机械振动实验报告2
机械振动实验报告分析
实验三:简谐振动幅值测量一、 实验目的1、了解振动位移、速度、加速度之间的关系。
2、学会用压电传感器测量简谐振动位移、速度、加速度幅值二、实验仪器安装示意图三、 实验原理由简谐振动方程:)sin()(ϕω-=t A t f简谐振动信号基本参数包括:频率、幅值、和初始相位,幅值的测试主要有三个物理量,位移、速度和加速度,可采取相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下:根据简谐振动方程,设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A :)sin(ϕω-=t X x)cos()cos(ϕωϕωω-=-==t V t X xv )sin()sin(2ϕωϕωω-=--==t A t X xa 式中:ω——振动角频率 ϕ——初相位 所以可以看出位移、速度和加速度幅值大小的关系是:X V A X V2ωωω===,。
振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可采用具有微积分功能的放大器进行测量。
在进行振动测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过AD 卡进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可计算出振动量的大小。
DASP通过示波调整好仪器的状态(如传感器档位、放大器增益、是否积分以及程控放大倍数等)后,要在DASP 参数设置表中输入各通道的工程单位和标定值。
工程单位随传感器类型而定,或加速度单位,或速度单位,或位移单位等等。
传感器灵敏度为K CH (PC/U )(PC/U 表示每个工程单位输出多少PC 的电荷,如是力,而且参数表中工程单位设为牛顿N ,则此处为PC/N ;如是加速度,而且参数表中工程单位设为m/s 2,则此处为PC/m/s 2);INV1601B 型振动教学试验仪输出增益为K E ;积分增益为K J (INV1601 型振动教学试验仪的一次积分和二次积分K J =1);INV1601B 型振动教学试验仪的输出增益:加速度:K E = 10(mV/PC)速度:K E = 1 位移:K E = 0.5则DASP 参数设置表中的标定值K 为:)/(U mV K K K K J E CH ⨯⨯=四、 实验步骤1、安装仪器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露出激振杆上的红线标识),用专用连接线连接激振器和INV1601B 型振动教学试验放大仪的功放输出接口。
工厂振动测试实验报告(3篇)
第1篇一、引言随着工业自动化程度的不断提高,工厂生产过程中产生的振动问题日益受到重视。
振动不仅会影响设备的正常运行,还会对操作人员的安全和健康造成威胁。
为了确保工厂生产的安全和高效,本报告对工厂振动进行了系统测试,以了解振动源、振动传播路径以及振动对设备的影响,为振动控制提供科学依据。
二、实验目的1. 了解工厂振动产生的来源及传播路径。
2. 测量不同区域的振动强度和频率。
3. 分析振动对设备的影响。
4. 为振动控制提供科学依据。
三、实验设备与仪器1. 振动测试仪:用于测量振动强度和频率。
2. 激光测距仪:用于测量设备与振动源的距离。
3. 摄像头:用于观察振动现象。
4. 计算机软件:用于数据处理和分析。
四、实验方法1. 确定测试点:根据工厂布局,选取具有代表性的测试点,包括振动源附近、振动传播路径上以及设备附近。
2. 测试振动强度和频率:使用振动测试仪分别测量各个测试点的振动强度和频率。
3. 测量设备与振动源的距离:使用激光测距仪测量设备与振动源的距离。
4. 观察振动现象:使用摄像头观察振动现象,记录振动形态和频率。
5. 数据处理和分析:将测试数据输入计算机软件,进行数据处理和分析。
五、实验结果与分析1. 振动源:通过测试发现,工厂振动的主要来源为机械设备运行、物料运输以及空气流动等。
2. 振动传播路径:振动主要沿地面、墙壁以及设备本身传播。
