幂的运算测试题
幂的运算测试题
幂的运算测试题1.)2()2(101100--+=2.已知9=x m ,27=x n 则x n m 23-=( )3.已知在1km2的土地上,一年内从太阳得到的能量相当于燃烧约1053.1⨯t 煤所产生的能量,那么我国1066.9⨯km 2的领土一年内从太阳得到的能量相当于燃烧多少吨所产生的热量?如果每1t 煤燃烧所产生的能量可以使1032.3⨯kg20℃的水变成100℃的开水,那么我国的领土从太阳得到的能量可以将多少千克20℃的水变成100℃的开水?(保留两位有效数字)4. =--)2()2(23m n n m 52.055⨯=_____;200820074)25.0(⨯-=______5.如果x+4y-3=0,那么2x ·16y =6.已知3×9m×27m =321,则m 的值 .7、若2m =5,2n =6,则2m+2n = _________ . 8、已知3x (x n +5)=3x n+1+45,求x 的值. 9、若1+2+3+…+n=a ,求代数式))()(3221(yxyxx n n ny --…)(y nx 的值.10、已知2x+5y=3,求324yx⨯的值.11、已知251025472⨯=⨯⨯nm,求m 、n .12、已知a x =5,a x+y =25,求a x +a y 的值. 13、若x m+2n =16,x n =2,求x m+n 的值. 14、已知310=α,510=β,710=γ,试把105写成底数是10的幂的形式 _________ .15、比较下列一组数的大小.8131,2741,961 16、如果a 2+a=0(a≠0),求a 2005+a 2004+12的值. 17、已知9n+1﹣32n =72,求n 的值.18、⑴若b ab b a mn 1593)(=,求2m+n 的值.⑵若b ab abann n m 3521221))((=-++,则求m+n 的值.19、计算:)(21)(23322315)(b b a b a a m m n n m n +-+----+20、若x=3a n ,y=﹣错误!未找到引用源。
完整版)幂的运算练习题
完整版)幂的运算练习题幂的运算练题(每日一页)基础能力训练】一、同底数幂相乘1.下列语句正确的是()A。
同底数的幂相加,底数不变,指数相乘;B。
同底数的幂相乘,底数合并,指数相加;C。
同底数的幂相乘,指数不变,底数相加;D。
同底数的幂相乘,底数不变,指数相加答案:D2.a4·am·an=()A。
a4m B。
a4(m+n) C。
am+n+4 D。
am+n+4答案:B3.(-x)·(-x)8·(-x)3=()A。
(-x)11 B。
(-x)24 C。
x12 D。
-x12答案:A4.下列运算正确的是()A。
a2·a3=a6 B。
a3+a3=2a6 C。
a3a2=a6 D。
a8-a4=a4答案:C5.a·a3x可以写成()A。
(a3)x+1 B。
(ax)3+1 C。
a3x+1 D。
(ax)2x+1 答案:C6.计算:100×100m-1×100m+1答案:m+17.计算:a5·(-a)2·(-a)3答案:-a108.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)答案:-2(x-y)7二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(am)3=_______;(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.答案:(1)a56;(2)10^5m;(3)a3m;(4)b10m;(5)a1410.下列结论正确的是()A。
幂的乘方,指数不变,底数相乘;B。
幂的乘方,底数不变,指数相加;C。
a的m次幂的n次方等于a的m+n次幂;D。
a的m次幂的n次方等于a的mn次幂答案:B11.下列等式成立的是()A。
(102)3=105 B。
(a2)2=a4 C。
(am)2=am+2 答案:B12.下列计算正确的是()A。
70道幂运算计算题(试题版) -百度版
70道七下数学《幂运算》易错点幂运算计算题(试题版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.2.计算a2•a4+(a3)2﹣32a63.计算:(2x2)4﹣x•x3•x4.4.计算:a3•a4•a+(﹣2a4)2.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.6.化简:a•a5﹣(﹣2a3)2.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.8.计算:(﹣a2)3•(﹣a3)2.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.10.计算:(2x2)3﹣x4•x2.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.14.(﹣x3)2(x2)3+(﹣x3)415.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.16.计算:(2x2)3+x4•x217.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;18.(a3)2•(a4)3+(a2)519.计算:a3•a•a4+(﹣2a4)2+(a2)4.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)621.计算:y3•(﹣y)•(﹣y)5•(﹣y)222.计算:a2⋅a4+(3a3)2﹣10a623.(﹣x)•(﹣x12)•(﹣x3)3.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.25.a2•a4+2a•a5﹣(2a3)2.26.计算:(﹣x)3•x•(﹣x)2.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.28.计算:22m+4m﹣22m+129.计算:(a﹣b)2(b﹣a)4.30.计算:(﹣2x2)3+x2•x431.x2•x5•x+(﹣2x4)2+(x2)433.计算:(﹣x)3x5+(2x4)2.34.计算:﹣(a2)4•(a2)335.计算:(﹣3x3)2﹣x2•x4﹣(x2)336.计算:x•x3+(x2)237.a3•a4•a+(a2)4+(﹣2a4)2.38.计算:a•a3﹣(2a2)2+4a439.计算:(2x2)3﹣x2•x4.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a242.计算:(m4)2+m5•m3+(﹣m)4•m4.43.计算:a+2a+3a+a2•a5+a•a3•a3.44.计算:a5•(﹣a)3+(﹣2a2)4.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.49.计算:(2x)3(﹣5xy2).50.计算:2x4•x2+(﹣3x3)2﹣5x6.51.