时间序列的小波分析.doc
小波分析程序范文
小波分析程序范文小波分析是一种将时间序列数据分解为不同频率成分的方法,它适用于各种信号处理、统计分析和模式识别问题。
以下是一个简单的小波分析程序的示例。
```pythonimport numpy as npimport matplotlib.pyplot as pltimport pywt#生成示例信号n=1000x = np.linspace(0, 8 * np.pi, n)y = np.sin(4 * x) + np.sin(7 * x)#进行小波分析wavelet = 'db4'level = pywt.dwt_max_level(n, wavelet)coeffs = pywt.wavedec(y, wavelet, level=level)#绘制小波系数图plt.figure(figsize=(10, 6))for i in range(level + 1):plt.subplot(level + 1, 1, i + 1)plt.plot(coeffs[i])plt.ylabel(f'Level {i}')plt.xlabel('Sample')plt.tight_layoutplt.show```上述程序使用`numpy`生成了一个示例信号`y`,其中包含两个频率成分为4和7的正弦波。
然后使用`pywt`库进行小波分析,其中`wavelet`参数指定了小波基函数的类型,`level`参数使用`pywt.dwt_max_level(`函数动态计算出小波分解的层数。
最后,使用`matplotlib`绘制了各个小波系数的图像。
运行上述程序,可以得到小波系数的图像,其中横轴表示样本点的索引,纵轴表示小波系数的数值。
不同的子图对应不同的小波分解层级,从低频到高频依次排序。
通过观察小波系数图,可以分析信号的频率成分特征。
小波分析作为一种信号分解方法,可以帮助我们更好地理解和处理时间序列数据。
时间序列的小波分析
时间序列的小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
GPS时间序列小波相干分析_曲国庆
第35卷第3期煤 炭 学 报Vol .35 No .3 2010年3月JOURNAL OF CH I N A COAL S OC I ETYMar . 2010 文章编号:0253-9993(2010)03-0463-04GPS 时间序列小波相干分析曲国庆,苏晓庆(山东理工大学建筑工程学院,山东淄博 255049)摘 要:利用小波变换的多尺度时频分析特点,将小波变换与相干分析相结合构成小波相干分析,获取信号的幅值和相位信息,研究相干性随时间变化的特征,探测Fourier 相干无法探测的特征信息,并将其应用于山东GPS 地壳运动网络数据,分析2个基准站不同方向上各频率成分的共变规律。
仿真试验和实测数据分析说明,小波相干是分析两列信号相互依赖关系,尤其是探测相干瞬时变化的有效方法。
关键词:GPS;小波相干;Fourier 相干;功率谱密度中图分类号:P22814 文献标志码:A收稿日期:2009-09-06 责任编辑:常 琛 基金项目:山东省自然科学基金资助项目(2004XZ31);国家“927”专项单项六子项(2009AA121405);山东理工大学自然科学基金资助项目(2006KJ M07) 作者简介:曲国庆(1962—),男,山东莱阳人,教授。
E -mail:qgq@sdut 1edu 1cnW avelet coherence ana lysis for GPS ti m e ser i esQU Guo 2qing,S U Xiao 2qing(School of A rchitecture Engineering,Shandong U niversity of Technology,Z ibo 255049,China )Abstract:W avelet coherence,combining wavelet transf or m ,of which t ook advantage of multires oluti on ti m e 2frequency analysis,and Fourier analysis,obtained the amp litude and phase infor mati on i m p lying in signals,and studied the fea 2ture of how the coherence changing with ti m e .So it could detect feature inf or mati on that Fourier coherence couldn ’t,that could be p r oved in the si m ulati on test .Then wavelet coherence was app lied t o Shandong GPS crustal move ment net w ork ti m e series,and covariati on rules of month 2peri od,seas on 2peri od and half 2year 2peri od components in different directi ons bet w een t w o stati ons was summarized res pectively as well .Both the si m ulati on test and measured data analy 2sis show that wavelet coherence is an effective method t o analyze the interdependence bet w een t w o ti m e series,t o de 2tect the transient changes of coherent in particular .Key words:GPS;wavelet coherence;Fourier coherence;power s pectral density 在假设随机平稳的基础上,Fourier 相干分析可以通过计算两列信号频谱的相关性,分析其线性关系,完全依赖于Fourier 变换[1-2]。
小波分析简述
第一篇:小波分析发展历史简述1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。
1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。
1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。
1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。
1974年,Coifman实现了对一维空间和高维空间的原子分解。
1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。
1981年,Stromberg引入了Sobolev空间Hp的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。
1981年,法国地球物理学家Morlet提出了小波的正式概念。
1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。
1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。
1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。
1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。
Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。
1988年,Daubechies在美国NSF/CBMS 主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。
小波分析在径流时间序列预测的应用
径 流 预 测 的 准 确 性 是 水 文 系 统 的 重 要 研 究 课 题 , 着 我 国 国 民 经 济 的 高 速 发 展 , 技 水 平 的 日益 提 高 , 随 科 人 们对 径 流 的预测 精度要 求 越来越 高 . 由于 受 降雨 、 候 、 温 、 发 、 类 活 动 等 大 量 不 确 定 性 和 复 杂 性 因 素 影 气 气 蒸 人 响 , 川 径 流具有 高度 非线 性 、 变 、 确 定等 特性 , 且 对参 数 极端 敏 感 , 流预 测成 为 水 电 能源 优 化理 论 研 河 时 不 并 径 究 的 热 点 . 流 预 测 多 采 用 多 因 子 综 合 预 测 , 分 析 要 素 与 前 期 多 因 子 之 间 的 统 计 相 关 关 系 , 后 用 数 理 统 径 即 然
算 ; 过小 波分 析建 立合 适 的小波模 型用 于 预报 - J 通 . .
