线性变换二阶矩阵及其乘法
高考数学一轮复习-矩阵与变换课件-新人教A
规律方法 已知 A=ac db,求特征值和特征向量,其步骤为: (1)令 f(λ)=( -λc-(a)λ-d-)b=(λ-a)(λ-d)-bc=0,求出特征 值 λ; (2)列方程组( -λc-x+a) (xλ--db)y=y=0,0; (3)赋值法求特征向量,一般取 x=1 或者 y=1,写出相应的 向量.
y)变成点 A′(13,5),试求 M 的逆矩阵及点 A 的坐标.
解 由 M=21 - -31,得|M|=1, 故 M-1=--11 32.
从
而
由
2 1
-3 -1
x y
=
13 5
得
x y
=
-1 -1
3 2
13 5
=
--11××1133++32××55=-23,故yx==-2,3,∴A(2,-3)为所求.
矩阵 M=2b a1所对应的变换将直线 x-y=1 变换成 x+2y =1,求 a,b 的值. 解 设点(x,y)是直线 x-y=1 上任意一点,在矩阵 M 的作 用下变成点(x′,y′),则2b a1xy=xy′′,
所以xy′′==b2xx++ya.y, 因为点(x′,y′),在直线 x+2y=1 上,所以
①对于特征值 λ1=-1, 解相应的线性方程组x2+ x+y=2y=0,0得一个非零解xy==-1,1. 因此,α=1-1是矩阵 A 的属于特征值 λ1=-1 的一个特征向量; ②对于特征值 λ2=3,解相应的线性方程组2-x-2x2+y=2y0=,0 得一个非零解xy==11., 因此,β=11是矩阵 A 的属于特征值 λ2=3 的一个特征向量.
因此,由 AX=B,同时左乘 A-1,有 A-1AX=A-1B=2-1-3213=-5 7. 即原方程组的解为yx==5-. 7,
1.3二阶方阵的乘法
1
x
O
i
1
x
不难得到:σ • I = σ • ρ. ∴ B E2 = BA 但 E2 ≠A.
矩阵的乘法不满足消去律.
课堂小结
矩阵的乘法满足结合律
(AB)C=A(BC)
矩阵的乘法不满足交换律
一般地,AB≠BA
矩阵的乘法不满足消去律
AB=AC
B=C
BA=CA
B=C
课堂练习
1.从你学过的线性变换中,再举一个例 子,说明矩阵的乘法不满足交换律. 解:A= 2 0 确定的是伸缩变换 01 B= 1 0 确定的是切变变换 21
知识回顾
实数的乘法运算满足那些运算律? 结合律 (ab)c=a(bc) 交换律 ab=ba 消去律 设a≠0,若ab=ac,则b=c;若 ba=ca,则b=c.
思考
类比实数乘法的运算律,二阶 矩阵的乘法满足这些运算律吗?
教学目标
知识与能力
掌握矩阵乘法的性质 会灵活运用矩阵乘法的性质进 行矩阵乘法的运算
=
64
21
-1 3 21
-4 5 = 2 22
A(BC ) = 1 -2 2 1 -1 3 3 1 01 2 1
= 1 -2 0 7 3 1 21
= -4 5 2 22
即:当A = a1 b1 c1 d1 a2 b2
B = c2 d2
a3 b3 C=
c3 d3
性质(结合律)
设A,B,C是任意的三个二阶矩阵,则 A(BC)=(AB)C.
定义
设A是二阶矩阵,n是任意自然数,规定: A0=E2, A1=A, A2=AA1, A3=AA2, …… An=AAn-1,
称An为A的n次方幂.
性质
第二章 矩阵及其运算
或 Ax = 0
否则, 称方程组为非齐次线性方程组. 非齐次线性方程组 否则, 称方程组为非齐次线性方程组. non-homogeneous
转置运算的性质: 转置运算的性质: (1) (AT )T = A;
(3) (λ A)T = λ AT ;
6 May 2012
(2) (A + B T = AT + B T ; )
(4) (AB T = B T AT . )
河北科大理学院
第二章 矩阵及其运算
17
定义7 则称A为对称阵. 定义 若 AT = A, 则称 为对称阵. symmetric matrix 则称A为反对称矩阵. 若 AT = − A, 则称 为反对称矩阵. skew symmetric matrix
第二章 矩阵及其运算 本章内容
矩阵的概念 矩阵的线性运算、乘法、 矩阵的线性运算、乘法、转置及幂运算 逆矩阵, 逆矩阵,矩阵可逆的条件及逆矩阵的求法 矩阵分块法
第二章 矩阵及其运算
2
第4讲 矩阵的概念 讲
一 概念的引入 线性方程组与矩阵
a11 x1 + a12 x2 + L + a1n xn = b1 , a21 x1 + a22 x2 + L + a2 n xn = b2 , LLLLLLLLLLLL a x + a x + L +a x = b mn n m m1 1 m 2 2
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4.3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2, ∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k(k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y24=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′. 又点(x 0,y 0)在椭圆F 上,故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′). 则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M 对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b); ⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34. (1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012,所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1. (2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0). 4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68.(1) 求向量3α+12β在T M 作用下的象;(2) 求向量4M α-5M β.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝ ⎛⎭⎪⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4M α-5M β=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝⎛⎭⎪⎫x +y 2,x +y 2.请使用课时训练(A )第1课时(见活页).。
矩阵的变换与运算矩阵的乘法与逆矩阵
矩阵的变换与运算矩阵的乘法与逆矩阵矩阵的变换与运算:矩阵的乘法与逆矩阵矩阵在数学中扮演着重要的角色,它可以用于描述线性变换或者表示线性系统的方程组。
本文将讨论矩阵的变换与运算,重点介绍矩阵的乘法与逆矩阵两个关键概念。
一、矩阵的乘法(Matrix Multiplication)矩阵的乘法是矩阵运算中的一种基本运算,表示为A * B,其中A 和B分别为两个矩阵。
在进行矩阵乘法时,需要满足乘法的条件:A 矩阵的列数等于B矩阵的行数。
矩阵乘法的计算方法是将A矩阵的每一行与B矩阵的每一列进行内积运算,并将结果填入一个新的矩阵C中。
