.在直角三角形ABC中,AB=BC=2,D为AC的中点,以BD为折痕将△ABD折起,使点A到达点P的位置且PB⊥CD.(1)求证:PD⊥CD;(2)求A点到平面PBC的距离.10.如图,四棱锥E﹣ABCD,平面ABCD⊥平面ABE,四边形ABCD为矩形,AD=6,AB =5,BE=3,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段DE上,且满足EM=2MD,试在线段AB上确定一点N,使得MN∥平面BCE,并求MN的长。
高中数学必修2 立体图形 空间点、直线、平面之间的位置关系 常见例题考题及答案
空间点、直线、平面之间的位置关系一.相关知识点1.平面的基本性质(1)⎩⎪⎨⎪⎧共面直线⎩⎨⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
(2)平行公理:公理4:平行于同一直线的两条直线互相平行——空间平行线的传递性。
(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
(4)异面直线所成的角:①定义:设a 、b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。
②范围:⎝ ⎛⎦⎥⎤0,π2。
3.直线与平面的位置关系一、细品教材1.(必修2P49练习题)若直线a不平行于平面α,且a⊄α,则下列结论成立的是() A.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内的直线与a都相交D.α内存在唯一的直线与a平行2.如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线。
以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④二、基础自我检测1.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直2.下列命题正确的个数为()①经过三点确定一个平面②梯形可以确定一个平面③两两相交的三条直线最多可以确定三个平面A.0个B.1个C.2个D.3个3.如图所示,已知在长方体ABCD-EFGH中,AB=23,AD=23,AE=2,则BC和EG所成角的大小是________,AE和BG所成角的大小是________。
4.已知空间四边形ABCD中,M,N分别为AB,CD的中点,则下列判断:①MN≥1 2(AC+BD);②MN>12(AC+BD);③MN=12(AC+BD);④MN<12(AC+BD)。
专题08 立体几何第二十讲 空间点线面的位置关系(解析版)
专题08 立体几何第二十讲 空间点线面的位置关系答案部分2019年1.【解析】如图所示,联结BE ,BD .因为点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,所以BM ⊂平面BDE ,EN ⊂平面BDE ,因为BM 是BDE △中DE 边上的中线,EN 是BDE △中BD 边上的中线,直线BM ,EN 是相交直线,设DE a =,则2BD a =,2235244BE a a a =+=, 所以62BM a =,223144EN a a a =+=, 所以BM EN ≠.故选B .2.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=AB DC ∥,可得11=BC A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =. 从而点C 到平面1C DE 的距离为41717.3.【解析】对于A ,α内有无数条直线与β平行,则α与β相交或βα∥,排除; 对于B ,α内有两条相交直线与β平行,则βα∥;对于C ,α,β平行于同一条直线,则α与β相交或βα∥,排除; 对于D ,α,β垂直于同一平面,则α与β相交或βα∥,排除. 故选B .4.【解析】若②//m α,过m 作平面m βα'=,则//m m ',又③l α⊥,则l m '⊥,又m ,m '同在β内,所以①l m ⊥,即⇒②③①.5.【解析】证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .6.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. F7.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)取CG 的中点M ,联结EM ,DM .因为AB DE ∥,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG . 由已知,四边形BCGE 是菱形,且60EBC ∠=︒得EM ⊥CG ,故CG ⊥平面DEM . 因此DM ⊥CG .在Rt △DEM 中,1DE =,EM =3,故2DM =.所以四边形ACGD 的面积为4.8.【解析】(Ⅰ)因为PA ⊥平面ABCD ,且BD ⊂平面ABCD , 所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =,所以BD ⊥平面PAC .(Ⅱ)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD .又//AB CD ,所以AB ⊥AE .又PA ⊂平面PAB ,AB ⊂平面PAB ,PAAB A =,所以AE ⊥平面PAB .又AE ⊂平面PAE ,所以平面PAB ⊥平面PAE .(Ⅲ)棱PB 上存在点F ,且F 为PB 的中点,使得CF ∥平面PAE . 取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .因为G ,F 分别为PA ,PB 的中点,则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形, 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .9.