本 文 针 对 径 流 时 间 序 列 数 据 的 产 生 过 程 的 随 机 性 、 较 强 的 非 线 性 等 特 点 , 用 d y小 波 变 换 和 d 4小 有 应 me b
波变换 将不 同的径 流时 间序列 分解 为不 同 尺度 的高频 信号 和 低频 信 号 , 利 用 对被 分 解 的子 序 列分 别 使 用传 再
5 50 ; 4 0 5
5 50 ) 4 0 1
(. 1 武汉 理工大学 信 息工程学院 , 湖北 武汉 4 0 7 ;. 3 0 02 柳州师范高等专科学校 物理与信息科学系 , 广西 柳州
3 柳州市水文水资源局 , . 广西 柳州
小波分析-经典解读
时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
(完整word版)时间序列的小波分析及等值线图、小波方差制作
时间序列的小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2)式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
《结合小波分析的非平稳时间序列预测方法研究》范文
《结合小波分析的非平稳时间序列预测方法研究》篇一一、引言在时间序列分析中,非平稳时间序列预测是一项重要的研究内容。
由于传统的时间序列分析方法大多基于平稳性假设,因此对于非平稳时间序列的预测效果并不理想。
近年来,随着小波分析理论的发展和应用领域的扩展,越来越多的研究者开始关注其对于非平稳时间序列的预测性能。
本文将就如何将小波分析结合到非平稳时间序列预测方法中进行探讨和研究,并提出一种基于小波变换的非平稳时间序列预测模型。
二、小波分析概述小波分析是一种信号处理技术,其核心思想是通过使用一系列小波基函数来描述和分析信号。
小波分析具有多尺度、多分辨率的特点,可以有效地捕捉到信号中的局部特征和变化趋势。
在非平稳时间序列预测中,小波分析可以通过对时间序列进行多尺度分解,提取出不同频率成分的信号特征,从而为预测提供更多的信息。
三、非平稳时间序列预测的挑战非平稳时间序列的预测相较于平稳时间序列更为复杂。
由于非平稳时间序列的统计特性会随着时间的变化而变化,传统的基于平稳性假设的时间序列预测方法难以捕捉到这种变化趋势。
此外,非平稳时间序列中的突变点、趋势和周期性等因素也增加了预测的难度。
因此,如何设计一种能够适应非平稳特性的预测模型成为了研究的关键。
四、基于小波变换的非平稳时间序列预测模型为了解决非平稳时间序列预测的问题,本文提出了一种基于小波变换的预测模型。
该模型首先对原始时间序列进行多尺度小波分解,将不同频率成分的信号分离出来。
然后,针对每个频率成分的信号,使用相应的模型进行预测。
最后,将各个频率成分的预测结果进行重构,得到最终的预测结果。
在具体实现上,我们可以选择合适的小波基函数(如Haar小波、Daubechies小波等),并确定适当的分解层数。
然后,通过小波变换将时间序列分解为多个子序列,每个子序列对应一个特定的频率范围。
接着,针对每个子序列,我们可以使用传统的预测模型(如ARIMA模型、SVM模型等)或者设计新的模型进行预测。
基于小波变换的时间序列预测
基于⼩波变换的时间序列预测本⽂的主题是考察⼩波变换在预测⽅⾯的应⽤。
思路将数据序列进⾏⼩波分解,每⼀层分解的结果是上次分解得到的低频信号再分解成低频和⾼频两个部分。
如此进过N层分解后源信号X被分解为:X = D1 + D2 + ... + DN + AN 其中D1,D2,...,DN分别为第⼀层、第⼆层到等N层分解得到的⾼频信号,AN为第N层分解得到的低频信号。
本⽂⽅案为对D1,D2...DN和AN分别进⾏预测,然后进⾏⼩波重构实现对源信号的预测。
步骤如下:(1)对原序列进⾏⼩波分解,得到各层⼩波系数;(2)对各层⼩波系数分别建⽴ ARMA 模型,对各层⼩波系数进⾏预测;(3)⽤得到的预测⼩波系数重构数据。
⼀、分解选取数据为A股2014-01-01到2016-04-21数据,最后10天数据⽤来预测。
其余数据⽤于建模。
⼩波函数取db4,分解层数为2。
对数据进⾏分解⼆、对各层系数建⽴ARMA模型并重构imageimageimage接着,⽬标为预测最后10个数据,我们得求出每个⼩波系数ARMA模型需要预测多少步。
⽅法就是查看所有数据⼩波分解后的系数个数并求出差值,具体如下:imageimage三、预测的结果imageimage从上⾯结果可以看出,模型对未来3天预测精度较⾼,在 1%(正负)以内。
不妨把代码打包为函数,进⾏多次检验imageimageimageimageimageimageimageimageimageimage对照⾛势图可以看出:(1)在12年5⽉份,13年5、6⽉份,14年5⽉份, 模型预测的效果在短期内表现不错。
对⽐整体⾛势图可以发现,这些时间段股市总体较为“平缓”。
(2)在15年5⽉、8⽉,预测效果急剧下降。
这两个阶段分别为⽜市上升期和急速下跌期。
另外14年7⽉份的下跌期预测精度也下降了(3)在振荡较频繁的时期15年12⽉、16年3⽉,预测精度也不如之前⾼。
四、结论在股市较“平稳”的时候,基于预测模型在短期有着较⾼的预测精度;当股市处于快速变化时,模型预测精度下降;另⼀⽅⾯,模型还有很⼤改进的潜⼒。
(完整)小波分析算法资料整理总结,推荐文档
一、小波分析基本原理:信号分析是为了获得时间和频率之间的相互关系。
傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。
与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。
对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。
相关原理详见附件资料和系统设计书。
注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。
本人找到了相对好理解些的两个外文的资料:Tutorial on Continuous Wavelet Analysis of Experimental Data.docTen.Lectures.of.Wavelets.pdf二、搜索到的小波分析源码简介(仅谈大体印象,还待继续研读):1、83421119WaveletVCppRes.rar源码类型:VC++程序功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。
说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。
但这是为专业应用写的算法,通用性差。
2、WA.FOR(南京气象学院常用气象程序中的小波分析程序)源码类型:fortran程序功能是:对简单的一维时间序列进行小波分析。
说明:用的是墨西哥帽小波。
程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。