具体计算过程如下:C[i][j] = A[i][1]*B[1][j] + A[i][2]*B[2][j] + ... + A[i][n]*B[n][j]其中,C[i][j]表示矩阵C中第i行第j列的元素,A[i][k]表示矩阵A 中第i行第k列的元素,B[k][j]表示矩阵B中第k行第j列的元素。
矩阵乘法的重要性在于可以描述线性变换的复合效果,同时也有利于解决线性方程组。
在实际应用中,矩阵乘法广泛运用于计算机图形学、信号处理、最优化等领域。
二、逆矩阵(Inverse Matrix)逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A * B = B * A = I,其中I为单位矩阵。
逆矩阵的存在与否与矩阵的行列式密切相关。
判断矩阵A是否可逆的条件是行列式不等于零,即|A| ≠ 0。
若矩阵A可逆,则可以通过一系列行变换将其转化为单位矩阵,对应的变换矩阵为逆矩阵。
逆矩阵的计算可以使用伴随矩阵法或者初等行变换法。
例如,对于一个2x2的矩阵A:A = [a b][c d]若|A| ≠ 0,即ad - bc ≠ 0,则A的逆矩阵存在,并可表示为:A^-1 = 1/(ad - bc) * [d -b][-c a]逆矩阵的应用广泛,例如求解线性方程组、计算矩阵的行列式与秩、求解微分方程等。
三、矩阵的变换(Matrix Transformation)矩阵的变换是指通过矩阵的乘法,对向量进行线性变换。
高中数学第1课时二阶矩阵二阶矩阵与平面向量的乘法二阶矩阵与线性变换教案新人教A版选修4 (9)
2.2 二项分布一、教学目标:1、知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
2、过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
二、教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
三、教学方法:讨论交流,探析归纳四、教学过程(二)、探析新课:1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n , p ).例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率; (2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)例2.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率例3.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)例4.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?例5.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).(四)、课堂练习:1..十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?2.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.精美句子1、善思则能“从无字句处读书”。
线性变换与二阶矩阵PPT课件
二阶矩阵的逆
总结词
二阶矩阵的逆是一个特殊的矩阵,它与原矩阵相乘等于单位矩阵。
详细描述
二阶矩阵的逆是一个重要的概念,它是一个与原矩阵互为逆元的特殊矩阵。如果一个二阶矩阵与其逆矩阵相乘等 于单位矩阵,则这个逆矩阵是存在的。求逆矩阵的方法有多种,如高斯消元法、伴随矩阵法等。在某些情况下, 如行列式值为零时,矩阵可能没有逆矩阵。
平移矩阵与平移操作
• 平移矩阵:平移矩阵也是二阶矩阵的一种,用于 表示平移操作。其一般形式为
平移矩阵与平移操作
```
| 0 1 ty |
| 1 0 tx |
平移矩阵与平移操作
```
其中,tx和ty分别表示在x轴和y轴方
平移操作:平移操作是指通过平移矩阵
向上的平移距离。
对向量进行变换,使向量在指定的方向
03
线性变换与二阶矩阵的关系
线性变换的矩阵表示
线性变换是数学中的一种重要概念,它描述了一个向量空间 中的向量通过一个线性映射变为另一个向量空间的过程。在 矩阵表示中,线性变换可以用一个矩阵来表示,该矩阵的行 和列分别对应于输入和输出空间的基向量。
线性变换的矩阵表示具有一些重要的性质,例如矩阵乘法对 应于线性变换的复合,矩阵的转置对应于线性变换的共轭, 以及矩阵的逆对应于线性变换的逆。
二阶矩阵与线性变换的转换
二阶矩阵是数学中一种常见的矩阵类型,它由四个数字组成,可以用来表示一个 线性变换。通过选择适当的基向量,可以将一个线性变换转换为二阶矩阵,反之 亦然。
二阶矩阵与线性变换的转换关系是线性的,即对于任意两个线性变换A和B,以及任 意标量k,有kA=AkB=BkA。
二阶矩阵在几何变换中的应用
通过矩阵变换,可以改变向量的长度、方向和位置,从而实现二维空间中的几何变 换。
二阶矩阵乘法
二阶矩阵乘法矩阵(Matrix)又称数字矩形,是一种以数字字符构成的二维表格,是数学中重要的概念。
每一个矩阵都可以表示为一个m*n矩阵,m行n列。
二阶矩阵乘法是计算矩阵乘积的通用方法,它可以直接应用于计算两个矩阵乘积,也可以用于计算更高阶乘积。
一阶矩阵乘法是在二维空间中比较简单的乘法运算,而二阶矩阵乘法则需要处理三维或更高维的数据。
首先,它涉及的操作是将两个二维矩阵的每一个元素相乘,再加总,这样就可以得到一个二维新矩阵。
如果将矩阵A和矩阵B分别表示为$A = begin{bmatrix}a_{11} & a_{12}a_{21} & a_{22}end{bmatrix},B = begin{bmatrix}b_{11} & b_{12}b_{21} & b_{22}end{bmatrix}$,则二阶矩阵乘法的结果为:$C = begin{bmatrix} a_{11} * b_{11} + a_{12} * b_{21} & a_{11} * b_{12} + a_{12} * b_{22}a_{21} * b_{11} + a_{22} * b_{21} & a_{21} * b_{12} + a_{22} * b_{22}end{bmatrix}$有,$C=AB$二阶矩阵乘法的计算其实是一个典型的线性变换的过程,因为结果矩阵的每一个元素都符合线性变换的性质,即每一个元素都是由原矩阵乘以一个常数得到的。
因此,在做二阶矩阵乘法之前,需要了解一些线性变换的概念,例如缩放、位移、旋转等。
在实际应用中,二阶矩阵乘法可以用来计算两个矩阵之间的乘积,也可以用来计算矩阵与向量之间的乘积,甚至可以用来计算更高阶的矩阵乘积。
在工程性计算中,二阶矩阵乘法的应用非常多,例如矩阵运算、图像处理、数据挖掘、推荐系统、机器学习等。
总之,二阶矩阵乘法是一种非常有用的运算方法,它可以用来计算矩阵的乘积,从而帮助我们更好的理解线性变换的原理,也可以用于计算机视觉与机器学习等领域。
高中数学—线性变换与二阶矩阵
绕原点 O 按逆时针旋转 270 和按顺时针旋转 90 的
坐标变换公式以及对应的二阶矩阵. 看看它们有什么
关系?
旋转角为 270 时,
坐标变换公式:
二阶矩阵:
x y
= =
x cos 270 x sin 270 +
ysin ycos
270, 270.
01 -1 0
x y
= =
y, - x.
(二) 变换、矩阵的相等
2. 怎样根据条件求上述变换的变换公式?
2. 反射变换
一般地, 我们把平面上的任意一点 P 对应到它关 于直线 l 的对称点 P 的线性变换叫做关于直线 l 的反 射.
如点 P(x, y) 关于 x 轴的反射 P(x, y), 其反射变
换公式为 x=x,
y P(x, y)
y= -y.
与之对应的二阶矩阵是
-1 0
0 1
.