(﹣a2b)(2ab)3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.54.计算:(2a)2﹣a×3a+a2.55.计算:(﹣2x2)3+2x2•x456.计算:2a3•a+(2a2)2﹣5a457.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.58.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)359.计算:2a2•3a3﹣2a•(﹣a2)2.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x361.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)362.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.63.计算:22017×.64.简便计算:0.1252016×(﹣8)2017.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]66.x2•(﹣x)2•(﹣x)2+(﹣x2)367.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.68.计算:(﹣0.125)2014×82015.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.70.计算0.1259×(﹣8)10+()11×(2)12.70道七下数学《幂运算》易错点幂运算计算题(答案版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.【解答】解:原式=x2•x12=x14.2.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.3.计算:(2x2)4﹣x•x3•x4.【解答】解:原式=16x8﹣x8=15x8.4.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.【解答】解:原式=m6﹣8m6﹣m6=﹣8m6.6.化简:a•a5﹣(﹣2a3)2.【解答】解:a•a5﹣(﹣2a3)2=a6﹣4 a6=﹣3a6.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.【解答】解:(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6=﹣(x﹣y)•(x﹣y)2•(x﹣y)3﹣(x﹣y)6=﹣(x﹣y)6﹣(x﹣y)6=﹣2(x﹣y)6.8.计算:(﹣a2)3•(﹣a3)2.【解答】解:原式=﹣a6•a6=﹣a12.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.【解答】解:原式=m12+m12﹣(﹣8m12)=m12+m12+8m12=10m12.10.计算:(2x2)3﹣x4•x2.【解答】解:(2x2)3﹣x4•x2=8x6﹣x6=7x6.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【解答】解:原式=﹣a8+a8﹣4a8=﹣4a8.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)【解答】解:(a﹣b)2•(b﹣a)3•(b﹣a)=(b﹣a)2•(b﹣a)3•(b﹣a)=(b﹣a)2+3+1=(b﹣a)6.13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.【解答】解:原式=x12+x6+x12=2x12+x6.14.(﹣x3)2(x2)3+(﹣x3)4【解答】解:原式=x6•x6+x12=x12+x12=2x12.15.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.【解答】解:原式=﹣(a﹣b)6+8(a﹣b)6=﹣7(a﹣b)616.计算:(2x2)3+x4•x2【解答】解:原式=8x6+x6=9x6.17.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;【解答】解:[(a﹣b)3•(a﹣b)]2•(b﹣a)5=(a﹣b)7•[﹣(a﹣b)5]=﹣(a﹣b)12.18.(a3)2•(a4)3+(a2)5【解答】解:原式=a6•a12+a10=a18+a10.19.计算:a3•a•a4+(﹣2a4)2+(a2)4.【解答】解:a3•a•a4+(﹣2a4)2+(a2)4=a8+4a8+a8=6a8.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)6【解答】解:原式=(n﹣m)2×(n﹣m)3×(n﹣m)6=(n﹣m)2+3+6=(n﹣m)11.21.计算:y3•(﹣y)•(﹣y)5•(﹣y)2【解答】解:原式=y3•(﹣y)•(﹣y)5•y2=y3+1+5+2=y11.22.计算:a2⋅a4+(3a3)2﹣10a6【解答】解:原式=a6+9a6﹣10a6=0.23.(﹣x)•(﹣x12)•(﹣x3)3.【解答】解:(﹣x)•(﹣x12)•(﹣x3)3=﹣x22.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.【解答】解:[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.=(a+b)6﹣(a+b)6+2(a+b)8=2(a+b)8.25.a2•a4+2a•a5﹣(2a3)2.【解答】解:a2•a4+2a•a5﹣(2a3)2=a6+2a6﹣4a6=﹣a6.26.计算:(﹣x)3•x•(﹣x)2.【解答】解:(﹣x)3•x•(﹣x)2=﹣x3•x•x2=﹣x6.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.【解答】解:(x2n)2•(x3)2n=(x n)4•(x n)6=24×26=210.28.计算:22m+4m﹣22m+1【解答】解:原式=22m+(22)m﹣2×22m=22m×(1+1﹣2)=0.29.计算:(a﹣b)2(b﹣a)4.【解答】解:原式=(a﹣b)2(a﹣b)4=(a﹣b)6.30.计算:(﹣2x2)3+x2•x4【解答】解:(﹣2x2)3+x2•x4=﹣8x6+x6=﹣7x6.31.x2•x5•x+(﹣2x4)2+(x2)4【解答】解:原式=x8+4x8+x8=6x8.32.计算:2x7•(﹣x3)﹣(﹣x3)2•x4【解答】解:原式=﹣2x10﹣x10=﹣3x10.33.计算:(﹣x)3x5+(2x4)2.【解答】解:原式=﹣x8+4x8=3x8.34.计算:﹣(a2)4•(a2)3【解答】解:﹣(a2)4•(a2)3=﹣a8•a6=﹣a14.35.计算:(﹣3x3)2﹣x2•x4﹣(x2)3【解答】解:原式=9x6﹣x6﹣x6=7x6.36.