3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份功能是:气象应用。
时间序列的小波分析及等值线图、小波方差制作
时间序列的小波分解之阳早格格创做时间序列(Time Series)是天教钻研中时常逢到的问题.正在时间序列钻研中,时域战频域是时常使用的二种基础形式.其中,时域分解具备时间定位本收,但是无法得到关于时间序列变更的更多疑息;频域分解(如Fourier变更)虽具备准确的频次定位功能,但是仅符合稳固时间序列分解.然而,天教中许多局里(如河川径流、天震波、暴雨、洪流等)随时间的变更往往受到多种果素的概括效率,多数属于非稳固序列,它们没有单具备趋势性、周期性等特性,还存留随机性、突变性以及“多时间尺度”结构,具备多条理演变顺序.对付于那类非稳固时间序列的钻研,常常需要某一频段对付应的时间疑息,或者某一时段的频域疑息.隐然,时域分解战频域分解对付此均无计可施.20世纪80年代初,由Morlet提出的一种具备时-频多辨别功能的小波分解(Wavelet Analysis)为更佳的钻研时间序列问题提供了大概,它能浑晰的掀穿出隐躲正在时间序列中的多种变更周期,充分反映系统正在分歧时间尺度中的变更趋势,并能对付系统已去死少趋势举止定性预计.暂时,小波分解表里已正在旗号处理、图像压缩、模式辨别、数值分解战大气科教等稠稀的非线性科教范围内得到了广大的应.正在时间序列钻研中,小波分解主要用于时间序列的消噪战滤波,疑息量系数战分形维数的预计,突变面的监测战周期身分的辨别以及多时间尺度的分解等.一、小波分解基根源基本理1. 小波函数小波分解的基础思维是用一簇小波函数系去表示或者迫近某一旗号或者函数.果此,小波函数是小波分解的关键,它是指具备震荡性、不妨赶快衰减到整的一类函数,即小波函数)R (L )t (2∈ψ且谦脚:⎰+∞∞-=0dt )t (ψ(1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩战时间轴上的仄移形成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ其中,0a R,b a,≠∈(2) 式中,)t (b ,a ψ为子小波;a 为尺度果子,反映小波的周期少度;b 为仄移果子,反当令间上的仄移.需要证明的是,采用符合的基小波函数是举止小波分解的前提.正在本量应用钻研中,应针对付简直情况采用所需的基小波函数;共一旗号或者时间序列,若采用分歧的基小波函数,所得的截止往往会有所好别,偶尔以至好别很大.暂时,主假如通过对付比分歧小波分解处理旗号时所得的截止与表里截止的缺面去判决基小波函数的佳坏,并由此选定该类钻研所需的基小波函数. 2. 小波变更假如)t (b ,a ψ由(2)式给出的子小波,对付于给定的能量有限旗号)R (L )t (f 2∈,其连绝小波变更(Continue Wavelet Transform ,简写为CWT )为:dt )abt (f (t)a)b ,a (W R2/1-f ⎰-=ψ (3) 式中,)b ,a (W f 为小波变更系数;f(t)为一个旗号或者仄圆可积函数;a 为伸缩尺度;b 仄移参数;)ab x (-ψ为)ab x (-ψ的复共轭函数.天教中瞅测到的时间序列数据大多是失集的,设函数)t k (f ∆,(k=1,2,…,N;t ∆为与样隔断),则式(3)的失集小波变更形式为:)ab-t k (t)f(k t a)b ,a (W N1k 2/1-f ∆∆∆=∑=ψ (4) 由式(3)或者(4)可知小波分解的基根源基本理,即通过减少或者减小伸缩尺度a 去得到旗号的矮频或者下频疑息,而后分解旗号的概貌或者细节,真止对付旗号分歧时间尺度战空间局部特性的分解.本量钻研中,最主要的便是要由小波变更圆程得到小波系数,而后通过那些系数去分解时间序列的时频变更特性. 3. 小波圆好将小波系数的仄圆值正在b 域上积分,便可得到小波圆好,即db )b a,(W )a (Var 2f ⎰∞∞-= (5)小波圆好随尺度a 的变更历程,称为小波圆好图.由式(5)可知,它能反映旗号动摇的能量随尺度a 的分集.果此,小波圆好图可用去决定旗号中分歧种尺度扰动的相对付强度战存留的主要时间尺度,即主周期.二、小波分解真例-时间序列的多时间尺度分解(Multi-time scale analysis) 例题河川径流是天理火文教钻研中的一个要害变量,而多时间尺度是径流演化历程中存留的要害特性.所谓径流时间序列的多时间尺度是指:河川径流正在演化历程中,本去没有存留真真意思上的变更周期,而是其变更周期随着钻研尺度的分歧而爆收相映的变更,那种变更普遍表示为小时间尺度的变更周期往往嵌套正在大尺度的变更周期之中.也便是道,径流变更正在时间域中存留多条理的时间尺度结媾战局部变更特性.表1给出了某流域某火文瞅测站1966-2004年的真测径流数据.试使用小波分解表里,借帮Matlab R2012a、suffer 12.0战其余相关硬件(Excel、记事本等),完毕下述任务:(1)预计小波系数;(2)画造小波系数图(真部、模战模圆)、小波圆好图战主周期变更趋势图,并分别证明各图正在分解径流多时间尺度变更特性中的效率.表1 某流域某火文瞅测站1966-2004年真测径流数据(×108m3)年份径流量年份径流量年份径流量年份径流量年份径流量19661974198219901998 19671975198319911999 19681976198419922000 19691977198519932001 19701978198619942002 19711979198719952003 19721980198819962004 1973198119891997分解1. 采用符合的基小波函数是前提正在使用小波分解表里办理本量问题时,采用符合的基小波函数是前提.惟有采用了符合简直问题的基小波函数,才搞得到较为理念的截止.暂时,可采用的小波函数很多,如Mexican hat小波、Haar小波、Morlet小波战Meyer小波等.正在本例中,咱们采用Morlet连绝复小波变更去分解径流时间序列的多时间尺度特性.本果如下:1.1径流演变历程中包罗“多时间尺度”变更特性且那种变更是连绝的,所以应采与连绝小波变更去举止此项分解.1.2真小波变更只可给出时间序列变更的振幅战正背,而复小波变更可共时给出时间序列变更的位相战振幅二圆里的疑息,有好处对付问题的进一步分解.1.3 复小波函数的真部战真部位出进为π/2,不妨与消用真小波变更系数动做判据而爆收的真假振荡,使分解截止更为准确.2. 画造小波系数图、小波圆好图战主周期变更趋势图是关键当采用佳符合的基小波函数后,下一步的关键便是怎么样通过小波变更赢得小波系数,而后利用相关硬件画造小波系数图、小波圆好图战主周期变更趋势图,从而根据上述三种图形的变更辨别径流时间序列中存留的多时间尺度.简直步调1. 数据要收的转移2. 鸿沟效力的与消或者减小3. 预计小波系数4. 预计复小波系数的真部、模、模圆、圆好5. 