3. 振动强度和频率:不同区域的振动强度和频率存在差异,振动源附近振动强度较大,频率较高;振动传播路径上振动强度逐渐减弱,频率降低;设备附近振动强度较小,频率较低。
4. 振动对设备的影响:振动可能导致设备疲劳、磨损,甚至损坏。
长期处于高振动环境下,设备的使用寿命将大大缩短。
六、振动控制措施1. 优化设备布局:将振动源与设备保持一定距离,减少振动传播。
2. 使用减振设备:在振动源附近安装减振垫、减振器等,降低振动强度。
3. 改善物料运输方式:采用低速、平稳的运输方式,减少物料运输过程中的振动。
中南大学机械振动实验报告实验2
0.024 2n
3
2、用 matlab 拟合出加速度幅频特性曲线(见下图) ; 3、根据加速度幅频特性曲线,找出系统的固有频率; 4、根据公式计算阻尼比ξ 。 加速度 根据加速度幅频特性曲线得知,系统的固有频率为 25Hz。 2.计算阻尼比 由图可知: 1 24.2 Hz,
2 25.4 Hz, 2 - 1 1.3 Hz
二、 实验原理
双简支梁的简谐振动振幅与频率测量实验原理如图 2 所示:
图 2 机械振动系统固有频率测量原理图
1
三、 仪器及装置
1、机械振动综台实验装置(安装双简支梁) 2、激振器 3、加速度传感器 4、电荷放大器 5、信号发生器 6、电脑 7、测试软件 8、采集卡 1套 1套 1只 1台 l台 l台 l套 l套
四、 实验数据处理
1、将数据(见下表)交给老师确认(ω 为软件界面记录的频率,X 为对应的加速度。 ) ω X ω X 16 Hz 0.0093 24 Hz 0.1011 17 Hz 0.0112 25 Hz 0.1338 18 Hz 0.0112 26 Hz 0.0591 19 Hz 0.0151 27 Hz 0.0557 20Hz 0.0181 28 Hz 0.0717 21 Hz 0.0225 29 Hz 0.0503 22 Hz 0.0342 30 Hz 0.0303 23Hz 0.0498 31 Hz 0.0410
仪器及装置1机械振动综台实验装置安装双简支梁实验数据处理1将数据见下表交给老师确认为软件界面记录的频率x为对应的加速度
中南大学
机械振动实验报告
姓名: 学号: 成绩: 指导教师
实验名称:机械振动系统固有频率测量 一、 实验目的
1、 以双简支梁为例,了解和掌握机械振动系统幅频特性曲线的测量方法。 2、 观察共振产生的过程和条件; 3、 测量单自由度系统强迫振动并绘制幅频特性曲线; 4、 根据幅频特性曲线确定系统的固有频率和阻尼比。
机械振动实验报告
机械振动实验报告一、实验目的本次机械振动实验旨在深入了解机械振动的基本特性和规律,通过实验测量和数据分析,掌握振动系统的频率、振幅、相位等重要参数的测量方法,探究振动系统在不同条件下的响应,为工程实际中的振动问题提供理论基础和实验依据。
二、实验原理机械振动是指物体在平衡位置附近做往复运动。
在本次实验中,我们主要研究简谐振动,其运动方程可以表示为:$x = A\sin(\omega t +\varphi)$,其中$A$为振幅,$\omega$为角频率,$t$为时间,$\varphi$为初相位。
对于一个弹簧振子系统,其振动周期$T$与振子的质量$m$和弹簧的劲度系数$k$有关,满足公式$T = 2\pi\sqrt{\frac{m}{k}}$。
通过测量振动系统的位移随时间的变化,可以得到振动的频率、振幅和相位等参数。
三、实验设备1、振动实验台2、弹簧3、质量块4、位移传感器5、数据采集系统6、计算机四、实验步骤1、安装实验设备将弹簧一端固定在振动实验台上,另一端连接质量块。
将位移传感器安装在合适位置,使其能够准确测量质量块的位移。
2、测量弹簧的劲度系数使用砝码和天平,对弹簧施加不同的力,测量弹簧的伸长量,通过胡克定律$F = kx$计算弹簧的劲度系数$k$。
3、调整实验系统确保质量块在振动过程中运动平稳,无卡顿和摩擦。
4、进行实验测量启动振动实验台,使质量块做简谐振动。
通过数据采集系统采集位移随时间的变化数据。
5、改变实验条件分别改变质量块的质量和弹簧的劲度系数,重复实验步骤 4,测量不同条件下的振动参数。
6、数据处理与分析将采集到的数据导入计算机,使用相关软件进行处理和分析,得到振动的频率、振幅和相位等参数。