O
x
练习(补充). 请写出在直角坐标系 xOy 内, 任一 点 P(x, y) 关于直线 x+y=0 的反射变换公式及对应的
【课时小结】
5. 线性变换对应的矩阵
线性变换
x y
= =
ax + by, cx + dy.
对应的矩阵为二阶矩阵
ab c d.
旋转变换
x y
= =
xcosa xsina +
ysina ycosa
, .
对应的矩阵为
cosa sina
-sina cosa
.
(第二课时)
第一课时 第二课时
1. 反射变换、伸缩变换、投影变换、切 变变换分别是怎样的变换?
例3. 设 A= 1 y
1.二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵1.矩阵的概念① =OP → →[23][23]初赛复赛甲8090乙8688③概念一:象 的矩形数字(或字母)阵列称为矩[23]80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列.名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:(仅有一列)[a11a21]⑤向量=(x,y ),平面上的点P (x,y )都可以看成行矩阵或a →[,]x y 列矩阵,在本书中规定所有的平面向量均写成列向量的形式。
x y ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦练习1:1.已知,,若A=B ,试求⎥⎦⎤⎢⎣⎡-=243x A ⎥⎦⎤⎢⎣⎡-=21z y B z y x ,,2.设,,若A=B ,求x,y,m,n 的值。
23x A y ⎡⎤=⎢⎥⎣⎦2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦概念二:由4个数a,b,c,d 排成的正方形数表称为二阶矩阵。
a,b,c,d a b c d ⎡⎤⎢⎥⎣⎦称为矩阵的元素。
①零矩阵:所有元素均为0,即,记为0。
0000⎡⎤⎢⎥⎣⎦②二阶单位矩阵:,记为E 2.1001⎡⎤⎢⎥⎣⎦二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=,与向量的乘积为a b c d ⎡⎤⎢⎥⎣⎦x y α→⎡⎤=⎢⎥⎣⎦23m 3-24—2—3—[80 9086 88]23324x y mz x y z ++=⎧⎨-+=⎩23324m ⎡⎤⎢⎥-⎣⎦,即==ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦A α→a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2:1.(1)=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021(2) =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-3110212.=,求⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x ⎥⎦⎤⎢⎣⎡-11⎥⎦⎤⎢⎣⎡y x 三、二阶矩阵与线性变换1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P在此旋转变换作用下的象。
线性变换、二阶矩阵及其乘法.ppt
4.运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转 45°后所得的直线方程.
解:旋转矩阵 直线2x+y-1=0上任意一点(x0,y0)旋转变换后为(x0′,y0′),
直线2x+y-1=0绕原点逆时针旋转45°后所得的直线
方程是
2x 2 y 2 x 2 y 1 0,
2
2
矩阵. 2.二阶矩阵与二元一次方程组 (1)能用变换与映射的观点认识解线性方程组的意
义.
(2)会用系数矩阵的逆矩阵解线性方程组. (3)理解线性方程组解的存在性、唯一性.
解线性 方程组, 如求逆 矩阵, 另外特 征值与
3.变换的不变量
特征向
(1)掌握矩阵特征值与特征向量的定义,理解特征向 量的求
量的意义.
解:(1)由题设条件, 变换:
即有 解得
代入曲线C的方程为y′2-x′2=2, 所以将曲线C绕坐标原点逆时针旋转45°后,得到的曲线C′ 的方程是y2-x2=2. (2)由(1)知,只需求曲线y2-x2=2的焦点及渐近线,由于a2 =b2=2,故c=2,又焦点在y轴上,从而其焦点为(0,2),(0, -2),渐近线方程为y=±x.
1.旋转变换
直线坐标系xOy内的每个点绕原点O按逆时针方向旋
转α角的旋转变换的坐标变换公式是
对应的二阶矩阵为
.
2.反射变换 平面上任意一点P对应到它关于直线l的对称点P′的线 性变换叫做关于直线l的反射.
3.伸缩变换 在直角坐标系xOy内将每个点的横坐标变为原来的k1 倍,纵坐标变为原来的k2倍,其中k1,k2为非零常数, 这样的几何变换为伸缩变换.
解:(MN)α= M(Nα)= 所以(MN)α=M(Nα). 又因为MN=
NM=
高考数学总复习 第1节 线性变换与二阶矩阵课件 苏教版
在伸压变换之下,直线仍然变为直线,线段仍然变为线段.
(3)反射变换是轴对称变换、中心对称变换的总称.由矩阵
M1
基 础
知
= 01
0 -1
确
定的
变
换
是关于
x
轴的轴反射变换,由矩阵
M2 =
识 梳 理
聚
焦
-1 0
10确定的变换是关于 y 轴的轴反射变换,由矩阵 M3=-01
∴变换作用下得到的点的坐标是(9,-3).
答案:(+9,-3)
基
础
知
2.设04 -32yx=-10,则它表示的方程组为________.
k0(k>0)确定的变换 TM称为(垂直)
课 时 规 范
训
伸压变换,这时称矩阵 M=k0
0或 1
M=10
0伸压变换矩阵. k
练
当 M=k0
0时确定的变换将平面图形作沿 1
x
轴方向伸长或压
基
缩,当 k>1 时伸长,当 0<k<1 时压缩.变换 TM 确定的变换不是简单
范 训 练
定点作中心反射变换.
(5)将一个平面图投影到某条直线(或某个点)的变换称为投影变
换,变换对应的矩阵称为投影变换矩阵,本节中主要研究的是由矩
基
础
阵 M1=10
00,M2=11
00,M3=00
0确定的投影变换.需要注意 1
知 识 梳 理
聚
的是投影变换是映射,但不是一一映射.