【解析】(Ⅰ)连接BD ,易知ACBD H =,BH DH =.又由BG PG =,故GH PD ∥,又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD .(Ⅱ)取棱PC 的中点N ,连接DN .依题意,得DN PC ⊥,又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(Ⅲ)连接AN ,由(Ⅱ)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,2CD =且N 为PC 的中点,所以DN =又DN AN ⊥,故在Rt AND △中,sin DN DAN AD ∠==所以,直线AD 与平面PAC 10.【解析】(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .11.【解析】(I )连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥A C. 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥B C.(Ⅱ)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故AE 1⊥EG ,所以平行四边形EGFA 1为矩形. 由(I )得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E 3EG 3. 由于O 为A 1G 的中点,故1152A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 12.【解析】(Ⅰ)因为PA ⊥平面ABCD ,且BD ⊂平面ABCD , 所以PA BD ⊥.又因为底面ABCD为菱形,所以BD AC⊥.又PA⊂平面PAC,AC⊂平面PAC,PA AC A=,所以BD⊥平面PAC.(Ⅱ)因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.又//AB CD,所以AB⊥AE.又PA⊂平面PAB,AB⊂平面PAB,PA AB A=,所以AE⊥平面PAB.又AE⊂平面PAE,所以平面PAB⊥平面PAE.(Ⅲ)棱PB上存在点F,且F为PB的中点,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.因为G,F分别为PA,PB的中点,则FG∥AB,且FG=12 AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12 AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形,所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.13.【解析】过点P作PO⊥平面ABC交平面ABC于点O,过点P作PD⊥AC交AC于点D,作PE⊥BC交BC于点E,联结OD,OC,OE,则,,AC POD BC POE ⊥⊥平面平面 所以,,AC OD BC OE ⊥⊥又90ACB ∠=︒, 故四边形ODCE 为矩形. 有所做辅助线可知3PD PE ==,所以()22231CD CE ==-=,所以矩形ODCE 为边长是1的正方形,则2OC =.在Rt PCO △中,2,2PC OC ==,所以2PO =.PO 即为点P 到平面ABC 的距离,即所求距离为2.14.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=AB DC ∥,可得11=BC A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =. 从而点C 到平面1C DE 的距离为41717.15.【解析】(Ⅰ)连接BD ,易知ACBD H =,BH DH =.又由BG PG =,故GH PD ∥,又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD .(Ⅱ)取棱PC 的中点N ,连接DN .依题意,得DN PC ⊥,又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(Ⅲ)连接AN ,由(Ⅱ)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,2CD =且N 为PC 的中点,所以3DN =又DN AN ⊥,故在Rt AND △中,3sin DN DAN AD ∠==所以,直线AD 与平面PAC 316.【解析】解法一:如图G 为AC 的中点,V 在底面的射影为O ,则P 在底面上的射影D 在线段AO 上,作DE AC ⊥于E ,易得PE VG ∥,过P 作PF AC ∥于F , 过D 作DH AC ∥,交BG 于H ,则BPF α=∠,PBD β=∠,PED γ=∠, 则cos cos PF EG DH BDPB PB PB PB αβ===<=,可得βα<; tan tan PD PDED BDγβ===,可得βγ<.解法二:由最小值定理可得βα<,记V AC B --的平面角为γ'(显然γγ'=), 由最大角定理可得βγγ'<=;解法三特殊图形法:设三棱锥V ABC -为棱长为2的正四面体,P 为VA 的中点,易得132cos 63α==,可得33sin 6α=,623sin 33β==,6223sin 332γ==,故选B .17.【解析】(I )连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥A C. 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥B C.(Ⅱ)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故AE 1⊥EG ,所以平行四边形EGFA 1为矩形. 