五、实验数据与分析1、原始数据记录以下是在不同实验条件下测量得到的质量块位移随时间的变化数据:|实验条件|质量(kg)|弹簧劲度系数(N/m)|时间(s)|位移(m)||||||||实验 1|1|100|01|001||实验 1|1|100|02|002|||||||2、数据处理通过对原始数据进行拟合和分析,得到振动的频率、振幅和相位等参数。
机械振动实验报告
机械振动实验报告1. 实验目的本实验旨在通过对机械振动的实验研究,掌握机械振动的基本原理和特性,深入了解振动系统的参数对振动现象的影响。
2. 实验原理(1)简谐振动:当物体在受到外力作用下,沿着某一方向做来回运动时,称为简谐振动。
其数学表达式为x(t) = A*sin(ωt + φ),其中A 为振幅,ω为角频率,φ为初相位。
(2)受迫振动:在外力的作用下振动的振幅不断受到调节,导致振幅和相位角与外力作用间存在一定的关联关系。
(3)自由振动:在无外力作用下,振动系统的振幅呈指数幅度减小的振动现象。
3. 实验内容(1)测量弹簧振子的简谐振动周期并绘制振幅-周期曲线。
(2)通过改变绳长和质量对受迫振动的谐振频率进行测量。
(3)观察受外力激励时的自由振动现象。
4. 实验数据与结果(1)弹簧振子简谐振动周期测量结果如下:振幅(cm)周期(s)0.5 0.81.0 1.21.5 1.62.0 1.9(2)受迫振动的谐振频率测量结果如下:绳长(m)质量(kg)谐振频率(Hz)0.5 0.1 2.50.6 0.2 2.00.7 0.3 1.80.8 0.4 1.5(3)外力激励下的自由振动现象结果呈现出振幅逐渐减小的趋势。
5. 实验分析通过实验数据处理和结果分析,可以得出以下结论:(1)弹簧振子的振动周期与振幅呈线性关系,在一定范围内,振幅增大,周期相应增多。
(2)受迫振动的谐振频率随绳长和质量的增加而减小,表明振动系统的参数对谐振频率有一定的影响。
(3)外力激励下的自由振动现象符合指数幅度减小的规律,振幅随时间的增长呈现递减趋势。
6. 实验总结本实验通过测量和观察机械振动的不同现象,探究了振动系统的基本原理和特性。
实验结果表明振动系统的参数对振动现象产生了明显的影响,为进一步深入研究振动学提供了基础。
通过本次实验,我对机械振动的原理和特性有了更深入的了解,对实验数据处理和分析方法也有了更加熟练的掌握。
希望通过不断的实验学习,能够进一步提升自己对振动学理论的理解水平,为未来的科研工作打下坚实基础。
机械模拟地震实验报告(3篇)
第1篇一、实验目的1. 了解地震的基本原理和特点。
2. 掌握地震模拟实验的操作方法。
3. 分析地震对建筑物的影响,提高建筑物的抗震性能。
二、实验背景地震是地球上常见的自然灾害之一,给人类带来了巨大的生命财产损失。
为了提高建筑物的抗震性能,有必要开展地震模拟实验,研究地震对建筑物的破坏机理。
三、实验材料1. 地震模拟实验台:用于模拟地震过程中建筑物的动态响应。
2. 建筑模型:用于模拟实际建筑物,如住宅、办公楼等。
3. 激振器:用于产生模拟地震的振动。
4. 数据采集系统:用于采集实验过程中的数据。
5. 计算机软件:用于分析实验数据。
四、实验原理地震模拟实验是利用激振器产生模拟地震的振动,通过实验台将振动传递到建筑模型上,观察建筑模型在地震过程中的动态响应,从而分析地震对建筑物的破坏机理。
五、实验步骤1. 准备实验设备:将实验台、建筑模型、激振器、数据采集系统等设备安装调试到位。
2. 安装建筑模型:将建筑模型放置在实验台上,确保模型稳定。
3. 设置激振器参数:根据实验要求设置激振器的频率、振幅等参数。
4. 开始实验:启动激振器,使建筑模型受到模拟地震的振动。
5. 数据采集:通过数据采集系统实时记录实验过程中的数据。
6. 实验结束:停止激振器,收集实验数据。
六、实验结果与分析1. 实验结果:通过实验,观察到建筑模型在模拟地震过程中出现了不同程度的破坏,如裂缝、变形等。
2. 分析:(1)地震对建筑物的破坏主要表现为结构破坏、非结构破坏和地基破坏。
(2)地震对建筑物的破坏程度与地震烈度、建筑结构类型、地基条件等因素有关。
(3)提高建筑物的抗震性能,应从结构设计、材料选择、地基处理等方面入手。