础 知 识
梳
地把平面上的点(向量)沿 x 轴方向“向下压”或“向外伸”,它是 x 理
聚
轴方向伸长或压缩,对于 x 轴下方的点向上压缩,对于 x 轴上的点
(教师用书)高考数学一轮总复习 矩阵与变换课时训练 理(选修4-2)-人教版高三选修4-2数学试题
选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(理科专用)1. 求点B(0,1)在矩阵⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤0110表示将图形变换为与之关于直线y =x 对称的反射变换,故点B(0,1)变换得到点坐标B′(1,0).2. 设圆F :x 2+y 2=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一图形F′,试求变换矩阵M 及图形F′的方程.解:因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x +2y y =⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y ,所以M =⎣⎢⎡⎦⎥⎤1201.因为圆上任意一点(x ,y)变换为(x′,y ′)=(x +2y ,y),即⎩⎪⎨⎪⎧x′=x +2y ,y ′=y ,所以⎩⎪⎨⎪⎧x =x′-2y′,y =y′. 因为x 2+y 2=1,所以(x′-2y′)2+y′2=1,即图形F′的方程为(x -2y)2+y 2=1.3. (2014·苏锡常镇二模)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.解:绕原点逆时针旋转90°对应的变换矩阵为⎣⎢⎡⎦⎥⎤0 -11 0.∴⎣⎢⎡⎦⎥⎤a 02 b ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -a b -2. 则由⎣⎢⎡⎦⎥⎤0 -a b -2⎣⎢⎡⎦⎥⎤ 3-1=⎣⎢⎡⎦⎥⎤35,得⎩⎪⎨⎪⎧a =3,3b +2=5, ∴ a =3,b =1.4. 若矩阵M =⎣⎢⎡⎦⎥⎤1101,求直线x +y +2=0在M 对应的变换作用下所得到的曲线方程. 解:设点(x ,y)是直线x +y +2=0上任意一点,在矩阵M 的作用下变换成点(x′,y ′),则⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=x +y ,y ′=y.因为点(x ,y)在直线x +y =-2上,所以x′=x +y =-2,故得到的直线方程为x +2=0.5. (2014·某某二模)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试某某数a 的值.解:设直线l 上任意一点P(x ,y)在矩阵M 作用下的点P′的坐标为(x ′,y′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ a 0-1 2⎣⎢⎡⎦⎥⎤x y ,所以⎩⎪⎨⎪⎧x′=ax ,y ′=-x +2y. 将点P ′(x′,y ′)代入直线l′:x +y -4=0,得(a -1)x +2y -4=0.即直线l 的方程为a -12x +y -2=0.所以a =3.6. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0.在平面直角坐标系中,设直线2x +3y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =[0110][0-11 0]=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x +3y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x +3y +1=0上,从而2x ′+3(-y′)+1=0,即2x′-3y′+1=0.所以曲线F 的方程为2x -3y +1=0.7. (2014·某某)已知矩阵A =⎣⎢⎡⎦⎥⎤-12 1x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x 、y 为实数.若Aα=Bα,求x +y 的值.解:由已知,得Aα=⎣⎢⎡⎦⎥⎤-1 2 1 x ⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤-2+2y 2+xy ,B α=⎣⎢⎡⎦⎥⎤1 12 -1⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤2+y 4-y .因为Aα=Bα,所以⎣⎢⎡⎦⎥⎤-2+2y 2+xy =⎣⎢⎡⎦⎥⎤2+y 4-y .故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y 解得⎩⎪⎨⎪⎧x =-12,y =4.所以x +y =72.8. 变换T 1是逆时针旋转π2的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=⎣⎢⎡⎦⎥⎤1101.求:(1) 点P(2,1)在T 1作用下的点P′的坐标;(2) 函数y =x 2的图象依次在T 1、T 2变换作用下所得的曲线的方程.解:(1) M 1=⎣⎢⎡⎦⎥⎤0-110,M 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤0-110⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-12,所以点(2,1)在T 1作用下的点P′的坐标是(-1,2).(2) M =M 2M 1=⎣⎢⎡⎦⎥⎤1-110,设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任意一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0,则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,也就是⎩⎪⎨⎪⎧x 0-y 0=x ,x 0=y ,则⎩⎪⎨⎪⎧x 0=y ,y 0=y -x , 所以所求曲线的方程是y -x =y 2.9. 已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45°,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.解:这个变换的逆变换是先作关于x 轴反射变换,再作绕原点顺时针旋转45°变换,其矩阵是⎣⎢⎡⎦⎥⎤cos (-45°) -sin (-45°)sin (-45°) cos (-45°)⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎢⎡⎦⎥⎥⎤ 22-22-22 -22. 10. 已知a 、b∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线L :2x -y =3变换为自身,某某数a 、b.解:(解法1:特殊点法)在直线2x -y =3上任取两点(2,1)和(3,3),则⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-2+a 2b +3,即得点(a-2,2b +3) ;⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤33=⎣⎢⎡⎦⎥⎤-3+3a 3b +9,即得点(3a -3,3b +9).将()a -2,2b +3和()3a -3,3b +9分别代入2x -y =3得⎩⎪⎨⎪⎧2(-2+a )-(2b +3)=3,2(-3+3a )-(3b +9)=3,解得⎩⎪⎨⎪⎧a =1,b =-4.(解法2:通法)设P(x ,y)为直线2x -y =3上任意一点,其在M 的作用下变为(x′,y ′),则⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-x +ay bx +3y =⎣⎢⎡⎦⎥⎤x′y′⎩⎪⎨⎪⎧x′=-x +ay ,y ′=bx +3y ,代入2x -y =3,得-(b +2)x +(2a -3)y =3,由题意得⎩⎪⎨⎪⎧-b -2=2,2a -3=-1,解得⎩⎪⎨⎪⎧a =1,b =-4. 