由(I )得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E EG .由于O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 2015-2018年1.C 【解析】如图,连接BE ,因为AB CD ∥,所以异面直线AE 与CD 所成角等于相交直线AE 与AB 所成的角,即EAB ∠.不妨设正方体的棱长为2,则1CE =,2BC =,由勾股定理得BE =AB ⊥平面11BCC B ,可得AB BE ⊥,所以tan 2BE EAB AB ∠==,故选C . D 1C 1B 1A 1ED C BA2.A 【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A .3.A 【解析】由正方体的线线关系,易知B 、C 、D 中AB MQ ∥,所以AB ∥平面MNQ , 只有A 不满足.选A .4.C 【解析】如图,连结1A D ,易知1AD ⊥平面1A DE ,所以11AD A E ⊥,又11BC AD ∥,所以1BC ⊥平面1A DE ,故11A E BC ⊥,选C .C 111A5.A 【解析】因为过点A 的平面α与平面11CB D 平行,平面ABCD ∥平面1111A B C D ,所以m ∥11B D ∥BD ,又1A B ∥平面11CB D ,所以n ∥1AB ,则BD 与1A B 所成的角为所求角,所以m ,n A . 6.C 【解析】选项A ,只有当m β∥或m β⊂时,m l ∥;选项B ,只有当m β⊥时m n ∥;选项C ,由于l β⊂,所以n l ⊥;选项D ,只有当m β∥或m β⊂时,m n ⊥,故选C . 7.【解析】(1)因为4===AP CP AC ,O 为AC 的中点,所以OP ⊥AC ,且=OP 连结OB .因为2==AB BC AC ,所以∆ABC 为等腰直角三角形, 且OB ⊥AC ,122==OB AC . 由222OP OB PB +=知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .HO MPCBA(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离. 由题设可知122==OC AC ,24233==CM BC ,45∠=ACB . 所以253=OM ,sin 455⋅⋅∠==OC MC ACB CH OM . 所以点C 到平面POM 的距离为455. 8.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又BCCM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .9.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥.∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∵PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .G PFED CBA∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .10.【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角.NM A BCD在Rt DAM ∆中,1AM =,故DM =因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt DAN ∆中,1AN =,故DN .在等腰三角形DMN 中,1MN =,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD (3)连接CM .因为ABC ∆为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM =.又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,CDM ∠为直线CD 与平面ABD 所成的角.在Rt CAD ∆中,4CD =.在Rt CMD ∆中,sin 4CM CDM CD ∠==.所以,直线CD 与平面ABD . 11.【证明】(1)在平行六面体1111ABCD A B C D -中,AB ∥11A B . 因为AB ⊄平面11A B C ,11A B ⊂平面11A B C , 所以AB ∥平面11A B C .D 1C 1B 1A 1DCBA(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形, 因此1AB ⊥1A B .又因为1AB ⊥11B C ,BC ∥11B C , 所以1AB ⊥BC .又因为1A BBC =B ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC . 因为1AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面1A BC .12.【解析】(1)由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C = 由2AB BC ==,120ABC ∠=得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .DABCA 1B 1C 1由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由11B C =11A B =,11AC得111cos C A B ∠=,111sin C A B ∠=,所以1C D,故111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 13.