七、实验结论1. 地震模拟实验可以有效地研究地震对建筑物的破坏机理。
2. 通过实验,可以了解地震对建筑物的破坏程度,为提高建筑物的抗震性能提供依据。
3. 在实际工程中,应充分考虑地震对建筑物的破坏影响,采取有效措施提高建筑物的抗震性能。
振动测试实验报告
振动测试实验报告振动测试实验报告引言:振动测试是一种常用的实验方法,用于评估物体在振动环境中的性能和可靠性。
本文将介绍一次振动测试实验的过程和结果,并对实验结果进行分析和讨论。
实验目的:本次实验的目的是评估一款新型电动牙刷在振动环境下的性能。
通过对电动牙刷进行振动测试,我们可以了解其在振动环境下的工作状态和可靠性,为产品的改进和优化提供参考。
实验装置:本次实验使用了一台专业的振动测试设备,该设备能够模拟不同频率和幅度的振动环境。
同时,还配备了传感器和数据采集系统,用于测量和记录电动牙刷在振动环境下的振动情况。
实验过程:1. 准备工作:将电动牙刷固定在振动测试设备上,并确保其稳定性和安全性。
2. 参数设置:根据实验要求,设置振动测试设备的振动频率和振动幅度。
3. 数据采集:启动振动测试设备,并开始采集电动牙刷在振动环境下的振动数据。
4. 实验记录:记录电动牙刷在不同振动条件下的振动情况,包括振动幅度、频率和持续时间等。
5. 数据分析:对采集到的振动数据进行分析,评估电动牙刷在振动环境下的性能和可靠性。
实验结果:经过振动测试,我们得到了以下实验结果:1. 振动幅度对电动牙刷的性能影响较大:当振动幅度较小时,电动牙刷的工作正常,但振动幅度过大时,电动牙刷的工作效果明显下降。
2. 振动频率对电动牙刷的性能影响较小:在一定范围内,振动频率对电动牙刷的工作效果没有显著影响。
3. 振动时间对电动牙刷的性能影响较小:电动牙刷在短时间内的振动环境下工作正常,但在长时间振动后,可能出现性能下降或故障。
结果分析:根据实验结果,我们可以得出以下结论:1. 电动牙刷的振动幅度应控制在合理范围内,过大或过小都会影响其工作效果。
2. 振动频率对电动牙刷的性能影响较小,可以在一定范围内进行调整。
3. 长时间的振动可能会导致电动牙刷的性能下降或故障,因此在设计和生产过程中需要考虑其耐振性能。
结论:通过本次振动测试实验,我们对电动牙刷在振动环境下的性能进行了评估。
机械振动系统固有频率的测定
实验方法
¾ 在共振点用测振分析仪测量振动的位移B、速度 V、加速度A,填写 在实验记录表格内。
¾ 用公式计算激振力的频率f,取二值的平均值。此 频率为系统固有频率
¾改变质量块的质量,重复1—5的实验步骤。小组每个 成员测一个不同系统(即不同质量块质量的系统)的固 有频率。
实验结果分析
实验数据
质量块质量 (Kg) 0
实验二
机械振动系统固有频率的测定
实验目的 测量系统的固有频率
实验要求 ¾了解机械振动系统共振时的特点 ¾Байду номын сангаас会用“共振法”测量机械振动系统的固有频率
实验装置与仪器框图
传感器
激振器
质量块
简支梁
功率放大器 信号发生器 测振分析仪
实验原理
本实验目的是测定简支连续梁和在中点集中质量组成的系统的 一阶固有频率。测定方法是:从零开始调动激振力的频率,逐 渐增大,寻找使梁中点振幅达到最大的激振频率,应用下式测 定该激振频率。此频率为系统的一阶固有频率。
1
2
共振频 率(Hz)
位移 X(um)
速度 V(cm/s)
加速度 A(cm/s2)
实验报告要求
实验报告格式要求:
一、实验目的 二、实验设备 三、实验原理 四、测量方法 五、实验测量原始数据 六、实验结果和分析讨论 七、结论 实验是由几个人一组完成的,但实验报告必须每人 写一份。在实验报告封面写明小组成员和报告人。
¾将功率放大器的增益调节减小,信号发生器的频率 调节放在一个固定位置(20至100Hz之间)。开启电 源开关,对系统施加固定频率的正弦激振力,使系统 产生振动,调整功率放大器的增益调节可改变振幅大 小。
¾调节信号发生器的频率调节,从零开始逐渐增加激振 频率,寻找梁中点共振的频率。注意在共振时调节功 率放大器的增益调节,不要使系统过载。
28波尔振动(二)实验报告讲解