画造小波系数真部、模、模圆等值线图6. 画造小波圆好图7. 画造主周期趋势图底下,咱们以上题为例,分离硬件Matlab R2012a、suffer 12.0、Excel、记事本等,仔细证明小波系数的预计战各图形的画造历程,并分别证明各图正在分解径流多时间尺度变更特性中的效率.1. 数据要收的转移战死存将存搁正在Excel表格里的径流数据(以时间为序排为一列)转移为Matlab R2012a识别的数据要收(.mat)并存盘.简直支配为:正在Matlab R2012a界里下,单打“F ile-Import Data”,出现文献采用对付话框“Import”后,找到需要转移的数据文献(本例的文献名为runoff.xls),单打“挨启”.等数据转移完毕后,单打“Finish”,出现图1隐现界里;而后单打图1中的Runoff,弹出“Array Editor: runoff”对付话框,采用File文献夹下的“Save Workspace As”单打,出现图2所示的“Save to MAT-File:”窗心,采用存搁路径并挖写文献名(runoff.mat),单打“死存”并关关“Save to MAT-File”窗心.图1 数据要收的转移图2数据的死存2. 鸿沟效力的与消或者减小果为本例中的真测径流数据为有限时间数据序列,正在时间序列的二端大概会爆收“鸿沟效用”.为与消或者减小序列启初面战中断面附近的鸿沟效力,须对付其二端数据举止蔓延.正在举止完小波变更后,去掉二端蔓延数据的小变更系数,死存本数据序列时段内的小波系数.本例中,咱们利用Matlab R2012a小波工具箱中的旗号蔓延(Signal Extension)功能,对付径流数据二端举止对付称性蔓延.简直要收为:正在Matlab R2012a界里的“Command Window”中输进小波工具箱调用下令“Wavemenu”,按Enter键弹“Wavelet Toolbox Main Menu”(小波工具箱主菜单)界里(图3);而后单打“Signal Extension”,挨启Signal Extension / Truncation窗心,单打“File”菜单下的“Load Signal”,采用runoff.mat文献单打“挨启”,出现图4旗号蔓延界里.Matlab R2012a的Extension Mode菜单下包罗了6种基础的蔓延办法(Symmetric、Periodic、Zero Padding、Continuous、Smooth and For SWT)战Direction to extend菜单下的3种蔓延模式(Both、Left and Right),正在那里咱们采用对付称性二端蔓延举止预计.数据蔓延的简直支配历程是:Desired Length不妨任性选,只消比本初旗号少度大,提议正在本初旗号的前提上加20(那样安排对付称天蔓延10个数据),那里采用默认的64;Dircetion to extend下采用“Both”;Extension Mode 下采用“Symmetric”;单打“Extend”按钮举止对付称性二端蔓延预计,而后单打“File”菜单下的“Save Tranformed Signal”,将蔓延后的数据截止存为erunoff.mat文献.从erunoff文献可知,系统自动将本时间序列数据背前对付称蔓延12个单位,背后蔓延13个单位.3. 预计小波系数采用Matlab R2012a 小波工具箱中的Morlet 复小波函数对付蔓延后的径流数据序列(erunoff.mat )举止小波变更,预计小波系数并存盘.小波工具箱主菜单界里睹图3,单打“Wavelet 1-D”下的子菜单“ComplexContinuousWavelet1-D”,挨启一维复连绝小波界里,单打“File”菜单下的“Load Signal”按钮,载进径流时间序列erunoff.mat (图5).图5的左侧为旗号隐现天区,左侧天区给出了旗号序列战复小波变更的有关疑息战参数,主要包罗数据少度(Data Size )、小波函数典型(Wavelet :cgau 、shan 、fbsp 战cmor )、与样周期(Sampling Period )、周期树立(Scale Setting )战运止按钮(Analyze ),以及隐现天区的相关隐现树立按钮.本例中,咱们采用cmor (1-1.5)、与样周期为1、最大尺度为32,单打“Analyze”图3小波工具箱主菜单图4 径流时间序列的蔓延图5 小波变更菜单界里运止按钮,预计小波系数.而后单打“File”菜单下的“Save Coefficients”,死存小波系数为cerunoff.mat文献.4. 预计Morlet复小波系数的真部、模、模圆、圆好正在Matlab R2012a界里下的Workspace中将cerunoff.mat文献导进,睹图6.图6 小波系数导进到Matlab而后单打“coefs”挨启,删掉掉蔓延数据的小波变更系数(本例中去掉前12列战后13列),死存.接下去启初预计Morlet复小波系数的真部、模、模圆、圆好,简直支配为:正在“Command Windows”中间接输进函数“shibu=real(coefs);”,面打“回车”键,预计真部;输进函数“mo=abs(coefs);”,面打“回车”键,预计模;输进函数“mofang=(mo).^2;”,面打“回车”键,预计模圆;输进函数“fangcha=sum(abs(coefs).^2,2);”,面打“回车”键,预计圆好.睹图7.图7预计出的真部、模、模圆、圆好成果注意:上头波及到的数据死存,其要收均为.mat.5.画造小波系数真部、模、模圆等值线图真部、模、模圆等值线图的画造要收一般,那里仅以真部等值线图为例.最先,将小波系数真部数据复造到Excel中依照图8要收排列,其中列A为时间,列B为尺度,列C为分歧时间战尺度下所对付应的小波系数真部值.其次,将图9数据转移成Suffer 12.0识别的数据要收.简直支配为:正在Surfer 12.0界里下,单打“网格”菜单下的“数据”按钮,正在“挨启”窗心采用要挨启的文献(小波系数真部.xls),单打“挨启”后弹出“网格化数据”对付话框(图10).它给出了多种分歧的网格化要收、文献输出路径及网格线索几许教等疑息.那里咱们采用“克里格“网格要收”,单打“决定”,完毕数据要收的转移.图8 小波系数真部数据要收图10 小波系数真部数据要收转移末尾,画造小波系数真部等值线图.正在Surfer 12.0界里下,单打“天图”菜单下的“等值线图-新建等值线图”按钮,弹出“挨启网格”窗心后,采用“小波系数真部.grd”文献,单打“挨启”,完毕等值线图的画造并死存(图11).5.2 小波系数真部等值线图正在多时间尺度分解中的效率小波系数真部等值线图能反映径流序列分歧时间尺度的周期变更及其正在时间域中的分集,从而能推断正在分歧时间尺度上,径流的已去变更趋势.为能比较收会的证明小波系数真部等值线图正在径流多时间尺度分解中的效率,咱们利用Surfer 12.0对付其进一步处理战建饰,得到图12隐现的小波系数真部等值线图.