【解析】(1)在平面ABCD 内,因为90BAD ABC ∠=∠=,所以BC ∥AD , 又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD . (2)取AD 的中点M ,连结PM ,CM .由12AB BC AD ==及BC ∥AD , 90ABC ∠=得四边形ABCM 正方形,则CM AD ⊥.NMDCBA P因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD平面ABCD =AD ,所以PM AD ⊥,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM CM ⊥. 设BC x =,则CM x =,CD =,PM =,2PC PD x ==.取CD 的中点N ,连结PN ,则PN CD ⊥,所以2PN x =. 因为PCD ∆的面积为所以122x ⨯=解得2x =-(舍去),2x =.于是2AB BC ==,4AD =,PM = 所以四棱锥P ABCD -的体积12(24)32V +=⨯⨯=. 14.【解析】(1)取AC 的中点O 连结DO ,BO .因为AD CD =,所以AC ⊥DO . 又由于ABC ∆是正三角形,所以AC ⊥BO .从而AC ⊥平面DOB ,故AC ⊥BD .ABCDEO(2)连结EO .由(1)及题设知90ADC ∠=,所以DO AO =. 在Rt AOB ∆中,222BO AO AB +=. 又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=.由题设知AEC ∆为直角三角形,所以12EO AC =. 又ABC ∆是正三角形,且AB BD =,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比 为1:1.15.【解析】(Ⅰ)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP ==故cos AD DAP AP ∠==. 所以,异面直线AP 与BC.(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C .(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2.又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得2225DF CD CF =+=在Rt △DPF 中,可得 5sin PD DFP DF ∠==. 所以,直线AB 与平面PBC 5. 16.【解析】(Ⅰ)取11B D 中点1O ,连接1CO ,11A O ,O 1ABCDE OM A 1B 1D 1由于1111ABCD A B C D -为四棱柱, 所以11AO OC ∥,11A O OC =, 因此四边形11AOCO 为平行四边形,所以11AO O C ∥,又1O C ⊂面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD ,(Ⅱ)∵AC BD ⊥.E ,M 分别为AD 和OD 的中点, ∴EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1A E BD ⊥,∵11B D BD ∥,所以11EM B D ⊥,111A E B D ⊥, 又1A E ,EM ⊂平面1,A EM 1A E EM E =,所以11B D ⊥平面1,A EM又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .17.【解析】(Ⅰ)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(Ⅱ)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(Ⅰ)知,PA BD ⊥,所以BD ⊥平面PAC . 所以平面BDE ⊥平面PAC .(Ⅲ)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,2BD DC == 由(Ⅰ)知,PA ⊥平面ABC ,所以DE ⊥平面ABC .所以三棱锥E BCD -的体积111363DBC V S DE BD DC DE ∆=⨯⨯=⋅⋅=. 18.【解析】(Ⅰ)如图,设P A 中点为F ,连结EF ,FB .FH M NQ E D CB AP因为E ,F 分别为PD ,P A 中点,所以EF ∥AD 且12EF AD =, 又因为BC ∥AD ,12BC AD =,所以 EF ∥BC 且EF =BC ,即四边形BCEF 为平行四边形,所以CE ∥BF ,因此CE ∥平面P AB . (Ⅱ)分别取BC ,AD 的中点为M ,N .连结PN 交EF 于点Q ,连结MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ ∥CE .由PAD ∆为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .所以 AD ⊥平面PBN ,由BC ∥AD 得 BC ⊥平面PBN ,那么,平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连结MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在PCD ∆中,由PC =2,CD =1,PD =得CE =,在△PBN 中,由PN =BN =1,PB =得14QH =, 在Rt MQH ∆中,14QH =,MQ =, 所以 2sin 8QMH ∠=, 所以,直线CE 与平面PBC 2 19.【解析】证明:(1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD . 因为AD ⊂平面ABD ,所以BC ⊥AD .又AB AD ⊥,BC AB B =,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD AC ⊥.20.