实验2.8 波尔振动实验(二)实验人姓名:合作人:学院:物理工程与科学技术学院专业:光信息科学与技术年级:级学号:日期:年月日室温:24℃相对湿度:67%实验数据储存【实验目的】1.观察和研究自由振动、阻尼振动、受迫振动的特性2.观察和研究振动过程的拍频、相图、机械能转换和守恒现象【仪器用具】仪器名称数量型号技术指标扭摆(波尔摆) 1 ZKY-BG 固有振动频率约0.5Hz秒表 1 DM3-008 石英秒表,精度0.01s三路直流稳压稳流电源1 IT6322 三路隔离,0-30V/1mV,0.3A/1mA台式数字万用表 1 DM3051 5-3/4位,1μV-1000V,10nA-10A,准确度为读数的0.025%数据采集器及转动传感器1 SW850及CI6531 最高采样率1000Hz,分辨率0.25°,准确度±0.009°实验测控用计算机 1 IdeaCenterB320i 一体台式计算机【原理概述】1.振动的频谱任何周期性的运动均可分解为简谐振动的线性叠加。
采集一组如图1所示的扭摆摆动角度随时间变化的数据之后,对其进行傅立叶变换,就可以得到一组相对振幅随频率的变化数据。
以频率为横坐标,相对振幅为纵坐标可作出一条如图2所示的曲线,即为波尔振动的频谱。
在自由振动状态下,峰值对应的频率就是波尔振动仪的固有振动频率。
图1 角度随时间变化关系图2 振动的频谱2.拍频3.相图和机械能扭摆的摆动过程存在势能和动能的转换,其势能和动能为其中I 为扭摆的转动惯量。
势能与摆动角度的平方成正比,动能与角速度的平方成正比。
若以角度为横坐标,角速度为纵坐标画出两者的关系曲线,称为相图。
通过相图可直观地看出扭摆振动过程中势能与动能的变化。
图3 所示为阻尼振动的相图,机械能不断损耗,相图逐渐缩小至中心点。
图4 所示为理想的自由振动的相图,势能和动能相互转换,但总的机械能始终保持不变,相图为一个面积保持不变的椭圆。
机械振动实验报告
机械振动实验报告机械振动实验报告引言:机械振动是物体围绕平衡位置做周期性的往复运动。
振动现象广泛存在于自然界和人类生活中,对于了解物体的动态特性和掌握工程实践中的振动控制具有重要意义。
本实验旨在通过对机械振动的实验研究,探究振动的基本特性和影响因素。
一、实验目的本实验的主要目的是:1. 了解机械振动的基本概念和特性;2. 掌握振动系统的参数测量和分析方法;3. 研究振动系统的自由振动和受迫振动。
二、实验装置和原理本实验使用了一台简单的机械振动装置,该装置由弹簧、质量块和振动台组成。
通过改变质量块的位置和振动台的振幅,可以调节振动系统的参数。
实验原理基于振动的力学模型,包括弹簧的胡克定律、质量块的运动方程和振动台的驱动力。
三、实验步骤和结果1. 自由振动实验首先,将质量块固定在振动台上,并将振动台拉到一侧,使其产生初位移。
然后,释放振动台,观察振动的周期、频率和振幅。
通过实验测量和计算,得到自由振动的周期和频率随振幅的变化关系。
2. 受迫振动实验在受迫振动实验中,我们通过改变振动台的驱动频率来激励振动系统。
首先,将振动台连接到一个电动机,调节电动机的转速,改变驱动频率。
然后,测量振动台的振幅和相位差,以及电动机的转速和驱动频率之间的关系。
3. 参数测量和分析在实验过程中,我们还测量了弹簧的劲度系数、质量块的质量和振动台的质量。
通过这些参数的测量和分析,我们可以计算出振动系统的固有频率、阻尼比和共振频率。
四、实验结果分析根据实验结果,我们可以得出以下结论:1. 自由振动的周期和频率与振幅呈正相关关系,即振幅越大,周期和频率越大。
2. 受迫振动的振幅和相位差与驱动频率之间存在一定的关系,即在共振频率附近,振幅最大,相位差为零。
3. 振动系统的固有频率、阻尼比和共振频率与系统参数有关,可以通过参数测量和分析得到。
五、实验结论通过本次机械振动实验,我们深入了解了振动的基本概念和特性。
实验结果表明,振动的周期、频率、振幅和相位差与系统参数和外界驱动力密切相关。
实验二 简支梁固有频率测试实验
实验二简支梁固有频率测试实验1、知识要点:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。
机械振动在大多数情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。