其中,横坐标为时间(年份),纵坐标为时间尺度,图中的等值直线为小波系数真部值.当小波系数真部值为正时,代表径流歉火期,正在图中咱们用真线画出,“H”表示正值核心;为背时,表示径流枯火期,用真线画出,“L”表示背值核心.由图12不妨收会的瞅到径流演化历程中存留的多时间尺度特性.总的去道,正在流域径流演变历程中存留着18~32年,8~17年以及3~7年的3类尺度的周期变更顺序.其中,正在18~32年尺度上出现了枯-歉接替的准二次震荡;正在8~17年时间尺度上存留准5次震荡.共时,还不妨瞅出以上二个尺度的周期变更正在所有分解时段表示的非常宁静,具备齐域性;而3~10年尺度的周期变更,正在1980s 以去表示的图12 小系数真部等值线图较为宁静.参照5.1,画造小波系数模战模圆等值线图(图13、14).图13 小波系数模等值线图图14 小波系数模圆等值线图Morlet小波系数的模值是分歧时间尺度变更周期所对付应的能量稀度正在时间域中分集的反映,系数模值愈大,标明其所对付当令段或者尺度的周期性便愈强.从图13不妨瞅出,正在流域径流演化历程中,18~32年时间尺度模值最大,证明该时间尺度周期变更最明隐,18~22年时间尺度的周期变更次之,其余时间尺度的周期性变更较小;小波系数的模圆相称于小波能量谱,它不妨分解出分歧周期的震荡能量.由图14知,25~32年时间尺度的能量最强、周期最隐著,但是它的周期变更具备局部性(1980s前);10~15年时间尺度能量虽然较强,但是周期分集比较明隐,险些吞噬所有钻研时域(1974~2004年).6. 画造小波圆好图正在图7的“fangcha”上左打,采用“Graph”,正在下推菜单中采用“plot”,即出小波圆好图,睹图15,正在Matlab中可继承好化.也可单打“fangcha”,将数据复造到其余硬件(如Excel)中,以小波圆好为纵坐标,时间尺度a为横坐标,画造小波圆好,如图16.(d)02040608010012014005101520253035时间尺度/a小波方差图15 Matlab 画造的小波圆好图图16 小波圆好图小波圆好图能反映径流时间序列的动摇能量随尺度a 的分集情况.可用去决定径流演化历程中存留的主周期.流域径流的小波圆好图中(图15)存留4个较为明隐的峰值,它们依次对付应着28年、14年、8年战4年的时间尺度.其中,最大峰值对付应着28年的时间尺度,证明28年安排的周期震荡最强,为流域年径流变更的第一主周期;14年时间尺度对付应着第二峰值,为径流变更的第二主周期,第三、第三峰值分别对付应着8年战4年的时间尺度,它们依次为流域径流的第三战第四主周期.那证明上述4个周期的动摇统造着流域径流正在所偶尔间域内的变更特性.根据小波圆好考验的截止,咱们画造出了统造流域径流演变的第一战第二主周期小波系数图(图17).从主周期趋势图中咱们不妨分解出正在分歧的时间尺度下,流域径流存留的仄衡周期及歉-枯变更特性.图16a 隐现,正在14年特性时间尺度上,流域径流变更的仄衡周期为9.5年安排,约莫经历了4个歉-枯变更期;而正在28年特性时间尺度上(图16b ),流域的仄衡变更周期为20年安排,约莫2个周期的歉-枯变更.图17大沽夹河流域年径流变更的13年战28年特性时间尺度小波真部历程线参照文献王文圣,丁晶,李耀浑. 2005. 火文小波分解[M]. 北京:化教工业出版社曹素华等. 1998. 真用医教多果素统计要收[M]. 上海:上海医科大教出版社圆启泰. 1989. 真用多元统计分解[M]. 上海:华东师范大教出版社何浑波,苏炳华,钱卑. 2002. 医教统计教及其硬件包[M]. 上海:上海科教技能文献出版社胡秉民. 1987. 微电脑正在农业科教中的应用[M]. 北京:科教出版社孙尚拱. 1990.. 真用多元变量统计要收与预计步调[M]. 北京:北京医科大教、华夏协战医科大教共同出版社唐守正. 1986. 多元统计分解要收[M].北京:华夏林业出版社王教仁. 1982. 天面数据的多变量统计分解. 北京:科教出版社缓振邦,金淳浩,娄元仁. 1986. 2χ距离系数战2ϕ距离系数尺度正在散类分解中的应用[M]. 赵旭东等主编,华夏数教天量(1). 北京:天量出版社於崇文. 1978. 数教天量的要收与应用[M]. 北京:冶金工业出版社Anderson T. W. 1967. Introduction to multivariate statistical analysis, 2nd[M]. New York: WileyGauch H. G. J. 1982. Multivariate analysis in community ecology[M]. Britain: CambridgeUniversity PressHorel A. E. ,Wennard. R. W. and Baldwin K. F. 1975. regression: some simulations. Communications in Statistics[J], 4: 105~123训练试使用小波分解表里,分解某市年仄衡落火历程中存留的多时间尺度变更特性.表2 某市1957-2004年真测年均落火量(mm)年份落火量年份落火量年份落火量年份落火量195719691981199319581970198219941959197119831995196019721984199619611973198519971962197419861998196319751987199919641976198820001965197719892001196619781990200219671979199120031968198019922004。
小波分析-经典
时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
小波时间序列综述
金融时间序列中小波方法的研究综述引言近几年来,伴随着社会经济的快速发展,人们生活水平日益提高,手中存有的闲散资金也愈来愈多,这就为中国股票市场的蓬勃发展提供了前提条件。
中国从上世纪八十年代开始,经济法律体系愈来愈健全,市场体制也不断规范,这进一步促使股票市场成为中国社会经济生活中一个十分重要的元素。
然而,它对于社会经济发展的影响是有利有弊的:健康发展的股票市场能够有效吸收社会的闲散资金,实现社会资源的合理分配,从而推动社会经济的稳健和快速发展;但若在市场监管不力的情况下,它的混乱就会给经济发展带来不利的影响。
股票市场向来被称作经济发展的“晴雨表”,它的发展依靠实体经济的支撑并且较为真实得反应了社会大众对实体经济发展的预期,且它通过价格机制实现了对市场资源的合理配置。
这其中,股票价格反映了特定时刻股票市场中所有利益主体对股票价值的均衡定位,因而对其特点的研究和趋势的预测就成为人们参与市场的起点和归宿。
同样也正是因为此,包含股票价格等一系列金融时间序列的特性研究一直是金融投资领域中的热点问题。
一.小波分析理论简介1.1小波分析历史小波这一名称首先是由法国地质学家J.Morlet与A.GorSSmnan在分析地质数据时引进的,Y.Myeer,Mallat及I.DuabechieS等人对小波理论的发展都做了非常重要的贡献至上世纪90年代初期经典的小波理论己经基本成熟,目前国际上的重点已转向小波的推广和应用。