11. (2014·某某二模)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2 301对应的变换作用下变为直线l′:x +by =1.(1) 某某数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l 上一点(x ,y)在矩阵A 对应的变换下得点(x′,y ′),则⎣⎢⎡⎦⎥⎤2 30 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′, ∴⎩⎪⎨⎪⎧x′=2x +3y ,y ′=y ,代入直线l′,得2x +(b +3)y =1, ∴ a =2,b =-2.(2) ∵ 点P(x 0,y 0)在直线l 上, ∴ 2x 0+y 0=1.由⎣⎢⎡⎦⎥⎤2 30 1⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=2x 0+3y 0,y 0=y 0, ∴⎩⎪⎨⎪⎧x 0=35,y 0=-15,∴ P ⎝ ⎛⎭⎪⎫35,-15.第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)1. 已知α=⎣⎢⎡⎦⎥⎤21为矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 4属于λ的一个特征向量,某某数a 、λ的值及A 2.解:由条件可知⎣⎢⎡⎦⎥⎤ 1 a -1 4⎣⎢⎡⎦⎥⎤21=λ⎣⎢⎡⎦⎥⎤21,所以⎩⎪⎨⎪⎧2+a =2λ,-2+4=λ,解得a =λ=2.因此A =⎣⎢⎡⎦⎥⎤1 2-1 4,所以A 2=⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤ 1 2-1 4=⎣⎢⎡⎦⎥⎤-1 10-5 14.2. (2014·某某二模)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2、3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.解:由题意知,⎣⎢⎡⎦⎥⎤1 2c d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤42c +d =2⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤1 2c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤3c +d =3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4. 所以A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23 -1316 16. 3. (2014·某某一模)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤1-1,且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤1-1,得⎩⎪⎨⎪⎧a -b =1,c -d =-1. 再由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,得⎩⎪⎨⎪⎧a +b =3,c +d =1. 联立以上方程组解得a =2,b =1,c =0,d =1,故M =⎣⎢⎡⎦⎥⎤2 10 1.4. (2014·某某期末)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,依题意⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤55,且⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,所以⎩⎪⎨⎪⎧a +b =5,c +d =5,-a +2b =-2,-c +2d =4,解得⎩⎪⎨⎪⎧a =4,b =1,c =2,d =3,所以M =⎣⎢⎡⎦⎥⎤4 12 3. 5. 已知二阶矩阵A 有两个特征值1、2,求矩阵A 的特征多项式.解:由特征多项式的定义知,特征多项式是一个首项系数为1的二次三项式.因此不妨设f(λ)=λ2+bλ+c.因为1,2是A 的特征值,所以f(1)=f(2)=0,即1,2是λ2+bλ+c =0的根.由根与系数的关系知:b =-3,c =2,所以f(λ)=λ2-3λ+2.6. 矩阵M =⎣⎢⎡⎦⎥⎤3652有属于特征值λ1=8的一个特征向量e 1=⎣⎢⎡⎦⎥⎤65,及属于特征值λ2=-3的一个特征向量e 2=⎣⎢⎡⎦⎥⎤ 1-1.对向量α=⎣⎢⎡⎦⎥⎤38,计算M 3α.解:令α=m e 1+n e 2,将具体数据代入,有m =1,n =-3,所以a =e 1-3e 2.M 3α=M 3(e 1-3e 2)=M 3e 1-3(M 3e 2)=λ31e 1-3(λ32e 2)=83⎣⎢⎡⎦⎥⎤65-3×(-3)3⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤3 1532 479, 即M 3α=⎣⎢⎡⎦⎥⎤3 1532 479.7. (2014·某某期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.解:(1) 由题意得:Aα=λα⎣⎢⎡⎦⎥⎤2 n m 1⎣⎢⎡⎦⎥⎤12=λ⎣⎢⎡⎦⎥⎤12=2⎣⎢⎡⎦⎥⎤12⎩⎪⎨⎪⎧2+2n =2,m +2=4,解得⎩⎪⎨⎪⎧n =0,m =2. (2) 设A -1=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤a b c d =E =⎣⎢⎡⎦⎥⎤1 00 1,∴⎩⎪⎨⎪⎧2a =1,2b =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =12,b =0,c =-1,d =1,∴A-1=⎣⎢⎢⎡⎦⎥⎥⎤120-11. 8. 利用逆矩阵的知识解方程MX =N ,其中M =⎣⎢⎡⎦⎥⎤5241,N =⎣⎢⎡⎦⎥⎤5-8.解:设M -1=⎣⎢⎡⎦⎥⎤x y z w ,⎣⎢⎡⎦⎥⎤5241⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤5x +2z 5y +2w 4x +z 4y +w =⎣⎢⎡⎦⎥⎤1001,⎩⎪⎨⎪⎧5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解得⎩⎪⎪⎨⎪⎪⎧x =-13,y =23,z =43,w =-53,所以M-1=⎣⎢⎢⎡⎦⎥⎥⎤-132343-53. 可得X =M-1N =⎣⎢⎢⎡⎦⎥⎥⎤-132343-53⎣⎢⎡⎦⎥⎤ 5-8=⎣⎢⎡⎦⎥⎤-720. 所以原方程的解为⎣⎢⎡⎦⎥⎤-720.9. (2014·某某二模)已知矩阵A =⎣⎢⎡⎦⎥⎤ak 01(k≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).某某数a 、k 的值.解:设特征向量为α=⎣⎢⎡⎦⎥⎤k -1,对应的特征值为λ,则⎣⎢⎡⎦⎥⎤a k 0 1⎣⎢⎡⎦⎥⎤ k -1=λ⎣⎢⎡⎦⎥⎤k -1,即⎩⎪⎨⎪⎧ak -k =λk,λ=1. 因为k≠0,所以a =2.因为A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤11,所以A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31, 即⎣⎢⎡⎦⎥⎤2 k 0 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,所以2+k =3,解得k =1. 综上,a =2,k =1.10. 设M 是把坐标平面上点的横坐标不变、纵坐标沿y 方向伸长为原来5倍的伸压变换.求:(1) 直线4x -10y =1在M 作用下的方程; (2) M 的特征值与特征向量.解:(1) M =⎣⎢⎡⎦⎥⎤1005.设(x′,y ′)是所求曲线上的任意一点,⎣⎢⎡⎦⎥⎤1005⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以{x′=x ,y ′=5y ,得⎩⎪⎨⎪⎧x =x′,y =15y′,代入4x -10y =1,得4x′-2y′=1, 所以所求曲线的方程为4x -2y =1. (2) 矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-100λ-5=(λ-1)(λ-5).令f(λ)=0,解得λ1=1,λ2=5.当λ1=1时,由Mα1=λ1α1,得特征向量α1=⎣⎢⎡⎦⎥⎤10;当λ2=5时,由Mα2=λ2α2,得特征向量α2=⎣⎢⎡⎦⎥⎤01.11. (2014·苏锡常镇一模)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β. 解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤1-1.令β=m α1+n α2,得m =4,n =-3.M 6β=M 6(4α1-3α2)=4(M 6α1)-3(M 6α2)=4×36⎣⎢⎡⎦⎥⎤11-3(-1)6⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤2 9132 919.。