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为107AC =40AM =. 所以2240(107)30MN =-=,从而3sin 4MAC ∠=. 记AM 与水平的交点为1P ,过1P 作11PQ AC ⊥,1Q 为垂足,则11PQ ⊥平面ABCD ,故1112PQ=, 从而11116sin PQ AP MAC==∠. 答:玻璃棒l 没入水中部分的长度为16cm.( 如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,1O 是正棱台的两底面中心.由正棱台的定义,1OO ⊥平面 EFGH ,所以平面11E EGG ⊥平面EFGH ,1OO ⊥EG .同理,平面11E EGG ⊥平面1111E F G H ,1OO ⊥11E G . 记玻璃棒的另一端落在1GG 上点N 处.过G 作GK ⊥11E G ,K 为垂足, 则GK =1OO =32. 因为EG = 14,11E G = 62,所以1KG =6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是sin sin()sin()sin cos cos sin NEG αβαβαβαβ=π--=+=+∠ 42473(35)525255=⨯+-⨯=. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则 22P Q ⊥平面EFGH ,故22P Q =12,从而 2EP =2220sin P NEGQ =∠. 答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步练习第I 卷(选择题)1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A 、若m ∥,n α∥α,则m ∥nB 、若,αγβγ⊥⊥,则α∥βC 、若n ∥,n α∥β,则α∥βD 、若,m n αα⊥⊥,则m ∥n2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题中正确的是 ( )A .//,//m n αα,则//m nB .,m m αβ⊥⊥,则//αβC .//,//m n m α,则//n αD .,αγβγ⊥⊥,则//αβ3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( )A .若α∥β,m ∥α,则m ∥βB .若α⊥β,m ⊥β,则m ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ∥α,m ⊥n ,则n ⊥α4.已知l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l α⊥,m α⊂,则l m ⊥B .若l m ⊥,m α⊂,则l α⊥C .若l ∥α,m α⊂,则l ∥mD .若l ∥α,m ∥α,则l ∥m5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l α⊥,l m //,则m α⊥B .若l m ⊥,m α⊂,则l α⊥C .若l α//,m α⊂,则l m //D .若l α//,m α//,则l m //6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( )A .若α⊥a 且b a ⊥,则α//bB .若αγ⊥且βγ⊥,则βα//C .若α//a 且β//a ,则βα//D .若αγ//且βγ//,则βα//7.关于空间两条直线a 、b 和平面α,下列命题正确的是( )A .若//a b ,b α⊂,则//a αB .若//a α,b α⊂,则//a bC .若//a α,//b α,则//a bD .若a α⊥,b α⊥,则//a b8.给定空间中的直线l 及平面,条件“直线l 与平面 无数条直线都垂直”是“直线l 与平面 垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( )①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α⊄,m β⊥,则//m α ③若m β⊥,m α⊂,则αβ⊥ ④若αβ⊥,m α⊂,n β⊂,则m n ⊥A .0个B .1个C .2个D .3个10.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题:①若//,m n m n αα⊥⊥,则;②若,,//m m αβαβ⊥⊥则;③若,//,,m m n n αβαβ⊥⊂⊥则;④若//,//m n m n ααβ⋂=,则.其中正确命题的个数是( )A.0B.1C.2D.311.已知,m n 为不同的直线,,αβ为不同的平面,则下列说确的是A. ,////m n m n αα⊂⇒B. ,m n m n αα⊂⊥⇒⊥C. ,,////m n m n αβαβ⊂⊂⇒D. ,n n βααβ⊂⊥⇒⊥12.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥(C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ13.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是A.若,,m m αβ则αβB. .若,,m m αβ则αβ⊥C.若,,m m αβ⊥⊥则αβD. 若,,m m αβ⊥⊥则αβ⊥14.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说确的是( )A .若l ∥m ,m α⊂,则l ∥α;B .若,,,l m l n m n α⊥⊥⊂,则l α⊥;C .若l ∥α,l ∥β,m αβ=,则l ∥m ;D .若,,l m l m αβ⊂⊂⊥,则αβ⊥.15.