计算:x•x3+(x2)2【解答】解:原式=x•x3+(x2)2,=x4+x4=2x4.37.a3•a4•a+(a2)4+(﹣2a4)2.【解答】解:原式=a3+4+1+a2×4+4a8,=a8+a8+4a8,=6a8.38.计算:a•a3﹣(2a2)2+4a4【解答】解:原式=a4﹣4a4+4a4=a4.39.计算:(2x2)3﹣x2•x4.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.40.计算:(2a2)3﹣a4•a2﹣(a3)2【解答】解:原式=8a6﹣a6﹣a6=6a6.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a2【解答】解:(2a2)3+(﹣3a3)2+(a2)2•a2=23×(a2)3+(﹣3)2×(a3)2+(a2)2×a2=8a6+9a6+a6=(8+9+1)a6=18a6.42.计算:(m4)2+m5•m3+(﹣m)4•m4.【解答】解:(m4)2+m5•m3+(﹣m)4•m4=m4×2+m5+3+m4+4=3m8.43.计算:a+2a+3a+a2•a5+a•a3•a3.【解答】解:原式=(a+2a+3a)+(a7+a7)=6a+2a7.44.计算:a5•(﹣a)3+(﹣2a2)4.【解答】解:a5•(﹣a)3+(﹣2a2)4.=a5•(﹣a3)+16a8=﹣a8+16a8=15a8.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.【解答】解:原式=﹣(a﹣b)6﹣(a﹣b)6+(a+b)6=﹣2(a﹣b)6+(a+b)6.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.【解答】解:a3•a•a5+a4•a2•a3=a9+a9=2a9.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.【解答】解:原式=(x﹣y)3+4+2=(x﹣y)9.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.【解答】解:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3=(﹣2)6•a6﹣(﹣3)2•(a3)2+(﹣1)3•(2a)6=64a6﹣9a6﹣64a6=﹣9a6.49.计算:(2x)3(﹣5xy2).【解答】解:原式=8x3•(﹣5xy2)=﹣40x4y2.50.计算:2x4•x2+(﹣3x3)2﹣5x6.【解答】解:2x4•x2+(﹣3x3)2﹣5x6=2x6+9x6﹣5x6=6x6.51.(﹣a2b)(2ab)3+10a3b4.【解答】解:原式=(﹣a2b)•8a3b3+10a3b4=﹣8a5b3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.【解答】解:a3b2•(﹣b2)2+(﹣2ab2)3=a3b2•b4﹣8a3b6=a3b6﹣8a3b6=﹣7a3b6.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.【解答】解:原式=﹣8x6+9x6+x6=2x6.54.计算:(2a)2﹣a×3a+a2.【解答】解:原式=4a2﹣3a2+a2=2a2.55.计算:(﹣2x2)3+2x2•x4【解答】解:原式=﹣8x6+2x6=﹣6x6.56.计算:2a3•a+(2a2)2﹣5a4【解答】解:原式=2a4+4a4﹣5a4=a4.57.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.【解答】解:原式=a2•16a4﹣9a6﹣8a6=﹣a658.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3【解答】解:(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3=﹣8x6y3﹣9x6y3=﹣17x6y3.59.计算:2a2•3a3﹣2a•(﹣a2)2.【解答】解:2a2•3a3﹣2a•(﹣a2)2.=2a2•3a3﹣2a•a4=6a5﹣2a5=4a5.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.61.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)3【解答】解:原式=9a6•a3﹣4a2•a7﹣125a9=9a9﹣4a7﹣125a9=﹣120a9.62.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.【解答】解:原式=﹣a2•(﹣a3)•(﹣a)+(﹣a6)﹣a6=a6﹣a6﹣a6=﹣a6.63.计算:22017×.【解答】解:22017×.=22017××(﹣)=[2×(﹣)]2017×(﹣)=﹣1×(﹣)=.64.简便计算:0.1252016×(﹣8)2017.【解答】解:0.1252016×(﹣8)2017,=×(﹣8)2016×(﹣8),=(﹣1)2016×(﹣8),=﹣8.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]【解答】解:原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.66.x2•(﹣x)2•(﹣x)2+(﹣x2)3【解答】解:原式=x2•x2•x2﹣x6=x6﹣x6=0.67.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.【解答】解:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.68.计算:(﹣0.125)2014×82015.【解答】解:原式=(﹣0.125×8)2014×8=(﹣1)2014×8=8.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.【解答】解:原式=﹣82015×(﹣0.125)2015×(﹣0.125)+(0.25)3×23×23=﹣[8×(﹣0.125)]2015×(﹣0.125)+(0.25×2×2)3=1×(﹣0.125)+1=0.875.70.计算0.1259×(﹣8)10+()11×(2)12.【解答】解:0.1259×(﹣8)10+()11×(2)12=(﹣0.125×8)9×(﹣8)+(×2)11×2=8+2=10.。
完整版)幂的运算练习题及答案
完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299 B。
-2 C。
299 D。
22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xy B。
(-3x^2y)^3=-9x^6y^3C。
D。
