腔体滤波器设计解析

合集下载

金属同轴腔滤波器设计要点

金属同轴腔滤波器设计要点

金属同轴腔滤波器设计摘要近年来,随着移动通信、导航技术和电子对抗的快速发展,对现有微波元器件的需求和性能的改进都提出了很高的要求。

同轴腔体带通滤波器作为微波带通滤波器中应用最广的一种滤波器,具有功率容量大、插入损耗低、寄生通带远等特点,在现代无线通信、数字电视广播、卫星导航、遥测遥感和雷达等系统中得到了广泛的应用。

本文对同轴腔体带通滤波器做了详细的分析,分析讨论了同轴谐振腔的电磁特性,主要包括谐振频率、谐振腔的耦合结构和外部品质因数等。

利用响应函数得到腔体之间的耦合系数。

应用三维全波仿真软件,分析了腔体结构参数与耦合系数和耦合窗的关系。

最后论文给出了同轴腔滤波器设计实例,测试结果性能良好,符合设计指标要求。

关键词:微波滤波器带通滤波器同轴谐振腔全波仿真分析1ABSTRACTWith the rapid development of mobile communication system, the quality of microwave components is becoming more and more important. As a microwave band-pass filter, coaxial cavity filter is widely applied in modern wireless communication and radar systems, for its high power capacity, low insertion loss and far spurious pass-band.Based on the research of coaxial filter, the electromagnetic properties of coaxial cavity resonator are proposed in the paper, including resonant frequency, coupling structure and external Q of the cavities. The coupling coefficient of filter can be getting by utilizing response function. The width of coupling windows and in-put/out-put coupling lines are acquired by full wave simulation and optimization. At last, a coaxial cavity filter is designed and measured, which has perfect performances and is satisfied with the technical specifications.Key Words: microwave filter band-pass filter coaxial resonator full wave simulation目录一绪论 (1)1.1前言 (1)1.2常见的滤波器形式 (1)1.3国内外发展现状 (3)二滤波器的基本概念 (5)2.1滤波函数 (5)2.2微波滤波器参数 (7)2.3低通滤波器到带通滤波器的转换 (7)三同轴腔带通滤波器的设计 (8)3.1滤波器的设计步骤 (8)3.2滤波器的设计方法 (8)3.2.1前言 (8)3.2.2设计指标 (9)3.2.3参数计算 (9)3.3仿真与测试 (10)3.3.1仿真 (10)3.3.2 实物加工与测试 (13)总结 (14)参考文献 (16)一绪论1.1 前言随着通信、广播、雷达、测量、遥感、空间技术和电子对抗技术等的逐步发展,从米波段一直到毫米波段以至更广阔的波段上,微波滤波器在雷达、信号处理、通信等不同电路系统的传输、变换处理和收发中有广泛应用[1]。

hfss腔体滤波器设计实例

hfss腔体滤波器设计实例

hfss 腔体滤波器设计实例在微波带通滤波器的设计中,我们经常采用腔体交指型结构。

它具有插损小、带外抑制度高、结构紧凑、体积小等优点。

对于腔体交指型带通滤波器的设计,现在比较广泛的的思路是:只考虑相邻两耦合杆之间的耦合关系,忽略相邻杆以外的边缘电容的影响,因而采用两个沿结构传输的TEM 正交模来描述,即奇模和偶模。

而实际在这种滤波器结构中所有的谐振杆之间都存在耦合,因此这种方法只是一种简化的近似设计。

采用这种方法设计的产品性能差,表现在带内插损和波纹大,矩形系数不好等,一般无法满足现在通讯的要求,我们还要花大量的精力对滤波器进行调整,以提高其性能。

甚至需要重新加工再生产,这大大增加了产品的研制成本和周期。

因此我们必须对滤波器进行精确的设计,即在工程设计中将所有谐振杆的耦合都考虑进去,而这不是传统的手工计算可以完成的,必须借助计算机软件进行辅助设计。

自上世纪70 年代以来,CAD 工具在微波工程领域得到越来越广泛的应用。

经过多年的发展,目前国内外已有多种微波CAD 软件,而以Ansoft公司的HFSS 效果最佳。

通过该软件我们可以方便的得到各种物理模型,进而对该模型进行电磁场的仿真。

计算结束后我们就可以得到所需的场结构和相关的S 参数,也就知道了该滤波器的电性能情况。

本文用一个实例介绍了一种设计思路,借助计算机利用Ansoft 公司的HFSS 软件对腔体交指型滤波器进行精确设计,实验表明用这种方法设计的滤波器有通带平坦、插损小、精确度高等特点。