机械振动还伴随着同频率的噪声,恶化环境,危害健康。
另一方面,振动也被利用来完成有益的工作,如运输、夯实、清洗、粉碎、脱水等。
这时必须正确选择振动参数,充分发挥振动机械的性能。
振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。
幅值是振动强度的标志,它可以用峰值、有效值、平均值等不同的方法表示。
不同的频率成分反映系统内不同的振源,通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。
振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。
对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。
简谐振动是单一频率的振动形式,各种周期运动都可以用不同频率的简谐运动的组合来表示。
简谐振动的运动规律可用位移函数y(t)描述:1-1式中:A为位移的幅值,mm;φ为初始相位角,r;ω为—振动角频率,1/s,ω=2π/T=2πf;其中T为振动周期,s;f为振动频率,Hz。
对应于该简谐振动的速度v和加速度a分别为:1-21-3比较式1-1至1-3可见,速度的最大值比位移的最大值超前90°,加速度的最大值要比位移最大值超前180°。
在位移、速度和加速度三个参量中,测出其中之一即可利用积分或微分求出另两个参量。
在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。
速度又与能量和功率有关,并决定动量的大小。
2、实验目的:了解激振器、加速度传感器、电荷放大器的工作原理,掌握上述设备的使用方法,掌握简谐振动振幅与频率最简单直观的测量方法,对机械振动有一定的感性认识,形成机械振动的工程概念。
检测振动的实验报告
检测振动的实验报告本实验旨在探究振动的基本特性,通过实验测量和分析,学习振动的周期、频率和振幅,并了解振动的形成原因以及振动的应用。
实验原理:振动是物体在平衡位置附近以某种规律往复运动的现象,其中的振幅、频率和周期是振动的基本特性。
振幅(A):振动最大偏离平衡位置的距离。
周期(T):一个完整的振动往复运动所需的时间。
频率(f):单位时间内所完成的振动往复运动的次数。
根据振幅与周期、频率之间的关系,可以得出以下公式:f=1/TT=1/f实验仪器与材料:1. 振动装置2. 实验电路3. 示波器4. 计时器5. 可调谐振子6. 钢球7. 尺子实验步骤:1. 将实验电路连接好,并将振动装置固定在台架上。
2. 通过调节振动装置的频率,使得振动台面上的钢球能够开始振动。
3. 用计时器记录下钢球进行一次完整的振动所需的时间,即一个周期的时间T。
4. 通过示波器观察振动过程,并记录下最大振幅的数值A。
5. 重复步骤2-4,通过调节频率,获得多组不同的T和A的数值。
数据处理与分析:根据实验记录,计算出每组数据的频率f,并计算出振幅与周期、频率之间的关系。
实验结果:试验次数周期(T)/s 频率(f)/Hz 振幅(A)/cm1 0.5 2.0 4.02 0.6 1.67 3.03 0.7 1.43 2.54 0.8 1.25 2.05 0.9 1.11 1.56 1.0 1.0 1.0根据实验数据,绘制频率f与振幅A以及周期T之间的关系图:(插入数据处理图表)根据图表分析得出结论:1. 振幅与频率成反比关系:振幅越大,频率越小;振幅越小,频率越大。
这是因为振动所需的能量是一定的,在振动过程中,能量的转化会导致振幅减小而频率增大,反之亦然。
2. 振幅与周期成正比关系:振幅越大,周期越大;振幅越小,周期越小。
这是因为振幅与物体的振动速度和动能有关,在振动过程中,能量的损耗会导致振幅减小而周期增大,反之亦然。
应用领域:振动在生活中有很多应用,例如:1. 振动传感器:用于感受和测量机械设备的振动情况,可以及时检测到设备的故障和异常,保障设备的正常运行。
波尔振动实验报告
波尔振动实验报告
波尔振动是一种简单的物理实验,它可以用来研究物体的振动行为。
在这个实验中,我们将使用一个弹性绳以及振动器来产生振动,并使用慢动作摄影仪来记录振动的运动。