(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXX^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1) D。
a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。
0个 B。
1个 C。
2个 D。
3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。
幂的混合运算50道计算题
幂的混合运算50道计算题幂的混合运算计算题一、不带解析的30道计算题1. a^2 · a^3 div a^42. (b^3)^2 · b^4 div b^53. (-2a^2)^3 div (2a^2)4. 3x^2y · (-2xy^2)^35. (m^3n)^2 · (-m^2n^3)6. (-3a^3b^2)^2 div (-a^2b)^37. a^5 · a^3 - a^4 · a^48. (2x^3)^2 - 3x^3 · x^39. (-a^2)^3 + (-a^3)^210. 4y^2 · (y^3)^2 div 2y^511. (a^4)^3 div a^6 · a^212. (-2x^2y^3)^2 · (xy)^313. 5m^2n · (-3mn^2)^214. (3a^2b^3)^2 div (a^3b^4)15. (-x^3)^2 · (-x^2)^316. 2a^3 · (a^2)^3 div a^517. (4b^3)^2 · b div 2b^718. (-3m^2)^3 div m^319. a^2 · (a^3)^2 div (a^4)^220. (-2x^3y)^3 · (x^2y^2)^221. 3a^4 · a^2 - 2(a^3)^222. (5y^4)^2 · y div 5y^923. (-a^3)^2 · (-a^2)^3 div a^524. 2x^5 · (x^3)^2 div x^1025. (3m^3n^2)^2 · (-mn)26. (-2a^2b^3)^3 div (2a^3b^2)27. a^6 div a^3 · a^2 - a^528. (4x^4)^2 - 2x^3 · x^529. (-m^3)^2 · m · (-m^2)^330. 3y^3 · (y^2)^3 div y^7二、带解析的20道计算题(一)1. 计算:a^2 · a^3 div a^4解析:根据同底数幂相乘,底数不变,指数相加,可得a^2 · a^3=a^2 + 3=a^5;再根据同底数幂相除,底数不变,指数相减,所以a^5div a^4=a^5 - 4=a。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂的运算评估测试题及答案
七(下)数学第八章 幕的运算 评估测试卷(时间: 90分钟 满分:100分) 、选择题(每小题2分,共50分) 0 — 1 1 —4 — 2 — A • 3+2 =1B 2 • 10 * 10 =0 • 01C 1 •下列计算不正确的是 2•下列计算不正确的是 2n a n =a 2D • b 38a 3A • a m - a m =a 0=iB 5 4C • ( — x) * ( — x) =- x D3•下列计算正确的是 A • x 8*x 4=x 2 B • a 8* a —8=1 m • a *(a n * a p )=a m —n 「p—3- 2 ,• 9 * (3 ) =l( )C • 3100* 399=3D • 510 * 55 * 5—2=53() 4 • 100m * 1000n的计算结果是()A • 100000^B • 10涼3n Cmnmn• 100D. 10001 5 •若一=2,贝U x 2+x2 的值是()x1A • 4B • 4-C• 0 D44m+n m —26 •在等式 a * A=a 中A 的值应是()n — 2A • a m nB • aC • a m nD . a n7 • a 2m+4等于 ()A • 2a m+2B • (a 》2 4 aC • a 2 • a m+4D •a 2a m+a 48 • x m+\j x m —1 *(x 。
2 的结果是 ()A • — lB • 1C • 0 D• 士 19•下列等式正确的是 ()① 0 . 000 126=1 • —4 26 X 104② 3 • 10 X 10 =31000③ 1 • 1 X 10 =0 • 000 011④ 12 600 000=1 •626 X 10A •①②B •②④C •①②③D•①③④2 3 210 • ( — X 10 ) X (1 3 4 2 • 5 X 10 )的值是 ( )11 141414A • — 1 • 5X 10B • 10C • — 4X 10D. — 1011 •下列各式中-定正确的是().(2x — 3) 0=1 二0=02 0.(a — 1) =1 D(m2+1) 0=112. 2008 1 2009_2 的结果是13.14 .15 .16 .17 .18 .19 .20 .21 .22 .23 .24 .009A . 11 -I 2丿6m x 3m若 2 >2 >2 ,.4m丿.20092* .2008⑴22009m为正整数,则x的值是3m .2mm+n ,、在算式a —()=—m+n+2am-2a 中括号内的式子应是a n—2—m+r— 2aa n+2(2 X 3 - 12 -2) 0结果为.12 .无意义结果为a2的式子是.a4u a a 一1)F面计算正确的是.a4a2=a8B(—2 a3) 2等于.4a5下列运算正确的是.x5U x=x5下列运算正确的是10/4 2、8x + (x + x )=xn+2 n+1 —nx — x =x计算 25m+ 5m#1 纳米=0 . 000 000 001.2 . 5X 10—8米 B.3 .3.6.b +b =b.4a65 2x — x=x.20米,5X 10国家游泳中心一一“水立方”是北京将260 000用科学记数法表示应为6 _ 4.0. 26X 10 B . 26X 10下列运算正确的是5 _.x +x =x.4a9(—y)2 ( —y)D..(xy)4nx — x.5m5纳米应表示为.x l_l x7=x8—4a69=y6 * (xy) 2=(xy)2n 3nx—n=x9米 C . 2 . 5X 10 —10米3 7 10—y • (— y) =y3 3=x y.20m2 . 5X 109米2008奥运会场馆之一,它的外层膜的展开面积约C . 2 . 6 X105D. 2 . 6 X 106260 000平方米,八 —2 3— 6 … “ 2、36 — “2、353 A . a a =a B . ( — y ) =y C . (m n) =mn国家教育部最近提供的数据娃示, 2008年全国普通高考计划招生 667万人,这一数据科学记数法表示为(结果保留两个有效数字 ) () A . 6. 6X 106B . 66X 106C. 6 . 7X 106D. 67 X 106填空题(每小题2分,共44分)2 2a • ( — a ) = ________ .(x ) • (x ) - x= ____________ .