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥ B.若//,a b b α⊂,则//a α C.若//,,,a b αβαγβγ==则//a b D.若,,//,//a b a b ββαα⊂⊂,则//βα第II 卷(非选择题)二、解答题(本题共7道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)16.(本题12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分别为PC 、BD 的中点.(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:平面PDC ⊥平面PAD ;B A17.(本题10分)如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)PA ∥平面BDE ;(2)BD ⊥平面PAC .18.(本小题8分)如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且2PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ; (3) 求二面角B PD C --的正切值.POEC DBACBAD 1B 1A1C19.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==. (Ⅰ)求证:1//AC 平面1AB D ;(Ⅱ)求点A 1 到平面1AB D 的距离.20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠= E 、F 分别是PB 、CD 的中点,且4PB PC PD ===.(1)求证:PA ABCD ⊥平面;(2)求证://EF 平面PAD ;(3)求二面角A PB C --的余弦值.21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形, PD =DC ,E ,F 分别是AB ,PB 的中点.(Ⅰ)求证://EF 平面PAD ;(Ⅱ)求证:EF CD ⊥;(Ⅲ)设PD=AD=a, 求三棱锥B-EFC 的体积.B A22.(本小题满分10分)如图,在四棱锥ABCDP-中,底面ABCD是矩形,PA⊥平面ABCD,ABAP=,E,F分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求证:PCAE⊥.评卷人得分三、解答题(本题共3道小题,每小题10分,共30分)评卷人得分四、填空题(本题共4道小题,每小题0分,共0分)α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题序号是______24.设,m n是两条不同的直线,,αβ是两个不同的平面,下列正确命题的序号是__________。
(1)若m ∥α,n ∥α,则m ∥n ; (2)若,m m n α⊥⊥则//n α;(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥;(4)若β⊂m ,βα//,则α//m 。
25.10. 设c b ,表示两条直线,βα,表示两个平面,现给出下列命题:① 若,//b c αα⊂,则//b c ; ② 若,//b b c α⊂,则//c α;③ 若//,c ααβ⊥,则c β⊥; ④ 若//,c c αβ⊥,则αβ⊥.其中真命题是 ▲ .(写出所有真命题的序号)26.设m ,n 是两条不同直线,βα,是两个不同的平面,给出下列四个命题:①若n m n m //,//,则αα⊂; ②βαβα⊥⊥⊥⊥则,,,n m n m ; ③若,//,//,//n m n m m αβαβ⋂=则且 ; ④若βαβα//,,则⊥⊥m m其中正确的命题是 ________.试卷答案1.D2.B3.C4.A5.A6.D7.D8.C略9.D10.D.试题分析:对于①,因为α⊥m ,所以直线m 与平面α所成的角为090,又因为m ∥n ,所以直线n 与平面α所成的角也为090,即α⊥n 命题成立,故正确;对于②,若α⊥m ,β⊥m ,则经过m 作平面γ,设a =⋂αγ,b =⋂βγ,又因为α⊂a ,β⊂b ,所以在平面γ,a m ⊥,b n ⊥,所以直线a 、b 是平行直线.因为β⊄a ,β⊂b ,a ∥b ,所以a ∥β.经过m 作平面θ,设c =⋂αθ,d =⋂βθ,用同样的方法可以证出c ∥β.因为a 、c 是平面α的相交直线,所以α∥β,故正确; 对于③,因为α⊥n ,m ∥n ,所以α⊥n .又因为β⊂n ,所以βα⊥,故正确;对于④,因为m ∥β,n =⋂βα,当直线m 在平面β时,m ∥n 成立,但题设中没有m 在平面β这一条件,故不正确.综上所述,其中正确命题的个数是3个,应选D. 考点:平面的基本性质及推论.11.【知识点】空间中直线与平面之间的位置关系.G4 G5【答案解析】D 解析:A 选项可能有n α⊂,B 选项也可能有n α⊂,C 选项两平面可能相交,故选D.【思路点拨】分别根据线面平行和线面垂直的性质和定义进行判断即可.12.【答案解析】B 解析:A.直线,m n 成角大小不确定;B.把,m n 分别看成平面,αβ的法向量所在直线,则易得B 成立.所以选B.【思路点拨】根据空间直线和平面位置关系的判断定理与性质定理进行判断.13.【答案解析】C 解析:若,,m m αβ则平面,αβ可能平行可能相交,所以A,B 是假命题;显然若,,m m αβ⊥⊥则αβ成立,故选C.【思路点拨】根据线面平行的性质,线面垂直的性质得结论.14.【答案解析】C 解析:对于A ,直线l 还有可能在平面α,所以错误,对于B ,若m ∥n ,则直线l 与平面α不一定垂直,所以错误,对于D ,若,,l m l m αβ⊂⊂⊥,两面可以平行和相交,不一定垂直,所以错误,则选C.【思路点拨】判断空间位置关系时,可用相关定理直接判断,也可用反例排除判断.15.C16.