1882年,法国数学家Fuorier从热力学的角度提出一种新的理论即“热的解析理论”,即被后人广泛应用和称誉的Fourier分析方法。
小波分析是在傅里叶分析的基础上发展起来的,一方面它包含了丰富的数学内容,可以看成调和分析近半个世纪来的工作结晶;另一方面由于小波变换在时域和频域同时具有良好的局部化性质,能自动调整时一频窗以适应实际分析的需要,从而可以聚焦到分析对象的任意细节,因而具有简单、随意、灵活的特点。
小波分析完美教程经典
小波分析完美教程经典小波分析是一种数学方法,用于在时间序列或信号中检测和描述局部的频率特征。
它具有在不同尺度上进行分析的能力,并且可以有效地处理非平稳和非线性的数据。
小波分析最早由法国数学家莫尔斯特尔在20世纪80年代提出,并且在信号处理、图像处理、模式识别等领域中得到了广泛的应用。
相对于傅里叶分析而言,小波分析更适用于局部信号特征的提取,因为它可以在时间和频率上同时进行分析。
小波分析主要包含以下几个步骤:1. 选择小波基函数:小波基函数是小波分析的基础,它决定了在不同尺度上对信号进行分析时的特征。
常见的小波基函数有Morlet小波、Haar小波、Daubechies小波等。
选择适合的小波基函数对于小波分析的结果具有重要的影响。
2.进行小波变换:小波变换是将信号在不同尺度上进行分解的过程。
通过将信号与小波基函数进行卷积,可以得到不同频率的小波系数。
小波变换可以分为连续小波变换和离散小波变换两种。
连续小波变换适用于连续信号,而离散小波变换适用于离散信号。
3.进行小波重构:小波重构是将小波系数重新组合成原始信号的过程。
通过将不同尺度上的小波系数进行反变换,可以得到原始信号的近似和细节部分。
小波重构的过程可以用于信号的降噪、压缩等应用。
在实际应用中,小波分析可以用于信号的时频分析、图像的压缩与去噪、模式识别等方面。
其优点在于可以提供更准确的局部信息,对非平稳和非线性信号具有更好的适应性,并且具有多尺度分析的能力。
然而,小波分析也存在一些问题。
首先,小波基函数的选择需要根据具体的应用场景进行判断,不同的小波基函数可能对信号的特征有不同的适应性。
其次,小波分析的计算量较大,对于大规模信号的处理可能会耗费较长的时间。
综上所述,小波分析是一种强大的信号处理工具,它可以在不同尺度上对信号进行分析,并且可以用于时频分析、图像处理、模式识别等领域。
通过选择合适的小波基函数和进行小波变换和重构,可以获得准确的局部信号特征。
时间序列数据的波动性分析方法研究
时间序列数据的波动性分析方法研究第一章引言1.1 研究背景时间序列数据是指按照时间顺序排列的数据,在各个领域都具有重要的应用价值。
通过对时间序列数据的分析,可以揭示出数据的趋势、周期性以及波动性等重要特征。
而波动性分析是研究时间序列数据中数据波动情况的一种重要方法,它对于金融市场、宏观经济以及其他领域的预测和决策具有重要的指导意义。
1.2 研究目的本研究旨在探讨时间序列数据的波动性分析方法,包括传统的统计学方法和现代的计量经济学方法,并对比分析它们的优缺点和适用范围,以期为时间序列数据的研究提供有力的支持和指导。
第二章传统的波动性分析方法2.1 均值和方差的测度传统的波动性分析方法在大多数情况下使用了均值和方差来衡量时间序列数据的波动情况。
其中,均值可以用来刻画时间序列数据的趋势,方差则用来衡量数据的离散程度。
然而,这种方法对于非线性和非正态分布的时间序列数据来说存在一定的局限性。
2.2 波动率模型波动率模型是通过对时间序列数据的高低波动阶段进行建模和预测,以实现对数据波动性的分析。
常见的波动率模型有ARCH、GARCH以及EGARCH等。
这些模型通过考察数据的波动变动性来提供更准确的波动性分析。
第三章现代的波动性分析方法3.1 时频分析时频分析方法是一种综合了时间和频率特性的分析方法,常用的时频分析方法有小波分析和赫斯特指数分析。
时频分析方法可以更准确地描述时间序列数据的本质波动,特别适用于非平稳和非线性时间序列数据的波动性分析。
3.2 非参数方法非参数方法是一种不依赖分布假设的波动性分析方法,广泛应用于金融时间序列数据的波动性分析。
常用的非参数方法包括排序波动法、重抽样法以及小波分析方法等。
这些方法可以较好地应对时间序列数据中的异常值和噪声,提供更准确的波动性分析结果。
第四章波动性分析方法的应用与展望4.1 应用案例:金融市场的波动性分析金融市场是波动性分析方法最广泛应用的领域之一。
通过对金融市场时间序列数据的波动性分析,可以进行风险控制、投资决策、期权定价等方面的应用。
基于小波分析的金融时间序列预测
基于小波分析的金融时间序列预测北京邮电大学陶淼冰、唐子林、白杨目录摘要 (1)1 问题的提出 (2)2 传统方法及改进的方法 (2)3模型构造前的准备 (3)3.1数据的来源 (3)3.2 对数据的处理 (4)3.2.1 标准化处理 (4)3.2.2 收益率的定义 (4)4 模型的建立(WBPAR模型) (4)4.1 建模思路 (5)4.2 对原始数据进行小波分解 (6)4.2.1 小波分析的基本理论 (6)4.2.2 小波分解 (10)4.3 时间子序列的预测 (14)4.3.1 小波空间变换序列的预测 (14)4.3.2 尺度空间变换序列的预测 (15)4.4 预测数据的重构及检验 (17)5 模型评价及改进方向 (20)5.1 优点: (20)5.2 缺点及改进方向: (20)参考文献 (22)1摘要本文以金融时间序列为研究对象,将小波分析应用于时间序列预测,并以美国S&P500指数进行实证分析。
首先,利用小波分析的时频分解特性,将时间序列分解到不同频率空间,得到具有不同稳定特性的空间映射。
再分别利用神经网络自适应能力对时间序列的非线性分量进行模拟预测,与适用于平稳序列的自回归模型处理平稳分量的分析预测。
具体来说,由Haar小波对序列进行分解得到了序列在各级小波空间与各级尺度空间的分量。
其中,对于高频段的小波空间利用神经网络进行训练并对训练的系统进行预测;而在低频平稳的尺度空间先利用单位跟检验对数据的平稳性进行检验,由相关分析可以得到序列在尺度空间的分量具有很显著的平稳性,对回归分析的可行性提供了保证,然后利用Arma自回归模型对序列的尺度空间分量进行回归分析并利用已有数据对收益率进行预测。
再将二者加以结合来对时间序列进行重构得到了收益率整体的发展趋势。
最后将这种混合策略的预测结果与单个方法的预测结果与实际数据进行对比,从作出的曲线图可以看到混合策略较之单个预测方法有明显改善,即与实际数据更加符合。
小波变换在时间序列分析中的应用
小波变换在时间序列分析中的应用小波变换是一种在时间序列分析中广泛应用的数学工具。
它可以将一个复杂的时间序列分解成不同频率的成分,从而帮助我们更好地理解和分析数据。
本文将介绍小波变换的基本原理和在时间序列分析中的应用。
首先,我们来了解一下小波变换的基本原理。