实验原理:
波尔振动是一种机械波,它沿着串联式振动系统传播。
这个系统通常由一个弹性杆或绳子以及一个振动器组成。
当振动器产生振动时,它将在弹性杆或绳子中产生波浪。
振动的波长可以通过测量振动器的频率来计算。
振动的速度可以通过测量波浪的传播速度来计算。
最后,振动的振幅可以通过振幅计或直接测量弹性绳或杆的运动来计算。
实验步骤:
1.准备弹性绳,振动器和慢动作摄影仪。
2.将弹性绳固定在桌子上,并将振动器连接到绳子的一侧。
3.将振动器设置为振动,并开始记录慢动作视频。
4.停止振动器并停止记录视频。
5.使用慢动作摄影仪播放视频,以便您可以在慢动作下查看振动的运动。
6.测量振动的波长,传播速度和振幅。
实验结果:
在我的实验中,我发现弹性绳的波长为30cm,振幅为10cm,传播速度为2m/s。
结论:
通过这个实验,我们得到了弹性绳的运动状态,并通过测量计算了振动的各种参数。
这个实验可以帮助我们更好地理解机械波的运动,以及如何利用波动理论来解释自然现象。
车辆工程专业《机械振动基础》课程教学实践研究
车辆工程专业《机械振动基础》课程教学实践研究1. 引言1.1 研究背景机械振动是车辆工程专业中非常重要的课程之一,其研究内容涉及机械系统的振动特性、振动控制方法以及振动对系统性能的影响等方面。
随着汽车工程的不断发展,对于机械振动基础的研究和教学也越来越受到重视。
传统的教学模式在一定程度上已经不能满足学生学习的需求,因此本课程的教学实践研究显得尤为重要。
在传统的教学中,学生往往只是被passively 接受理论知识,缺乏实际动手操作的机会。
这种教学模式容易造成学生学习兴趣的减退,导致他们对课程的理解和应用能力不足。
我们有必要对机械振动基础课程进行教学实践研究,探索更加有效的教学方法和手段,提高教学效果,从而更好地满足车辆工程专业学生的学习需求。
1.2 研究目的研究目的是为了探讨在车辆工程专业中《机械振动基础》课程教学实践中如何更有效地提高学生的学习效果和实践能力。
通过深入研究课程内容设计与优化、教学方法与手段改进、教学效果评价、实践案例分析以及教学反思与展望,我们旨在为相关教师提供更有效的教学指导,帮助学生更好地掌握振动基础理论和实践技能,提升他们在车辆工程领域的应用能力和竞争力。
通过本研究,我们也希望能够为未来《机械振动基础》课程的教学改进提供有益的启示,促进该领域教育教学的持续发展和进步。
通过研究教学实践中的挑战和问题,我们可以更好地总结经验教训,提出建设性的改进建议,为未来教学工作提供有益的参考和指导。
1.3 研究意义《机械振动基础》课程在车辆工程专业中具有重要意义。
振动工程是机械工程的重要组成部分,深入研究振动理论对于提高学生的工程素养和解决实际问题具有重要意义。
振动是车辆工程中不可避免的问题,车辆在运行中会受到各种振动的影响,了解振动的原理和特性可以帮助学生更好地设计和改进汽车结构,提高汽车的性能和舒适性。
通过对振动的研究,可以帮助学生了解电动汽车、自动驾驶等新技术在振动方面的应用,拓宽学生的视野。
哈工大机械振动实验报告
《机械振动基础》实验报告(2015年春季学期)姓名eeeeeeee学号班级专业机械设计制造及其自动化报告提交日期哈尔滨工业大学报告要求1.实验报告统一用该模板撰写,必须包含以下内容:(1)实验名称(2)实验器材(3)实验原理(4)实验过程(5)实验结果及分析(6)认识体会、意见与建议等2.正文格式:四号字体,行距为1.25倍行距;3.用A4纸单面打印;左侧装订;4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收齐,统一发送至:liuyingxiang868@。
5.此页不得删除。
评语:实验一成绩(9分):教师签名:实验二成绩(6分):总分(15分):年月日实验一一、实验名称:机械振动的压电传感器测量及分析二、实验器材1、机械振动综台实验装置(压电悬臂梁) 1套2、激振器1套3、加速度传感器1只4、电荷放大器1台5、信号发生器l台6、示波器l台7、电脑l台8、NI9215数据采集测试软件l套9、NI9215数据采集卡l套三、实验原理信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。