矩阵知识点归纳
矩阵知识点归纳(一)二阶矩阵与变换1.线性变换与二阶矩阵在平面直角坐标系xOy中,由错误!(其中a,b,c,d是常数)构成的变换称为线性变换.由四个数a,b,c,d排成的正方形数表错误!称为二阶矩阵,其中a,b,c,d称为矩阵的元素,矩阵通常用大写字母A,B,C,…或(aij)表示(其中i,j分别为元素aij所在的行和列).2.矩阵的乘法行矩阵[a11a12]与列矩阵错误!的乘法规则为[a11a12]错误!=[a11b11+a12b21],二阶矩阵错误!与列矩阵错误!的乘法规则为错误!错误!=错误!.矩阵乘法满足结合律,不满足交换律和消去律.3.几种常见的线性变换(1)恒等变换矩阵M=错误!;(2)旋转变换Rθ对应的矩阵是M=错误!;(3)反射变换要看关于哪条直线对称.例如若关于x轴对称,则变换对应矩阵为M1=错误!;若关于y轴对称,则变换对应矩阵为M2=错误!;若关于坐标原点对称,则变换对应矩阵M3=错误!;(4)伸压变换对应的二阶矩阵M=错误!,表示将每个点的横坐标变为原来的k1倍,纵坐标变为原来的k2倍,k1,k2均为非零常数;(5)投影变换要看投影在什么直线上,例如关于x轴的投影变换的矩阵为M=错误!;(6)切变变换要看沿什么方向平移,若沿x轴平移|ky|个单位,则对应矩阵M=错误!,若沿y轴平移|kx|个单位,则对应矩阵M=错误!.(其中k为非零常数).4.线性变换的基本性质设向量α=错误!,规定实数λ与向量α的乘积λα=错误!;设向量α=错误!,β=错误!,规定向量α与β的和α+β=错误!.(1)设M是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M(λα)=λMα,②M(α+β)=Mα+Mβ.(2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).(二)矩阵的逆矩阵、特征值与特征向量1.矩阵的逆矩阵(1)一般地,设ρ是一个线性变换,如果存在线性变换σ,使得σρ=ρσ=I,则称变换ρ可逆.并且称σ是ρ的逆变换.(2)设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA=AB=E,则称矩阵A可逆,或称矩阵A是可逆矩阵,并且称B是A的逆矩阵.(3)(性质1)设A是一个二阶矩阵,如果A是可逆的,则A的逆矩阵是唯一的.A的逆矩阵记为A-1.(4)(性质2)设A,B是二阶矩阵,如果A,B都可逆,则AB也可逆,且(AB)-1=B-1A-1.(5)已知A,B,C为二阶矩阵,且AB=AC,若矩阵A存在逆矩阵,则B=C.(6)对于二阶可逆矩阵A=错误!(ad-bc≠0),它的逆矩阵为A-1=错误!.2.二阶行列式与方程组的解对于关于x,y的二元一次方程组错误!我们把错误!称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=错误!=ad-bc.若将方程组中行列式错误!记为D,错误!记为Dx,错误!记为Dy,则当D≠0时,方程组的解为错误!3.二阶矩阵的特征值和特征向量(1)特征值与特征向量的概念设A是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A的一个特征值,α称为A的一个属于特征值λ的一个特征向量.(2)特征多项式设λ是二阶矩阵A=错误!的一个特征值,它的一个特征向量为α=错误!,则A错误!=λ错误!,即错误!也即错误!(*)定义:设A=错误!是一个二阶矩阵,λ∈R,我们把行列式f(λ)=错误!=λ2-(a+d)λ+ad-bc称为A的特征多项式.(3)矩阵的特征值与特征向量的求法如果λ是二阶矩阵A的特征值,则λ一定是二阶矩阵A的特征多项式的一个根,即f(λ)=0,此时,将λ代入二元一次方程组(*),就可得到一组非零解错误!,于是非零向量错误!即为A的属于λ的一个特征向量.所有变换矩阵单位矩阵:1001M⎡⎤=⎢⎥⎣⎦,点的变换为(,)(,)x y x y→伸压变换矩阵:01kM⎡⎤=⎢⎥⎣⎦:1k>,将原来图形横坐标扩大为原来k倍,纵坐标不变01k<<,将原来图形横坐标缩小为原来k倍,纵坐标不变点的变换为(,)(,)x y kx y→10Mk⎡⎤=⎢⎥⎣⎦:1k>,将原来图形纵坐标扩大为原来k倍,横坐标不变01k<<,将原来图形纵坐标缩小为原来k倍,横坐标不变点的变换为(,)(,)x y x ky→反射变换:1001M⎡⎤=⎢⎥-⎣⎦:点的变换为(,)(,)x y x y→-变换前后关于x轴对称1001M-⎡⎤=⎢⎥⎣⎦:点的变换为(,)(,)x y x y→-变换前后关于y轴对称1001M-⎡⎤=⎢⎥-⎣⎦:点的变换为(,)(,)x y x y→--变换前后关于原点对称0110M⎡⎤=⎢⎥⎣⎦:点的变换为(,)(,)x y y x→变换前后关于直线y x=对称旋转变换:cos sin sin cos M θθθθ-⎡⎤=⎢⎥⎣⎦:逆时针090:0110M -⎡⎤=⎢⎥⎣⎦;顺时针090:0110M ⎡⎤=⎢⎥-⎣⎦旋转变化矩阵还可以设为:a b M b a -⎡⎤=⎢⎥⎣⎦ 投影变换:1000M ⎡⎤=⎢⎥⎣⎦:将坐标平面上的点垂直投影到x 轴上 点的变换为(,)(,0)x y x →0001M ⎡⎤=⎢⎥⎣⎦:将坐标平面上的点垂直投影到y 轴上 点的变换为(,)(0,)x y y →1010M ⎡⎤=⎢⎥⎣⎦:将坐标平面上的点垂直于x 轴方向投影到y x =上 点的变换为(,)(,)x y x x →0101M ⎡⎤=⎢⎥⎣⎦:将坐标平面上的点平行于x 轴方向投影到y x =上 点的变换为(,)(,)x y y y →11221122M ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦:将坐标平面上的点垂直于y x =方向投影到y x =上 点的变换为(,)(,)22x y x y x y ++→ 切变变换:101k M ⎡⎤=⎢⎥⎣⎦:把平面上的点沿x 轴方向平移||ky 个单位 点的变换为(,)(,)x y x ky y →+101M k ⎡⎤=⎢⎥⎣⎦:把平面上的点沿y 轴方向平移||kx 个单位 点的变换为(,)(,)x y x kx y →+。
1.1线性变换与二阶矩阵课件人教新课标2
o
p' x
例3 如图,在直角坐标系xoy内,过任意一点P作x轴的垂线,垂足为点P',
我们称点P'为点P在x轴上的(正)投影.如果一个变换把直角坐标系内的每
一点变成它在x轴上的(正)投影,那么称这个变换为关于x轴的(正)
投影变换.
设在关于 x轴的(正)投影变换的 作用下,点 P(x, y)变成点P(' x', y'),
例2 在直角坐标系xoy内,将每一点的纵坐标变为
原来的2倍,横坐标保持不变. (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵; (2)求点A(1,1)在该伸缩变换作用下的像A'.
解:(1)设在这个伸缩变换作用下,直角坐标系xoy内的
任意一点P(x, y)变成点P' (x', y' ),则x' x, y' 2 y.
因此,所求的坐标变换公式为xy''
x, 2 y.
从而,对应的二阶矩阵为10 02;
(2)将点A(1,1)的坐标代入坐标变换公 式,得
x' 1,
y
'
2 (1)
2.
从而A'的坐标为 (1,2).
一般地,在直角坐标系xoy内,将每个点的纵坐标变为原来 的k倍(k是非零常数),横坐标保持不变的线性变换,其变换公式是
0 -1
1 0
.
因此,这两个旋转变换的坐标变换公式及对应的二阶
矩阵是分别相同的.这时我们称这两个旋转变换相等.
一般地,设,是同一个直角坐标平面内的两个线性变换.如果 对平面内的任意一点P,都有 (P) (P),则称这两个线性变换 相等,简记为 .