hfss 腔体滤波器设计实例下面通过一个S 波段的五级滤波器的设计实例加以说明。

首先我们通过简化的近似计算得到该滤波器的几何数据的初值,由于这类滤波器的粗略设计的方法已经很成熟,因此这里不进行详细介绍,直接给出(详细情况可参看《现代微波滤波器的结构与设计》)。

但这一步也是非常重要的,初值的好坏直接关系到我们利用软件计算优化的快慢。

我们知道,对交指型滤波器的理论分析由平行耦合线滤波器演化而来。

腔体滤波器设计

腔体滤波器设计

V Transmitted
V Transmitted V Incident
=
Transmission Coefficient =
T
V
=
=
t t
Insertion Loss (dB) = - 20 Log
Trans Inc
V V
Gain (dB) = 20 Log
Trans Inc
- 20 log
2005-3-27
Allrizon Communication Corp
Measuring S-Parameters
a1
Incident
S
21
Transmitted
DUT
b2 Z0
Load
Forward
S S = =
S 11 b1
Reflected
a2 = 0
11
b1 Reflected = a Incident 1
2005-3-27
Allrizon Communication Corp
耦合谐振滤波器最基本的耦合结构
馈源只与一个谐振器耦合,负载 端仅与一个谐振器耦合,且中间只 有一条耦合路径即主路径,各级谐 振器之间逐级耦合。
2005-3-27
Allrizon Communication Corp
梳状线滤波器结构示意图
For reflection, a transmission line terminated in a short or open reflects all power back to source
2005-3-27 Allrizon Communication Corp
Reflection Coefficient

传统的滤波器一般是利用金属同轴腔体实现金属同轴腔体由于自身

传统的滤波器一般是利用金属同轴腔体实现金属同轴腔体由于自身

介质滤波器介绍
传统应用的滤波器一般是由金属同轴腔体实现(实现原理如图1所示),金属同轴腔体由于自身材料损耗的原因,在限定腔体尺寸的情况下,无法取得很高的品质因数(Q值),导致各项性能指标都受到了限制,即使在金属表面采取一定的表面处理,也无法取得令人满意的结果。

图1 腔体滤波器实现结构原理
在欧美以及日本等发达国家,频率应用非常密集,导致了普通金属腔体滤波器不能实现高抑制的系统兼容问题,而采用介质材料来制作腔体滤波器就从根本上解决了上述问题,介质滤波器抛弃了传统的金属腔体,采用了一种高Q值的陶瓷介质材料(如图2所示),大大减小了腔体自身的损耗,提高滤波器的各项性能,特别是在相邻较近的频带能实现高抑制要求,而对插入损耗指标影响很小。

相比传统金属腔谐振器,介质滤波器具有插损小、高抑制、温度漂移特性好的特点,而且功率容量和无源互调性能都得到了很大的改善。

介质滤波器作为一款新型的无源射频器件,代表着高端射频器件的发展方向,凭借其优良的性能,势必会在民用通信领域中拥有为广阔的应用空间。

图2 介质滤波器
而介质滤波器应用到的介质谐振子不是自然界存在的,必须进行人工合成制作,需要通过各种材料,按照一定的比例铸压成为目前我们使用的介质谐振腔,制作工艺复杂也就导致了其价格要远大于
一般金属腔体滤波器。

另外,由于需要实现高Q值的谐振腔体实现需求,而且介质滤波器的体积也明显大于传统滤波器(如下图所示)。

850MHz频段的传统金属腔滤波器与介质滤波器比较
目前国内各个设备供应商都在积极的研发新型的介质滤波器产品,但是受到介质滤波器的技术难度以及开发成本高等各因素的限制,介质滤波器的应用不是十分广泛。