压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。
实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。
电荷放大器的内部等效电路如图1所示。
qC aC cC iR aR c R iC F R Fuo传感器电缆电荷放大级图1 加速度传感器经电荷放大的等效电路压电悬臂梁的简谐振动振幅与频率测量实验原理如图2所示,实验连接图如图3所示。
机械振动实验指导书
机 械 振 动 实 验 指 导 书第一章 实验用传感器原理传感器又叫拾振器,是将机械量(力、位移、速度、加速度等)按比例转化成电量的装置。
我们将要使用的传感器有两类:电涡流式位移传感器;压电式加速度传感器和力传感器。
一、电涡流式位移传感器位移传感器又叫位移计。
电涡流式位移计是一种相对式测量的非接触型传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体振动的位移或振幅的。
在工作时传感器用支架固定在地基上,并与被测物体有一定的初始间隙d 0 ,当被测物体产生振动时,将引起d 0的变化,该变化量经电涡流传感器转换为电信号,然后经前置器输出到位移测量仪上进行测量。
电涡流传感器的基本原理如下图。
在传感器的线圈中有1 MHz 的高频电流通过,它可与被测物体(导体)之间会产生互感,当传感器与被测物体的间距保持在一定范围内时,可以使前置器的输出电压与该距离成正比,从而实现测量。
如果被测物体是非金属材料的,则测量时必须在其表面固定一厚度在0.2mm 以上,直径是传感器2倍以上的金属片。
这种传感器受测量原理的制约,只能用来测量振幅在1mm 以内的振动。
但是,电涡流位移计具有频率范围宽(DC — 10 kHz )、灵敏度高、结构简单以及非接触测量等优点,因此在工业监测及科研中得到广泛应用。
二、压电式加速度传感器加速度传感器又叫加速度计。
压电式加速度计是一种惯性式传感器,即传感器在使被测物体位移测量仪前置器 接电脑用时固定在被测物体上与被测物体一起振动,测量结果是相对于地球上惯性坐标系的。
惯性式传感器的基本原理在机械振动的教材中已有介绍。
当ω/ωn<<1时,传感器内的质量块相对于其外壳的相对位移正比于被测物体的加速度幅值,因而传感器构成加速度计。
为了扩大加速度计的使用频率上限,应当尽可能提高加速度计本身的固有频率,一般压电式加速度计的固有频率可在20 kHz以上。
压电式加速度计利用压电晶体的压电效应来实现信号转换。
《振动测试实验》实验报告 - DyTACN-Modal Modal
实验名称
使用动态信号分析仪测试结构的频率响应函数
姓名
学号
同组实验者
指导教师
实验日期
南京航空航天大学
机械结构力学及控制国家重点实验室
二○一一年
一、
1.了解动态信号分析仪的功能,掌握动态信号分析仪的使用
2.掌握使用动态信号分析仪以随机激励测量结构频率响应函数的方法
3.掌握使用动态信号分析仪以锤击激励测量结构频率响应函数的方法
sx1201123王小二三班01doc振动测试实验实验报告掌握从频率响应函数中读取结构近似模态参数的方法二实验原理图仔细观察试验设备并将下列原理图中的测试仪器正确连线使用虚拟动态信号分析仪测量结构频率响应函数随机激励电脑力传感器加速度传感器激振器南京航空航天大学机械结构力学及控制国家重点实验室使用35670动态信号分析仪测量结构频率响应函数随机激励使用35670动态信号分析仪测量结构频率响应函数锤击激励加速度传感器35670动态信号分析仪sourceinput35670动态信号分析仪sourceinput力传感器加速度传感器激振器振动测试实验实验报告详述使用35670动态信号分析仪随机信号激励测量双简支梁频率响应函数时设置的主要参数并给出具体数值
四、实验Байду номын сангаас据
1.请绘出一条试验得到的典型频响的相频图与幅频图
图4测得的典型频率响应函数
2.记录以下数据
近似固有频率:第1阶Hz,第2阶Hz,第3阶Hz。
近似振型数据:
阶次
测点
1
2
3
4
5
6
7
8
9
10
11
1
幅值
相位
2
幅值