设,所对应的二阶矩阵分别为A
二阶矩阵乘法公式
二阶矩阵乘法公式在线性代数中,矩阵乘法是一项基本的运算。
对于二阶矩阵乘法而言,有一个简明的公式可以用来计算结果。
本文将详细介绍这一公式,帮助读者理解二阶矩阵乘法的计算过程及其应用。
一、二阶矩阵的定义与表示方法在开始讨论二阶矩阵乘法公式之前,我们首先来了解一下二阶矩阵的定义与表示方法。
一个二阶矩阵包含有两行两列的元素,可以用以下形式表示:A = [a b][c d]其中,a、b、c、d为矩阵A的元素,它们可以是实数或复数。
同样地,我们也可以用类似的形式表示另一个二阶矩阵B:B = [e f][g h]二、二阶矩阵乘法公式在进行二阶矩阵乘法时,我们需要按照特定的计算规则进行运算。
按照矩阵乘法的定义,结果矩阵C的元素可以通过以下公式计算:C = A * B其中,C的第一行第一列的元素等于A的第一行与B的第一列对应元素的乘积之和,即:C11 = a * e + b * g同样地,C的第一行第二列的元素等于A的第一行与B的第二列对应元素的乘积之和,即:C12 = a * f + b * h接下来,我们继续计算C的第二行两列的元素。
C的第二行第一列的元素等于A的第二行与B的第一列对应元素的乘积之和,即:C21 = c * e + d * g最后,C的第二行第二列的元素等于A的第二行与B的第二列对应元素的乘积之和,即:C22 = c * f + d * h综上所述,根据二阶矩阵乘法公式,我们可以得到二阶矩阵乘法的结果矩阵C的所有元素。
这个公式既简单又易于理解,是进行二阶矩阵乘法计算的基础。
三、二阶矩阵乘法的应用二阶矩阵乘法在实际问题中有着广泛的应用。
例如,在图像处理领域中,可以利用二阶矩阵乘法对图像进行变换和处理。
另外,二阶矩阵乘法还与线性变换、线性方程组、概率论等领域有着紧密的联系。
四、结论本文介绍了二阶矩阵乘法的公式及其应用。
通过理解并掌握这一公式,读者可以更好地理解矩阵乘法的计算过程,并在实际问题中灵活运用。
选修4-2矩阵与变换知识点讲解
四、简单应用
1.设矩阵A=,求点P(2,2)在A所对应的线性变换下的象。
练习:P13 1.2.3.4.5
【第一讲.作业】
1.关于x轴的反射变换对应的二阶矩阵是
2.在直角坐标系下,将每个点绕原点逆时针旋转120o的旋转变换对应的二阶矩阵是
3.如果一种旋转变换对应的矩阵为二阶单位矩阵,则该旋转变换是
4.平面内的一种线性变换使抛物线的焦点变为直线y=x上的点,则该线性变换对应的二阶矩阵可以是
5.平面上一点A先作关于x轴的反射变换,得到点A1,在把A1绕原点逆时针旋转180o,得到点A2,若存在一种反射变换同样可以使A变为A2,则该反射变换对应的二阶矩阵是
6.P(1,2)经过平行于y轴的切变变换后变为点P1(1,-5),则该切变变换对应的坐标公式为
7. 设,,且A=B.则x=
8.在平面直角坐标系中,关于直线y=-x的正投影变换对应的矩阵为
9.在矩阵对应的线性变换作用下,点P(2,1)的像的坐标为
12. 13. 14.y=-2x(-2≤x≤2)、y=0(-2≤x≤2)、 15. =
第三讲 矩阵乘法的性质·逆变换、逆矩阵
二、矩阵乘法的性质
1.设A=,B=,C=由A、B、C研究矩阵是否满足,①结合律;②交换律;③消去律。
结论:
2.由结合律研究矩阵A的乘方运算。
3.单位矩阵的性
第二讲 线性变换的性质·复合变换与二阶矩阵的乘法
一、数乘平面向量与平面向量的加法运算
1.数乘平面向量:设,是任意一个实数,则
2.平面向量的加法:设,,则
性质1:设A是一个二阶矩阵,是平面上的任意两个向量,是任意一个实数,则①数乘结合律:;②分配律:
1.二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵 1.矩阵的概念①OP → =→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3⎣⎢⎡⎦⎥⎤2 3③概念一: 象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 (仅有一列)⑤向量a →=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。
练习1: 1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21zy B ,若A=B ,试求z y x ,, 2.设23x A y ⎡⎤=⎢⎥⎣⎦,2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦,若A=B ,求x,y,m,n 的值。
概念二: 由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵。
a,b,c,d 称为矩阵的元素。
①零矩阵:所有元素均为0,即0000⎡⎤⎢⎥⎣⎦,记为0。
②二阶单位矩阵:1001⎡⎤⎢⎥⎣⎦,记为E 2. 二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为— 2 — 3— ⎣⎡⎦⎤80 9086 88 231,3242x y m z x y z ++=⎧⎨-+=⎩简记为23324m ⎡⎤⎢⎥-⎣⎦ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2: 1.(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021= (2) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-311021= 2.⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-11,求⎥⎦⎤⎢⎣⎡y x三、二阶矩阵与线性变换 1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。
高中数学— 二阶矩阵与平面向量的乘法
b,
c,
d 均为常数), 记 i 1 , j 0 , 求 A0, Ai, Aj.
0
1
解: A0
a c
b d
0 0
0 0
.
Ai a c
b d
1 0
a c
.
Aj a c
b d
0 1
b d
.
5. 设矩阵 M 对应的线性变换把点 A(1, 2) 变成点 A(2, 3), 把点 B(-1, 3) 变成点 B(2, 1), 那么这个线 性变换把点 C(-2, 3)变成什么?
3 2 1
-
1 2
3
22
点 P(x, y),
A(
3 2
,
1 2
),
B(2, -1) 经过旋转变换 R30
的像: OP A OP
3 2
-
1 2
13
22
x y
3
2
1 2
x
x
-
1 2
3
2
y y
.
OA A OA
3 2 1 2
-
1 2
3
2
3 2 1 2
1 2 3 2
.
如: A R30
二阶矩阵中的常数是 x, y 的系数, 则乘积中没有
单独的常数项.
2.
设 A
1 -1
0 1
,
a1
2 3
,
a2
-1 1
,
a
x y
,
求
Aa1, Aa2, Aa.
解:
Aa1
1 -1
0 1
2 3
2 1
.
Aa2
1 -1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法也是
4.利用矩阵A的特征值、特征向量给出Anα简单的表 常考知
示,并能用来解决问题.
识点.
一、二阶矩阵的定义
1.由4个数a,b,c,d排成的正方形数表_______ 称为
二阶矩阵.