(说明:证法不唯一,适当给分)证明:(1)取AD 中点G ,PD 中点H ,连接FG,GH,HE ,由题意:11//,//,//,//22FG AB HE CD AB CD FG HE ∴ //EFGH EF GH ∴∴四边形是平行四边形, --------4分又,GH PAD EF PAD ⊆⊄平面平面,EF //平面PAD --------6分(2)平面PAD ⊥底面ABCD ,,PAD ABCD AD ⋂=平面平面,CD AD CD ABCD ⊥⊆平面,∴CD PAD ⊥平面,--------10分又CD PDC ⊆平面,∴平面PDC ⊥平面PAD --------12分17.证明:(1)连接EO ,∵ 四边形ABCD 为正方形,∴ O 为AC 的中点.∵ E 是PC 的中点,∴ OE 是△APC 的中位线.∴ EO ∥PA .∵ EO ⊂平面BDE ,PA ⊂平面BDE ,∴ PA ∥平面BDE .(2)∵ PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴ PO ⊥BD .∵ 四边形ABCD 是正方形,∴ AC ⊥BD .∵ PO ∩AC =O ,AC ⊂平面PAC ,PO ⊂平面PAC ,∴ BD ⊥平面PAC .18.(Ⅰ)证明:ABCD 为平行四边形连结AC BD F =,F 为AC 中点,E 为PC 中点∴在CPA ∆中EF //PA且PA ⊆平面PAD ,EF ⊄平面PAD ∴PAD EF 平面// ………2分 (Ⅱ)证明:因为面PAD ⊥面ABCD 平面PAD 面ABCD AD = ABCD 为正方形,CD AD ⊥,CD ⊂平面ABCD所以CD ⊥平面PAD ∴CD PA ⊥又PA PD AD ==,所以PAD ∆是等腰直角三角形, 且2PAD π∠= 即PA PD ⊥ CD PD D =,且CD 、PD ⊆面ABCDPA ⊥面PDCPO EC DBA又PA ⊆面PAB 面PAB ⊥面PDC ………5分MFEDC B A (Ⅲ)设PD 的中点为M ,连结EM ,MF , 则EM PD ⊥由(Ⅱ)知EF ⊥面PDC , EF PD ⊥,PD ⊥面EFM ,PD MF ⊥, EMF ∠是二面角B PD C --的平面角 Rt FEM ∆中,122EF PA a == 1122EM CD a == 224tan 12a EF EMF EM a ∠=== 故所求二面角的正切值为22 ………8分 19.证明:(Ⅰ)连接1A B 交1AB 于O ,连接OD ,在1BAC ∆中,O 为1BA 中点,D 为BC 中点1//OD AC ∴ 111,OD AB D AC AB D ⊂⊄面面 11//AC AB D ∴平面1DH BB ∴⊥ 11DH A B BA ∴⊥面且3sin 30DH AD =⋅=1111A AB D D AA B V V --=即11513233h = 解得25h =解法二:由①可知11//AC AB D 平面∴点1A 到平面1AB D 的距离等于点C 到平面1AB D 的距离…………8分1AD B ∆为Rt ∆115ADB S ∆∴=132ADC ABC S S ∆∆==10分 设点C 到面1AB D 的距离为h 11C AB D B ADC V V --=即11513233h =⨯ 解得25h =略 20.(1)证明 取BC 的中点,M 连结,.AM PM,60AB BC ABC =∠=,ABM ∴∆为正三角形,.AM BC ∴⊥又 ,,PB PC PM BC =∴⊥,AMPM M =BC ∴⊥平面PAM ,PA ⊂平面PAM ,同理可证 ,PA CD ⊥ 又,BCCD C PA =∴⊥平面.ABCD …4分.(2)取PA 的中点N ,连结,.EN ND,,//,PE EB PN NA EN AB ==∴且1.2EN AB =又//,FD AB 且1,2FD AB = //EN DF ∴,∴四边形ENDF 是平行四边形,//,EF ND ∴而EF ⊄平面,PAD ND ⊂平面,//PAD EF ∴平面.PAD …………………8分 (3)取AB 的中点,G 过G 作GH PB ⊥于点,H 连结,.HC GC 则,CG AB ⊥又,,CG PA PAAB A CG ⊥=∴⊥平面.PAB ,HC PB ∴⊥GHC∴∠是二面角A PB C --的平面角. 在Rt PAB ∆中,2,4,AB PB PA ==∴=又Rt BHG ∆∽Rt BAP ∆,,HG BGHG PA PB ∴=∴=. 在Rt HGC ∆中,可求得GC HC =∴=cosGHC ∴∠=故二面角A PB C --………………12分. (注:若(2)、(3)用向量法解题,证线面平行时应说明EF ⊄平面PAD ,否则扣1分;求二面角的余弦值时,若得负值,亦扣1分.)21.解:(Ⅰ)证明:∵E ,F 分别是AB ,PB 的中点, ∴//EF AP .又∵EF 平面PAD ,AP ⊂平面PAD ,∴//EF 平面PAD . (Ⅱ)证明:∵四边形ABCD为正方形,∴AD CD .又∵PD平面ABCD, ∴PD CD,且AD PD D.∴CD平面PAD,又∵PA ⊂平面PAD ,∴CD PA .又∵//EF AP ,∴EF CD ⊥.(Ⅲ)连接,AC DB 相交于O ,连接OF , 则OF ⊥面ABCD ,则OF 为三棱锥FEBC 的高,1122OFPD a ,21112224EBC a S EB BC a a∴B EFC F EBC V V ==211113322224EBC a a S OF a a =. 略 22. (Ⅰ)证明:E ,F 分别是PB ,PC 的中点BC EF //∴ ……………2分AD BC // AD EF //∴⊄EF 平面PAD ,⊂AD 平面PAD∴EF ∥平面PAD ……………4分(Ⅱ) 证明:AB AP = ,E 是PB 的中点PB AE ⊥∴ ……………6分PA ⊥平面ABCDBC PA ⊥∴BC AB ⊥ 且A AB PA =⊥∴BC 平面PAB ……………8分⊂AE 平面PAB BC AE ⊥∴B BC PB =⊥∴AE 平面PBCPC AE ⊥∴ ……………10分23.(2) 、(3)24.(3)、(4); 25.④26.②④。