腔体滤波器设计报告 2

腔体滤波器设计报告 2

腔体滤波器设计报告学生姓名:彭聪学号:201222040413单位:物理电子学院时间:2013年5月28日一、技术指标:频率范围:1710~1880MHz;带内插损:≤0.8dB带外抑制:@960MHZ>80dB@2200MHz>80dB带内波动:≤0.6dB端口阻抗:50ohm二、理论分析微波滤波器被广泛的应用于微波通信、雷达导航、电子对抗、卫星通信、导弹制导、测试仪表等系统中,是微波和毫米波系统中不可缺少的重要器件,其性能的优劣往往直接影响整个通信系统的性能指标。

1、微波滤波器分类2、微波滤波器一些理论(1)Q 值与谐振微波滤波器是由谐振回路以某种方式排列再通过耦合结构把这些谐振回路组合在一起构成的。

不同的谐振回路,谐振频率的范围和Q 值差别很大。

因此,不同结构的滤波器适合不同的工作频率和带寛。

LC 滤波器、声表面波/体声波滤波器、螺旋滤波器、梳状滤波器的工作频率比较低。

介质滤波器、波导滤波器工作频率比较高。

谐振回路Q 值高、滤波器工作带寛可以做的比较窄。

(2)滤波器的性能指标a.频率范围21ωω−和带宽bw :对于带通和带阻滤波器而言,也指衰减加大到某一确定值时的频率范围,如11121dB dB dB BW f f =−称为1dB 通带带宽或1dB 阻带带宽。

带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨率。

b.插入损耗:插入损耗即描述了通带内的功率损耗大小。

其表达式为:22110log10log L inP IL S P =−=−c.回波损耗(Reflection Loss 缩写RL ):回波损耗是描述滤波器性能的一个敏感参数,同时回波损耗(RL )、驻波系数(VSWR )和反射系数(Γ)三个参数是相关的,通常用来表征滤波器反射特性。

回波损耗的公式定义以及三者之间的关系为:22110log10log(10log()1R in P VSWR RL P VSWR −=−=−=−Γ+d.带外抑制(Rejection 缩写RJ ):在给定的频率下,带外信号的插入损耗大于最小带内信号的插入损耗的数值。

腔体式带通滤波器的研究与设计

腔体式带通滤波器的研究与设计

西安科技大学硕士学位论文腔体式带通滤波器的研究与设计姓名:***申请学位级别:硕士专业:通信与信息系统指导教师:***2011论文题目:腔体式带通滤波器的研究与设计专业:通信与信息系统硕士生:刘健(签名)指导老师:刘新良(签名)摘 要近年来,随着移动通信、电子对抗和导航技术的飞速发展,对新的微波元器件的需求和现有器件性能的改善都提出了很高的要求。

微波带通滤波器作为一种重要的微波元器件在近几年来也得到了大力的发展。

因此,对微波滤波器理论和设计方法的研究,已经引起了国内外器件工程师的极大兴趣。

本文以腔体式带通滤波器为研究的对象,采用综合法的经典公式与计算机仿真工具相结合的方法简化了设计过程,提高了设计和加工的准确性。

在整个研究的过程中,概括起来主要做了以下几个方面的工作:1. 从滤波器的网络设计理论入手,在耦合谐振腔带通滤波器的理论基础上,研究了从低通原型滤波器到耦合谐振腔可调带通滤波器的设计过程。

2. 针对腔体式带通滤波器的设计,研究分析了滤波器频率变化和滤波器性能参数之间的关系,得出实际设计时所需参数和滤波器结构的设计公式。

3. 依据设计指标,明确采用切比雪夫函数带通滤波器,并利用HFSS仿真软件对几何尺寸参数的初值进行了仿真、优化,以得到滤波器几何尺寸参数的终值,使其能够满足最初的设计指标要求,最终的仿真结果说明了这种方法的可行性和实用性。