小波变换是一种多尺度分析方法,它使用一组称为小波函数的基函数来分析信号的频率和幅度。
与傅里叶变换不同,小波变换可以在时间和频率上同时提供信息。
这使得小波变换在时间序列分析中具有独特的优势。
小波变换的核心思想是通过对信号进行不同尺度的平移和缩放,来提取信号中的不同频率成分。
具体而言,小波变换将信号与一组小波函数进行卷积运算,得到一组小波系数。
这些小波系数表示了信号在不同尺度和位置上的频率成分。
通过对小波系数的分析,我们可以得到信号的频谱特征,进而进行时间序列的分析和预测。
在时间序列分析中,小波变换可以应用于多个方面。
首先,小波变换可以用于信号的去噪和滤波。
由于小波变换在时间和频率上都提供了信息,因此可以通过选择适当的小波函数和阈值来滤除信号中的噪声成分,从而得到更准确的信号分析结果。
其次,小波变换可以用于信号的特征提取和模式识别。
通过对小波系数的分析,我们可以提取信号的频率和幅度特征,从而识别信号中的不同模式和趋势。
这对于时间序列的分类和预测非常有帮助。
此外,小波变换还可以用于时间序列的压缩和编码。
由于小波变换将信号分解成不同尺度的成分,我们可以选择保留重要的小波系数,而舍弃不重要的系数,从而实现对信号的有效压缩和编码。
最后,小波变换还可以用于时间序列的分析和预测。
通过对小波系数的分析,我们可以了解信号的频率特征和趋势变化,从而对未来的发展进行预测。
这对于金融市场的预测、气象数据的分析等具有重要的应用价值。
综上所述,小波变换在时间序列分析中具有广泛的应用。
它可以帮助我们更好地理解和分析时间序列数据,从而提取有用的信息和知识。
无论是在信号处理、模式识别还是预测分析中,小波变换都发挥着重要的作用。
时间序列的小波分析.doc
时间序列的小波分析时间序列(Time Series)是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20 世纪80 年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数(t) L2 (R) 且满足:( t)dt 0 (1)式中,(t) 为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:t b1/ 2a (t) a ( ) 其中,a,b R, a0 (2),ba式中,(t)a 为子小波; a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
时间序列小波分析
时间序列小波分析时间序列分析是一种用于研究和预测时间序列数据的方法,而小波分析则是一种有效的时间序列分析方法之一、本文将详细介绍时间序列小波分析的原理、方法以及应用。
一、小波分析的原理和方法小波分析是通过分析时间序列信号的高频和低频成分来研究和预测时间序列数据的方法。
它基于小波变换的原理,将时间序列信号分解成不同频率成分的叠加,从而获得更详细和准确的信号信息。
小波变换是一种时频局部化分析的方法,它将时间序列信号表示为时间与频率两个维度上的函数。
相比于传统的傅里叶变换,小波变换能够提供更多的细节和局部信息。
小波分析的基本思路是将时间序列信号分解成多个不同频率的小波系数,然后分析每个小波系数的特性和规律。
具体来说,小波分析主要包括以下几个步骤:1.选择合适的小波函数:小波函数是用来描述小波变换的基函数,不同的小波函数有不同的频率特性和时域分辨率。
在小波分析中,选择适合于分析数据特性的小波函数非常重要。
2.进行小波分解:利用选定的小波函数对时间序列信号进行分解,得到不同频率的小波系数。
分解的过程是通过低通滤波和高通滤波来实现的,其中低通滤波用于提取低频成分,高通滤波用于提取高频成分。
3.小波系数的阈值处理:由于小波变换是一种连续变换,分解得到的小波系数包含了大量的噪声和无用信息。
因此,需要对小波系数进行阈值处理,去除噪声和无用信息,保留有用的信号成分。
4.重构信号:将经过阈值处理后的小波系数进行重构,得到去噪后的时间序列信号。
5.进行时间序列分析和预测:利用重构信号进行时间序列的分析和预测,包括描述统计量、自相关、谱分析等方法。
二、小波分析的应用小波分析具有一系列优点,例如能够提供时间和频率上的局部信息、能够适应非平稳时间序列等,因此在各个领域都得到了广泛的应用。
以下将介绍几个常见的应用。
1.金融数据分析:小波分析在金融数据分析中有着广泛的应用。
通过对金融时间序列数据进行小波分解,可以提取不同频率的波动成分,用于研究市场的周期性和波动性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列的小波分析时间序列(Time Series)是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20 世纪80 年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数(t) L2 (R) 且满足:( t)dt 0 (1)式中,(t) 为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:t b1/ 2a (t) a ( ) 其中,a,b R, a0 (2),ba式中,(t)a 为子小波; a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
,b需要说明的是,选择合适的基小波函数是进行小波分析的前提。
在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。
目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。
2. 小波变换,其连续小波变换2若(t)a 是由(2)式给出的子小波,对于给定的能量有限信号 f (t) L (R),b(Continue Wavelet Transform ,简写为CWT )为:t b -1/ 2W f (a, b) a f(t) ( )dt (3)Rax bW (a,b)式中,af 为小波变换系数;f(t) 为一个信号或平方可积函数; a 为伸缩尺度;b 平移参数;( )x b为( ) 的复共轭函数。
地学中观测到的时间序列数据大多是离散的,设函数f (k t) ,(k=1,2, , ,N; t a为取样间隔),则式(3)的离散小波变换形式为:Nk t - b-1/ 2W (a, b) a t f(k t) ( )f (4)ak 1由式(3)或(4)可知小波分析的基本原理,即通过增加或减小伸缩尺度 a 来得到信号的低频或高频信息,然后分析信号的概貌或细节,实现对信号不同时间尺度和空间局部特征的分析。
实际研究中,最主要的就是要由小波变换方程得到小波系数,然后通过这些系数来分析时间序列的时频变化特征。
3. 小波方差将小波系数的平方值在 b 域上积分,就可得到小波方差,即Var(a)2W ( a,b) dbf (5)小波方差随尺度 a 的变化过程,称为小波方差图。