—b 2 • ( — b) 2 ( — b 3)= ________ .(x — y) 2 (y — x) 3 = ________ .0 . 1252008 X 82009= ___________ .nn — 1—4 + 8 ________________ = ._ 3_ m+1_ 2m+4a L ________ L a =a已知 10a =5, 10b =25,则 103a —b = ________________ .n+1 2n+1已矢知 Ax =x ,贝H A= ___________ .83880 . 25 X 64 X 25 X 4 = __________ .22— 4—5 X ( — 5) X 5 = ___________ .(a 2)2 ( a b)3 — ( — a 2b)3( — a )= _____________ .(—a )6r — a )3= ______________ .a 2.. a 律 a 6= _______ .0 — 2 — 15 X 5 +25 = ____________ .3,2610m • (m ) + m = _________ .m+1 n — 1—x + x = ____________ . (a 叶1) n + a mn = ________ . 若 22n =4,贝H n= ________ . 若 64 X 83=2x ,贝U x= ________ .1 —若 x 3=( — 2) 5 + ( —)2,贝H x= _______ . 225._ 、 26. 27.28.29.30.31 .32. 33. 34. 35. 36. 37. 38.39.40.41 .42. 43. 44. 45. 46. 47.三、 48. 49.2 2 2D . - 2x +5x =3x用科学记数法表示0 . 000 000 125= ____________ .计算题(48〜51题每小题4分,52、53题每小题5分,共26分)3 2 2(—3 a ) - an+1 n— 1 n 2x L + x (x ) (x 工 0)5x LJ X (■:3x2n一 2 2x +3( — x) -x n—3• (—x)3X 313 .254 27 .A 14n5 34 . x 35—1 37 . 0 38 .15 46解:解: 解: 解: 解: 解:n+1X32)283a3)2 +n— 1-X —15b72 0X 200929参考答案16 . B 17(y — x) 530 .D 18 . B 193—n31 . — 23210 . B 11 . DD 20 . A 21 . C22 .B 23 . Ca347a2(x n)39.a ma 40 . 1 41 5m 42 . — x43144 . 1na25X10—7=9 a6- a2 =9 a6—2=9a42 (n+1)+(n —1) —2n 0=x =x =14 6 2x — x L xl_l x=x(兀_3 0 + _丄i2原式=3x n— 3x n=0 .9 2—x 9=0 .2 —3 2 2 2 0(—3X 3 ) —( —3 ) - 3 X 2009 =—27 —9X 1 =—36—2、—350.51 .52.53.1 .12 .24.26.33.36.45.48.49.50.51 .52.53.。
幂的运算测试题
幂的运算测试题一.选择题:(每题3分,共计27分)1.下列运算正确的是 ( )A .a 5·a 2=a 10 B .(a 2)4=a 8 C .a 6÷a 2=a 3 D .a 3+a 5=a 82.下列各式(1)55b b ∙52b = (2) (-2a 2)2=4-4a (3) (1-n a )3=13-n a (4) 963321256454y x y x =⎪⎭⎫ ⎝⎛,其中计算错误的有 ( ) A.1个 B.2个 C.3个 D.4个3.若a m =2,a n =3,则am+n 等于( ) A .5 B .6 C .8 D .9 4.在等式a 3·a 2·( )= a11中,括号里面代数式应当是( )A .a 7 B .a 8 C .a 6 D .a 3 5.下列四个算式:(-a )3·(-a 2) 3=-a 7;(-a 3) 2=-a 6;(-a 3)3÷a 4=a 2; (-a )6÷(-a )3=-a 3.其中正确的有( ) A .1个 B .2个 C .3个 D .4个6.计算9910022)()(-+-所得的结果是( )A.-2 B.2 C.-992D.992 7.当m 是正整数时,下列等式(1)22)(m m a a =(2)m m a a )(22=(3)22)(m m a a -=(4)m m a a )(22-= 一定成立的有( )A.4个 B.3个 C.2个 D.1个8.计算()734x x ∙的结果是 ( )A. 12x B. 14x C. x 19 D.84x9. 计算- b 2·(-b 3)2的结果是( )A 、-b 8 B 、-b 11 C 、b 8 D 、b 1110. a 5可以等于( )A 、(-a )2·(-a)3 B 、(-a)·(-a)4 C 、(-a 2)·a 3 D 、(-a 3)·(-a 2)二、填空题(每空2分,共46分)11.计算:102·108 = ; (m 2)3= ; (-a )4÷(-a )= ; (-b 3)2= ; (-2xy )3= ; =-⋅-22)(x x ; ()()=-⋅-32a b b a ; 2332)()(a a -+-= ; (-t 4)3÷t 10=____ 0.25×55=____ 200820074)25.0(⨯-=______16a 2b 4=(_______)2; ()(2⋅-m )=m 7; ×2 n -1=2 2n +3;(π-3)0 ,(-21)100×2101= 。
(完整版)幂的运算练习及答案
(完整版)幂的运算练习及答案初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数次数 2、多项式2a 2b-35是次项式。
各项的系数分别是3、在下列各式53b a +, 3x ,π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式有多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是()A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是()A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为()A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为()A 、a<b<c<d< p="">B 、a<b<d<c< p="">C 、b<a<c<d< p="">D 、a<d<b<c< p="">6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -?-?-?-(4) 2344()()2()()x x x x x x -?-+?---?四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关,求y 的值。