关键词:带通滤波器;微波滤波器;同轴腔;切比雪夫滤波器;HFSS研究类型:应用研究Subject : The Cavity Asana Band-pass Filter Research and Design Specialty :Communication and Information SystemName : Liu Jian (Signature)Instructor:Liu Xin-liang (Signature)ABSTRACTWith the rapid development of the mobile communication industry,the electronic countermeasure and the technologies of navigation in recent years,the demand of new microwave components and the requirement of improving the quality of the existing microwave components are very high.Therefore the Microwave Band-pass filter, as an important microwave component, is well developed in recent years. Domestic and foreign engineers are very interested in the research of Microwave filters theory and practical design for the microwave filters.This paper chooses cavity asana band-pass filter as research object, combining the method of the synthetic classic formula with computer simulation tools to study, therefore simplifies the design process, and improve the accuracy of designing and machining. In the process. The study mainly includes several aspects:1.Starting from the network design theory of filter, based on coupling resonatorband-pass filter theory, this paper studies the design process developed from Low-pass prototype filter to Coupling resonance cavity adjustable band-pass filter.2. To design cavity band-pass filter, this paper researches and analyzes the relationshipbetween filter frequency variation and filter performance parameters. As a result, it finds out the designing formula.3. According to the design index, this research makes use of Chebyshev functionband-pass filter, and uses HFSS simulation software to simulate and optimize the initial geometric parameters to get the final value of geometric parameters of filter, so it can meet its original design requirements. The final simulation results demonstrate the feasibility and practicability of this method.Key words:Band-pass filter Microwave filter Coaxial-cavity Chebyshev HFSS Thesis : Application Research1 绪论1 绪论1.1 滤波器概述当前,无线通信技术高速发展,业务范围不断扩大,人们对无线产品的需求迅速增长。

宽带同轴腔体滤波器的设计

宽带同轴腔体滤波器的设计

宽带同轴腔体滤波器的设计
宽带同轴腔体滤波器的设计:
宽带同轴腔体滤波器(wideband coaxial cavity filter)是一种用于过滤信号的电路,主要由多个同轴腔体组成。

它通常应用在射频(RF)和微波(microwave)系统之间,用于过滤掉某一特定频率以外的所有不需要的信号。

它能够有效地将某一特定范围内的信号通过,而抑制其他频率范围内的信号。

宽带同轴腔体滤波器的设计主要由以下几个步骤组成:
第一步:定义滤波器的频率范围。

根据不同的应用场景,需要选择恰当的频率范围。

第二步:选择合适的材料。

由于同轴腔体滤波器需要使用电磁相关的材料,因此需要根据应用场景选择合适的材料。

第三步:确定同轴腔体的尺寸。

根据滤波器的频率范围和材料性质,需要确定同轴腔体的尺寸和形状以满足该频率范围的电磁特性。

第四步:确定滤波器的工作电压和阻抗。

为了确保滤波器的正常工作,必须确定滤波器的工作电压和阻抗。

第五步:调整滤波器的特性。

调整滤波器的特性可以通过改变滤波器中的阻抗元件的参数来实现。

最后,宽带同轴腔体滤波器的设计需要充分考虑上述几个因素,以确保滤波器能够正常工作,并达到所需的性能要求。

同轴腔体滤波器设计入门-无交叉耦合结构

同轴腔体滤波器设计入门-无交叉耦合结构

同轴腔体滤波器设计入门-无交叉耦合结构同轴腔体滤波器设计入门(无交叉耦合结构)仿佛记得射频铁三角是功率、频率、和阻抗。

涉及射频电路设计,总是离不开这三个要素。

那么在滤波器的设计中最关键的因素是什么呢?答案是谐振和耦合。

无论什么样的滤波器,终归离不开谐振和耦合。

以通信系统中常见的同轴腔体带通滤波器为例,谐振就是单腔的谐振,对于对称结构而言,单腔的自耦合为零,换句话说,每一个腔体都谐振在该带通滤波器的中心频率上。

同轴腔体滤波器的单腔可以被看作是一个由同轴传输线和分布电容构成的并联谐振器。

那么很容易理解,在谐振频率的时候,并联谐振器的对地阻抗为无穷大,即满足Z0tan(Bd)=1/wC的条件。

此时,信号可以无衰减的从一个腔耦合到下一个腔。

什么又是耦合呢,耦合指的是谐振器之间电磁场的相互作用,耦合包括级间耦合和输入输出耦合。

对于无交叉耦合的结构来说,级间耦合仅仅包涵非相邻腔之间的耦合。

对于级间耦合,需要理解阻抗变换器的概念,我记得《现代微波滤波器的结构与设计》上有句话是这么描述的,一个理想的阻抗变换器,好像是工作在任意频率上的四分之一波长变换线一样。