2.元素全为0的二阶矩阵_______称为零矩阵,简记为
_ .矩阵
称为二阶单位矩阵,记为 .
二、几种特殊线性变换
知识点
考纲下载
考情上 线
1.了解二阶矩阵的概念.
2.二阶矩阵与平面向量的乘法、平面图形
选考内
的变换.
容在高
(1)了解矩阵与向量的乘法的意义,会用映射与 考中将
变换的观点看待二阶矩阵与平面向量的乘法. 以解答
线性变 (2)理解矩阵变换把平面上的直线变成直线(或点), 题的形
换、二 即A(λ1α+λ2β)=λ1Aα+λ2Aβ.
4.投影变换 设l是平面内一条给定的直线,对平面内的任意一点P 作直线l的垂线,垂足为点P′,则称点P′为点P在直 线l上的投影,将平面上每一点P对应到它在直线l上的 投影P′,这个变换称为关于直线l的投影变换.
5.切变变换 平行于x轴的切变变换对应的二阶矩阵为________,
平行于y轴的切变变换对应的二阶矩阵为_______ .
=M(NP)=(MP)N.
已知M= 矩阵X,使MX=N.
,求二阶
求二阶矩阵可先设出二阶矩阵X,根据矩阵乘法法 则,应用待定系数法求解.
解:设X=
,按题意有
根据矩阵乘法法则有
解之得
1.若
,试求x的值.
解:
3x 1, x 1 . 3
伸缩、反射、切变变换这三种几何变换称为初等变 换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以 看出,矩阵的乘法对应于变换的复合,一一对应的平面变 换都可以看作这三种初等变换的一次或多次的复合.
解:(MN)α= M(Nα)= 所以(MN)α=M(Nα). 又因为MN=
NM=
,所以MN≠NM.
2.求圆C:x2+y2=4在矩阵A= 曲线方程,并判断曲线的类型.
对应变换作用下的
解:设P(x,y)是圆C:x2+y2=4上的任一点,P1(x′,y′)是P(x,
y)在矩阵A=
对应变换作用下新曲线上的对应点,则
将
代入x2+y2=4,得 +y′2=4,∴方程
1表示的曲线是焦点为(±2 ,0),长轴长为8的椭圆.
3.设a,b∈R,若M=
所定义的线性变换把直线l:
2x+y-7=0变换成另一直线l′:x+y-7=0,求a,b
的值.
解:取直线l:2x+y-7=0上任一点(x0,7-2x0),则它在对 应的变换作用下有 而点(ax0,-x0+7b-2bx0)在直线l′: x+y-7=0上, 即ax0-x0+7b-2bx0=7.由x0的任意性得
积为向量________,记为 Aa 或
,即
这是矩阵
与向量 的乘法.
五、线性变换的基本性质 性质1.设A是一个二阶矩阵,α,β是平面上的任意两个 向量,λ是一个任意实数,则
(1)A(λα)= λAα ; (2)A(α+β)= Aα+Aβ.
性质2.二阶矩阵对应的变换(线性变换)把平面上的直线 变成_直__线__(__或__一__点__)_. 定理:设A是一个二阶矩阵,α,β是平面上的任意两个 向量,λ1,λ2是任意两个实数,则 A(λ1α+λ2β)=λ1Aα+λ2Aβ.
六、二阶矩阵的乘法
1.设A=
则
AB=
2.对直角坐标系xOy内的任意向量α,有A(Bα)= (AB).a 3.二阶矩阵的乘法满足结合律,即(AB)C=(AB)C . 4.AkAl=_A_k_+l,(Ak)l=Akl.
1.已知矩阵M=
向量α=
断 (MN)α与M(Nα)的关系,MN与NM的关系.
,试判
式出现,
阶矩阵 (3)了解几种常见的平面变换:恒等变换、伸缩变 难度不
及其乘 换、反射变换、旋转变换、投影变换、切变变 大,二
法
换.
阶矩阵
3.变换的复合——二阶矩阵的乘法
及其乘
(1)了解矩阵与矩阵的乘法的意义.
法是高
(2)理解矩阵乘法不满足交换律.
考的热
(3)会验证二阶矩阵乘法满足结合律.
点.
(4)理解矩阵 乘法不满足消去律.
三、变换、矩阵的相等 1.设σ,ρ是同一直角坐标平面内的两个线性变换,如果
对平面内的任意一点P,都有 σ(P)=ρ(P) ,则称这 两个线性变换相等. 2.对于两个二阶矩阵A与B,如果它们的_对__应__元__素__都分 别相等,则称矩阵A与矩阵B相等,记作A=B.
四、矩阵与向量的乘法 设A=
规定二阶矩阵A与向量α的乘
在直角坐标系中,已知△ABC的顶点坐标为A(0,0)、 B(1,1)、C(0,2),求△ABC在矩阵MN作用下变换所得到的图 形的面积.这里M=
1.旋转变换
直线坐标系xOy内的每个点绕原点O按逆时针方向旋
转α角的旋转变换的坐标变换公式是
对应的二阶矩阵为
.
2.反射变换 平面上任意一点P对应到它关于直线l的对称点P′的线 性变换叫做关于直线l的反射.
3.伸缩变换 在直角坐标系xOy内将每个点的横坐标变为原来的k1 倍,纵坐标变为原来的k2倍,其中k1,k2为非零常数, 这样的几何变换为伸缩变换.
知识点
考纲下载
考情上 线
1.逆矩阵与二阶行列式
本部分
(1)理解逆矩阵的意义,懂得逆矩阵可能不存在. 内容将
(2)理解逆矩阵的唯一性和(AB)-1=B-1A-1等简单 以考查
性质,了解其在变换中的意义.
矩阵的
(3)了解二阶行列式的定义,会用二阶行列式求逆 运算及
逆变换 与逆矩 阵、矩 阵的特 征向量
矩阵. 2.二阶矩阵与二元一次方程组 (1)能用变换与映射的观点认识解线性方程组的意
义.
(2)会用系数矩阵的逆矩阵解线性方程组. (3)理解线性方程组解的存在性、唯一性.
解线性 方程组, 如求逆 矩阵, 另外特 征值与
3.变换的不变量
特征向
(1)掌握矩阵特征值与特征向量的定义,理解特征向 量的求
量的意义.
4.运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转 45°后所得的直线方程.
解:旋转矩阵 直线2x+y-1=0上任意一点(x0,y0)旋转变换后为(x0′,y0′),
直线2x+y-1=0绕原点逆时针旋转45°后所得的直线
方程是 2x 2 y 2 x 2 y 1 0, 22
即
1.二阶方阵的运算关键是记熟运算法则. 2.注意运算时运算律的应用,它满足结合律即(MN)P