八年级数学幂的运算测试题
幂的运算一、选择题1.下列各式运算正确的是 ( )A .2a 2+3a 2=5a 4B .(2ab 2)2=4a 2b 4C 2a 6÷a 3=2a 2D .(a 2)3=a 52.若a m =2,a n =3,则a m +n 的值为 ( )A .5B .6C .8D .93.在等式a 3·a 2·( )=a 11中,括号里填入的代数式应当是 ( )A .a 7B .a 8C .a 6D .a 34.下列计算正确的是 ( )A B .C .D .5.下列算式:①(-a )4.(-a 3c 2)=-a 7c 2;②(-a 3)2=-a 6;③(-a 3)3÷a 4=a 2;④(-a )6÷(-a )3=-a 3.其中,正确的有 ( )A .4个B .3个C .2个D .1个6.下列运算正确的是( )A .xy y x 532=+B .36329)3(y x y x -=-C .442232)21(4y x xy y x -=-⋅ D .333)(y x y x -=- 7.下列等式中正确的个数是( )①5510a a a += ②6310()()a a a -⋅-= ③4520()a a a -⋅-= ④556222+=A .0个B .1个C .2个D .3个8、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( ) A. ()12--n c B.nc 2- C.c -n 2 D.n c 29.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x -10.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -11.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)12.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 13.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a b B .3222536a b a b + C .2332223236a b a b a b -++D .232236a b a b -+二、填空题 1.计算:(-x 2) 4=____________. ()22433xy x y ⎛⎫-- ⎪⎝⎭=___________. 2 .(a +b )2·(b +a )3=________; (2m -n )3·(n -2m )2=________. 3 .(________)2=a 4b 2; ________×2n -1=22n +3 4 .若2m ·2·8=211,则m =________ 若2m+1=10,2n+2=12,则2m+n =________ 5 )83(4322yz x xy -⋅ =________. )312)(73(3323c b a b a -=________. 6 .如果一个三角形的底边长为2x 2y-y 2,高为6xy ,则这个三角形的面积是________• 7 单项式5x m y n 和-8xy m+1的积等于-40x 3y 4则m= n=三.用简便方法计算:(1)221(2)44⨯ (2)1212(0.25)4-⨯(3)、0.125 2004×(-8)2005 (4)、20072006522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭(5)、()5.1)32(2000⨯1999()19991-⨯ (6)、)1(1699711111-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛11四.先化简,再求值22(69)(815)2(3)x x x x x x x x -----+-,其中16x =-。
完整版)幂的运算测试题(经典题型
完整版)幂的运算测试题(经典题型幂的运算性质1.下列哪个式子计算过程正确。
A) x3 + x3 = x33 = x6B) x3 · x3 = 2x3 = x6C) x · x3 · x5 = x35 = x8D) x2 · (-x)3 = -x23 = -x52.化简(-x)3 · (-x)2,结果正确的是。
A) -x6B) x6C) x5D) -x53.下列计算中有误的是。
A) (x5)2 = x25B) (x5)2 = x7C) (x2)5 = x10D) x5 · y2 = (xy)7E) x5 · y2 = (xy)10F) x5y5 = (xy)54.下列哪个运算正确。
A) a4 + a5 = a9B) a3 · a3 · a3 = a9C) 2a4 × 3a5 = 6a9D) (-a3)4 = a75.下列哪个计算正确。
A) (-1) = -1B) (-1)1 = +1C) 2a3 ÷ (-11/3) ÷ (-a)7 = 3D) (-a2)/(3a) = (-1)/(3a)6.下列哪个计算中有误。
A) 5a3 - a3 = 4a3B) xm + xm = x2mC) 2m · 3n = 6mnD) am1 · a = am27.计算(a-b)2 · (b-a)3的结果是。
A) (a-b)5B) -(a-b)5C) (a-b)6D) -(a-b)68.计算(-2) + (-2)的结果是。
A) -2B) 2C) -299D) 2999.当n是正整数时,下列哪个等式成立。
1) a2m = (am)22) a2m = (a2)m3) a2m = (-am)24) a2m = (-a2)m10.若2m = 5,2n = 6,则2m+2n = 8011.(2m-n)·(n-2m) = (n-2m)2-(2m-n)212.要使(x-1)-(x+1)有意义,x的取值应满足|x|。
(完整版)幂的运算经典习题(最新整理)
八、数的计算
1、下列计算正确的是 ( )
A. 1 4 3 1 34
B. 5 10 20 1
C. 2 5 2 102
D. 1 2 81 9
2、 1 2 1 0 53 52
3 9
3、 10 3( 2 105)0 - 1 2 10 2
10
4、4-(-2)-2-32÷(3.14-π)0
x10 (x)2 x3 = 五、幂的混合运算 1、a5÷(-a2 )·a=
2、( a 2b ) ab3 2 =
6、 (a b)5m b a 2m b a 7m (m 为偶数,
a b)
7、 y x2 x y+(x y)3+ 2(x y)2 y x
3、(-a3)2·(-a2)3
2、(3x-2)0=1 成立的条件是_________. 3、用科学记数法表示 0.000695 并保留两个有
8、下列运算中与 a 4 a 4 结果相同的是( )
A. a2 a8
B. a 2 4
C. a4 4
D. a2 4 a2 4
*9、32m×9m×27=
效数字为_______. 4、计算(-3-2)3 的结果是_________. 5、若 x2+x-2=5,则 x4+x-4 的值为_________. 6、若 x= 2 -1,则 x+x-1=__________.