换句话说,一个理想的级间耦合在任意频率上都是四分之一波长的。

并不依赖于频率而存在。

实际中的耦合当然不是这样,腔间主耦合常常是磁耦合,而交叉耦合滤波器有时会用到电耦合。

那么通过电路仿真会发现,电耦合和磁耦合对于带外抑制的影响是不同的。

地址:深圳市南山区西丽镇新光路工业区10栋4楼腔间耦合为磁耦合时,阻带高端的抑制度会优于阻带低端。

而电耦合时,恰恰相反。

这是因为磁耦合和电耦合都是依赖于频率的,它们仅仅通带的在中心频率处可等效为四分之一波长线。

而带外则稍有差异。

造成了抑制度的差异。

那么腔间的耦合如何识别呢。

在HFSS中可以通过电磁场来判断腔间耦合。

磁耦合的情况下,在对称面上磁场是连续的,电耦合的情况下呢,对称面上电场是连续的。

这是一种很简单的方法适合初学者。

而对于一个有经验的设计者对于常用的耦合都非常熟悉,可以凭经验判断出耦合的方式。

3.4GHz梳状线腔体滤波器的设计.

3.4GHz梳状线腔体滤波器的设计.

本科生毕业论文设计题目: 3.4GHz 梳状线腔体滤波器的设计系 部 学科门类 工 学 专 业 电子信息工程 学 号姓 名指导教师年 月 日装 订 线3.4GHz梳状线腔体滤波器的设计摘要在当今通信领域中,微波滤波器在通信设备中占有重要的地位,在微波毫米波通信、卫星通信、雷达、导航、制导、电子对抗、测试仪表等系统中,有着广泛的应用。

梳状线滤波器具有小体积、高Q值、高功率容量等优点,是微波滤波器中常见的腔体形式,工程实用性较强,广泛应用于通信及其它领域。

本文从滤波器的工作原理出发,分析了梳状线带通滤波器的结构特征,并利用软件Ansoft HFSS进行仿真,最后基于仿真结果制作出实物并进行了调试,使其最终达到预期的指标。

关键词:梳状线滤波器仿真调试ABSTRACTIn the field of current communication, Comb-line filters occupies an important position in communication equipment. Microwave filters has a wide range of applications in microwave communication, millimeter wave communication, satellite communication, radar, navigation, guidance, electronic against, testing instruments system. Comb-line filters have small size, high Q value, high power capacity etc, and is common in microwave filters of the recessed forms, therefore it widely used in communications and other fields . Based on the theory of filters, the structure characters of comb-line band-pass filter have been analyzed and the typical parameters have been calculated. Then the filter is simulated with software Ansoft HFSS. At last, I have manufactured a practicality based on the results of simulation and debugged it for the purpose of achieving anticipative targets.Key words:Comb-line Filter Simulation Debug目录一绪论 (1)1.1 课题来源与意义 (1)1.2 国内外发展状况 (1)1.3 课题的研究内容、方法及手段 (1)二梳状线滤波器的综合介绍 (3)2.1 梳状线滤波器的特点 (3)2.2 梳状线滤波器的结构 (3)2.3 梳状线滤波器的工作原理 (3)三梳状线滤波器的设计 (4)3.1 梳状线滤波器设计思路 (4)3.2 梳状线滤波器的技术指标 (4)3.3 梳状线滤波器的归一化原型 (4)3.4 频率变换 (5)3.5 相关的理论计算过程 (5)四运用Ansoft HFSS进行仿真设计 (7)4.1 单腔模型及仿真结果 (7)4.2 双腔模型及仿真结果 (8)五梳状线滤波器的实物制作与测试 (11)六总结与结论 (12)参考文献 (13)一绪论1.1 课题来源与意义本课题来源于科研生产。