由式(5)可知,它能反映信号波动的能量随尺度 a 的分布。
因此,小波方差图可用来确定信号中不同种尺度扰动的相对强度和存在的主要时间尺度,即主周期。
二、小波分析实例- 时间序列的多时间尺度分析(Multi-time scale analysis)例题河川径流是地理水文学研究中的一个重要变量,而多时间尺度是径流演化过程中存在的重要特征。
所谓径流时间序列的多时间尺度是指:河川径流在演化过程中,并不存在真正意义上的变化周期,而是其变化周期随着研究尺度的不同而发生相应的变化,这种变化一般表现为小时间尺度的变化周期往往嵌套在大尺度的变化周期之中。
也就是说,径流变化在时间域中存在多层次的时间尺度结构和局部变化特征。
表1 给出了某流域某水文观测站1966-2004 年的实测径流数据。
试运用小波分析理论,借助Matlab6.5 、suffer8.0 和相关软件(Excel 等),完成下述任务:⑴计算小波系数;⑵绘制小波系数图(实部、模和模方)、小波方差图和主周期变化趋势图,并分别说明各图在分析径流多时间尺度变化特征中的作用。
8m3)表1 某流域某水文观测站1966-2004 年实测径流数据(×10年份径流量年份径流量年份径流量年份径流量年份径流量1966 1.438 1974 2.235 1982 0.774 1990 1.806 1998 1.7091967 1.151 1975 4.374 1983 0.367 1991 0.449 1999 0.0001968 0.536 1976 4.219 1984 0.562 1992 0.120 2000 0.0001969 1.470 1977 2.590 1985 3.040 1993 0.627 2001 2.1041970 3.476 1978 3.350 1986 0.304 1994 1.658 2002 0.0091971 4.068 1979 2.540 1987 0.728 1995 1.025 2003 3.1771972 2.147 1980 0.807 1988 0.492 1996 0.955 2004 0.9211973 3.931 1981 0.573 1989 0.007 1997 1.341分析1. 选择合适的基小波函数是前提在运用小波分析理论解决实际问题时,选择合适的基小波函数是前提。
只有选择了适合具体问题的基小波函数,才能得到较为理想的结果。
目前,可选用的小波函数很多,如Mexican hat 小波、Haar 小波、Morlet 小波和Meyer 小波等。
在本例中,我们选用Morlet 连续复小波变换来分析径流时间序列的多时间尺度特征。
原因如下:1.1 径流演变过程中包含“多时间尺度”变化特征且这种变化是连续的,所以应采用连续小波变换来进行此项分析。
1.2 实小波变换只能给出时间序列变化的振幅和正负,而复小波变换可同时给出时间序列变化的位相和振幅两方面的信息,有利于对问题的进一步分析。
1.3 复小波函数的实部和虚部位相差为π/2,能够消除用实小波变换系数作为判据而产生的虚假振荡,使分析结果更为准确。
2. 绘制小波系数图、小波方差图和主周期变化趋势图是关键当选择好合适的基小波函数后,下一步的关键就是如何通过小波变换获得小波系数,然后利用相关软件绘制小波系数图、小波方差图和主周期变化趋势图,进而根据上述三种图形的变化识别径流时间序列中存在的多时间尺度。
具体步骤1. 数据格式的转化2. 边界效应的消除或减小3. 计算小波系数4. 计算复小波系数的实部5. 绘制小波系数实部等值线图6. 绘制小波系数模和模方等值线图7. 绘制小波方差图8. 绘制主周期趋势图下面,我们以上题为例,结合软件Matlab 6.5 、Suffer 8.0 和Excel,详细说明小波系数的计算和各图形的绘制过程,并分别说明各图在分析径流多时间尺度变化特征中的作用。
1. 数据格式的转化和保存将存放在Excel 表格里的径流数据(以时间为序排为一列)转化为Matlab 6.5 识别的数据格式(.mat)并存盘。
具体操作为:在Matlab 6.5 界面下,单击“File-Import Data”,出现文件选择对话框“Import ”后,找到需要转化的数据文件(本例的文件名为runoff.xls ),单击“打开”。
等数据转化完成后,单击“Finish ”,出现图 1 显示界面;然后双击图 1 中的Runoff ,弹出“Array Editor: runoff ”对话框,选择File 文件夹下的“Save Workspace As”单击,出现图 2 所示的“Save to MAT-File: ”窗口,选择存放路径并填写文件名(runoff.mat ),单击“保存”并关闭“Save to MAT-File ”窗口。
图1 数据格式的转化图2 数据的保存2. 边界效应的消除或减小因为本例中的实测径流数据为有限时间数据序列,在时间序列的两端可能会产生“边界效用”。
为消除或减小序列开始点和结束点附近的边界效应,须对其两端数据进行延伸。
在进行完小波变换后,去掉两端延伸数据的小变换系数,保留原数据序列时段内的小波系数。
本例中,我们利用Matlab 6.5 小波工具箱中的信号延伸(Signal Extension)功能,对径流数据两端进行对称性延伸。
具体方法为:在Matlab 6.5 界面的“Command Window ”中输入小波工具箱调用命令“Wavemenu”,按Enter 键弹“Wavelet Toolbox Main Menu ”(小波工具箱主菜单)界面(图3);然后单击“Signal Extension ”,打开Signal Extension / Truncation 窗口,单击“File ”菜单下的“Load Signal ”,选择runoff.mat 文件单击“打开”,出现图 4 信号延伸界面。
Matlab 6.5 的Extension Mode 菜单下包含了 6 种基本的延伸方式(Symmetric 、Periodic 、Zero Padding、Continuous、Smooth and For SWT )和Direction to extend 菜单下的3 种延伸模式(Both 、Left and Right ),在这里我们选择对称性两端延伸进行计算。
数据延伸的具体操作过程是:在Extension Mode 下选择“Symmetric ”,Dircetion to extend 下选择“Both”,单击“Extend”按钮进行对称性两端延伸计算,然后单击“File”菜单下的“Save Tranformed Signal ”,将延伸后的数据结果存为erunoff.mat 文件。
从erunoff 文件可知,系统自动将原时间序列数据向前对称延伸12 个单位,向后延伸13 个单位。
图3 小波工具箱主菜单图4 径流时间序列的延伸3. 计算小波系数选择Matlab 6.5 小波工具箱中的Morlet 复小波函数对延伸后的径流数据序列(erunoff.mat )进行小波变换,计算小波系数并存盘。