(D)9
幂的运算练习
5、
1
xy
2
z
3
2
3
=
2
6、计算 x4 3 x7 的结果是 ( )
A. x12
B. x14
7、 a2 4 a3
C. x 19 D. x84
幂的运算基础练习题
幂的运算基础练习题一、同底数幂相乘1.下列语句正确的是A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2.a4·am·an=A.a4m B.a4 C.am+n+ D.am+n+43.·8·3=A.11B.24C.x1D.-x124.下列运算正确的是A.a2·a3=a B.a3+a3=2a C.a3a2=aD.a8-a4=a4 5.a·a3x可以写成A.x+1B.3+1C.a3x+1 D.2x+16.计算:100×100m-1×100m+17.计算:a5·2·38.计算:2·3-4·二、幂的乘方9.填空:7=________;m=_______;3=_______;5=_________;2·3=________.10.下列结论正确的是A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a的m次幂的n次方等于a的m+n次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是A.3=10 B.2=a C.2=am+212.下列计算正确的是A.3·2=a6·a6=2a6B.4·a7=a7·a2=a9C.3·2=·=a12D.-3·2=-·a4=a1313.计算:若642×83=2x,求x的值.三、积的乘方14.判断正误:积的乘方,等于把其中一个因式乘方,把幂相乘n=x·ynn=3nnm=ambnn=nanbncn15.4=A.ab1 B.a4b C.a5b7D.a4b12D.2=x2n )16.3=A.a6b9c3B.-a5b6c C.-a6b9c D.-a2b3c317.3=A.a3m+3b6nB.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318.如果3=a9b15,那么m,n的值等于A.m=9,n=-4B.m=3,n=C.m=4,n=D.m=9,n=6一、综合测试19.计算:11· 10×102×1 000×10n-33312·[2]·32二、创新应用20.下列计算结果为m14的是A.m2·m B.m7+m C.m·m6·m D.m·m8·m621.若5m+n=56·5n-m,求m的值.22.已知2×8n×16n=222,求n的值.23.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想27.×4[2]×4212××13×95-82003×2002+17×417答案:1.D .D .C .C .C .1002m+1 .-a108.原式=5-4·[-]=259.a5 105m a3m b10m a1710.D 11.B 12.D13.左边=2×83=84×83=87=7=221而右边=2x,所以x=21.14.× × × × ∨15.D 16.C 17.C 18.C11 19.原式=×·xm+1·x2-m·y·yn-1311 =xm+1+2-m·y1+n-1=x3yn9原式=10×102×103×10n-3=101+2+3+n-3=103+n 原式=22·2·c2·2·2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+212×4182933×3原式=··2=-·2=-8=-22220.C 解析:A应为m9,B应为2m7,D应为m15.21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,而右边为222比较后发现1+7n=22,n=3.23.x6n+x4n·x5n=x6n+x9n=2+3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.1111115.3222==9111,2333==8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533392)×42=8111 原式=6×29=6×23=23=227.原式=A.-2B.2C.-D.2.当n是正整数时,下列等式成立的有A.4个B.3个C.2个D.1个3.计算:=.4.若,,则=.5.下列运算正确的是A. B.C.D.6.若.7.10.11.计算:12.若13.用简便方法计算:,则求m+n的值.1.32.3..m=2,n=5.10 .87.8.9、1210.1 11. D2. B3. 04. 180.C.12.08.C.210.311. 12. 13. 1 1 14.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是 A.an与bnB.a2n与b2n C.a2n+1与b2n+1 D.a2n-1与-b2n-1 17.已知9n+1-32n=72,求n的值. 18.若3=a9b15,求2m+n的值.19.计算:an-52+20.若x=3an,y=-12n-1a,当a=2,n=3时,求anx-ay的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.2.计算:m+3?2?m?23.若=a5b3,则求m+n的值.平面图形的认识提高练习班级:________姓名:___________一、选择题:1、下列图形中,不能通过其中一个四边形平移得到的是:2、在下列各图的△ABCBDCD中,正确画出AC边上的高的图形是:BDACBCBDDAAC3、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为:A、600m2B、551m2C、550m2D、500m24、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于:A、56°第3题图第4题图B、68°1C、62° D、66°5、a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:A、1个、下列B、2个叙述中C、3个,正确D、4个的有:①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形. A、0个、如图,B、1个,则下C、2个列各式中D、3个正确的是OP∥QR∥ST:A、∠1+∠2+∠3=180° C、∠1-∠2+∠3=90°B、∠1+∠2-∠3=90° D、∠2+∠3-∠1=180° ?9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:A、88mmB、96mmC、80mmD、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:A、75°B、60°C、65°D、55°二、填空题1、如图,面积为6cm的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ACED的面积为_______ cm.A l1第1题图l222第2第3题图2、如图,l1∥l2,AB⊥l2,垂足为O,BC交l2于点E,若∠ABC=140°,则∠1=_____°.、光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角。
幂的运算专题训练
幂的运算测试题一、选择题(每小题3分,共30分)1.下面计算正确的是 ( )A .24848a a a a ==÷÷B .20102-=-C .1)54(0= D .224)()(m m m -=-÷-2.芝麻作为食品和药物,均广泛使用。
经测算,一粒芝麻约有0.00000201千克,用科学计数法表示为( )A .2.01×106-千克 B.0.201×105-千克 C.20.1×107-千克 D.2.01×107-千克3.下列运算错误的是 ( )A .36328)2(b a b a -=-B .126342)(y x y x = C .28232)()(y x y x x =⋅- D .77)(ab ab -=-4.若m 为正整数,且a=-1,则-(-a m 2)12+m 的值是( )A.1B.-1C.0D.1或-15.化简x(y -x)-y(x -y)得( )A 、x 2-y 2B 、y 2-x 2C 、2xyD 、-2xy6. 计算()()2000199919992 1.513⎛⎫⨯⨯- ⎪⎝⎭的结果是( )A .23B .-23C .32D .-32 7. 下列结论中正确的有( )①(x n m +)3=x 3++n m , ② m 为正奇数时,等式(—4)m =—4m 一定成立③ 等式(-2)m =2m ,无论m 为何值时都不成立,④三个等式(-a 2)3=a 6, (-a 3)2=a 6,〔-(-a )2〕3=a 6都不成立。
A.1个B.2个C.3个D.4个 8.02267,56,43⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-三个数中,最大的是( ) A.243-⎪⎭⎫ ⎝⎛ B.256⎪⎭⎫ ⎝⎛ C.067⎪⎭⎫ ⎝⎛ D.不能确定9.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.若142-=y x ,1327+=x y ,则y x -等于( )A .-5 B.-3 C.-1 D.1二、填空题:(每小题3分,共30分)11. 5k-3=1,则k -2=12. (a -b )·(b -a )2m ·(b -a )3=__________13. ()[]()=-⋅÷-4212452a a a ______ 14. (1) -27a 9 b 12=( )3 ,(2)23294,272,3____m n m n --===则15. 若10m =5,10n =3,则102m-3n 的值是 16.若(a-3)0-2(3a-6)2-有意义,那么a 的取值范围是_______17.若1284×83=2n ,则n=____18.计算(—p )8·(—p 2)3·〔(—p )3〕2的结果是_____19.若2x+5y —3=0,则4x ·32y = .20. 已知223344556,5,3,2====d c b a ,那么d c b a 、、、从小到大的顺序是: .三、解答题(共40分)21.计算:(本题共8分):(1)100×10n ×1000 (2)2202211(2)()()[(2)]22----+---+--;22.计算:(本题共8分)⑴ (31a 2b )3·(-9ab 3)÷(-21a 5b 3) (2) (-)1452004×()514200523.计算:(本题共8分) (1) 32236222()()()()x x x x x ÷+÷-÷- (2)(x-y )3·(y-x )2·(y-x )524.(4分)若52x+1=125,求(x -2)2005+x 的值.25.计算:(本题共8分)(1)若x n 2=4,且n 为整数,求(x n 3)2-4(x 2)n 2的值。
幂的运算练习题及答案
幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。
在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。
1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
完整版)幂的运算经典习题
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
幂的运算单元测试题
幂的运算检测题 姓名一、选择题(每小题3分,共24分) 1.下列各式中错误的是( )()[]()623y x y x -=- 84216)2(a a =-363227131nm n m -=⎪⎭⎫⎝⎛-6333)(b a ab -=-2.若2=ma,3=na ,则nm a+等于 ( )A.5B.6C.8D.9 3.在等式⋅⋅23a a( )11a =中,括号里填入的代数式应当是 ( )A.7a B.8a C.6a D.3a 4. 计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.992 5. 下列4个算式中,计算错误的有 ( )()()-=-÷-24c c 2c336)()(yy y -=-÷-33z z z =÷ 44a a a mm=÷ A.4个 B.3个 C.2个 D.1个6.如果(),990-=a()11.0--=b ,235-⎪⎭⎫ ⎝⎛-=c ,那么c b a ,,三数的大小为( )A.c b a >>B.b a c >>C.b c a>> D.a b c >>7.计算3112)(n n x x x +-⋅⋅的结果为( )A.33+n xB.36+n xC.nx12 D.66+n x8.已知 n 是大于1的自然数,则()()11+--⋅-n n c c 等于( )A.()12--n c B.nc 2- C.n c 2- D.n c 2二、填空题(每空2分,共22分)9.最薄的金箔的厚度为m 000000091.0,用科学记数法表示为 m ;10.()=-⋅⎪⎭⎫ ⎝⎛nn221 ;=÷-++112n n y y ;=-23])[(m .11.=+⋅+32)()(a b b a ;=-⋅-23)2()2(m n n m .12.( )242b a =; 32122+-=⨯n n .13.若2,xa =则3x a = .14.计算:20072006522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭= .15.,=+,,15441544833833322322222⨯⨯=+⨯=+··· 若bab a ⨯=21010+(b a 、为正整数),则 =+b a .三、解答题(共54分)16.计算(每小题3分,共21分):(1)3223)()(a a -⋅-(2)543)()(t t t -⋅-⋅-(3)234)()()(q p p q q p -⋅-÷-(4)23)3()()3(a a a -⋅---(5)022)14.3(3)2(4π-÷----(6) ()()2302559131-÷-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--(7) ()5.1)32(2000⨯1999()19991-⨯17.(5分)先化简,再求值:32233)21()(ab b a-+-⋅,其中441==b a ,.18.(5分)已知 1632793=⨯⨯m m,求m 的值.19.(5分)已知2x +5y -3=0,求y x324∙的值.20.(5分)已知a m =2,a n =3,求a 2m-3n的值。