腔体滤波器的设计

腔体滤波器的设计

腔体滤波器的设计中耦合窗口的计算马军昌魏文珍(西安富士达科技股份有限公司,西安710077)Designing Of Cavum Filter(二)Ma junchang Wei wenzhen(XI,AN FORSTAR S&T CO.,LTD,XI,AN710077)摘要:根据螺旋滤波器耦合窗口,通过螺旋线与谐振杆转换,得出腔体耦合窗口的计算,与实例有很好的吻合。

关键词:同轴腔体滤波器耦合窗口,面积等效Abstract: according to the spiral bandpass coupling window, through spirals and resonant stem conversion, draw recessed coupled with examples of calculation, window has very good agreement. Keywords: coaxial recessed filter coupling window, an area of equivalent 1 引言腔体滤波器谐振腔之间的耦合窗口问题比较复杂,用数学分析的方法来解决比较困难,尤其耦合窗口的高度与耦合系数之间的关系,目前还没有准确的数学分析和计算。

现在可以借鉴的技术只有螺旋谐振器的耦合系数与窗口高度之间一个关系曲线。

如果将其通过等效转换,将螺旋线等效为腔体滤波器的谐振杆,那么问题将会得到解决。

为了更好的说明这个问题,在推导完成之后,再通过一个例题去验证它。

2 同轴腔体之间的耦合2.1 耦合窗口高度和耦合系数之间的关系螺旋滤波器的窗口h的定义图(右)通过实验的方法得到如下的关系曲线:上图中:K—耦合系数;h—窗口高度;d—螺旋线直径上图曲线可以简化为下列公式:(1)上式中的K—耦合系数、是按预畸设计法得到的。

所谓预畸设计法:为了在元件有耗的情况下准确地实现各类响应,须把元件的损耗预先考虑进去,然后进行综合得出有耗时的设计参数来。

hfss腔体滤波器设计实例

hfss腔体滤波器设计实例

hfss腔体滤波器设计实例HFSS(High Frequency Structure Simulator)是一种用于电磁场仿真和分析的软件工具。

它广泛应用于高频电磁场的建模和分析,可用于设计各种射频(RF)和微波器件,如天线、滤波器、耦合器等。

本文将以HFSS腔体滤波器设计实例为题,介绍如何利用HFSS软件进行腔体滤波器的设计。

我们需要明确腔体滤波器的基本原理。

腔体滤波器利用腔体的谐振模式和谐振频率来实现信号的滤波。

通过调整腔体的几何参数和材料特性,可以实现对特定频率范围内的信号进行滤波。

因此,腔体滤波器的设计关键在于确定合适的腔体结构和参数。

接下来,我们将以一个实际的设计例子来具体介绍HFSS腔体滤波器的设计流程。

假设我们要设计一个工作在2.4GHz频段的微波腔体滤波器。

首先,我们需要选择合适的腔体结构。

常见的腔体结构有矩形腔体、圆柱腔体等,根据设计要求选择合适的结构。

在HFSS中,我们可以通过绘制几何模型来定义腔体结构。

绘制完成后,我们需要定义腔体的材料属性,包括介电常数、磁导率等。

这些参数将直接影响腔体的谐振频率和模式。

接下来,我们可以利用HFSS的求解器进行电磁场仿真。

在仿真前,我们需要设置仿真的频率范围和精度。

根据设计要求,选择合适的频率范围,并设置适当的网格精度。

仿真完成后,我们可以通过HFSS的结果分析工具来分析仿真结果。

主要包括频率响应、S参数、电场分布等。

根据设计要求,对仿真结果进行评估和调整。

如果需要改善滤波器性能,可以通过调整腔体的几何参数和材料特性来实现。

在设计过程中,需要注意以下几点。

首先,腔体的尺寸和几何参数应该合理选择,以满足设计要求。

其次,材料的选择和特性对滤波器性能影响很大,需要选择合适的材料并设置正确的特性。

最后,仿真结果的准确性和稳定性也需要重视,可以通过调整网格精度和求解器参数来提高仿真结果的准确性。

HFSS是一种强大的工具,可以用于腔体滤波器的设计和分析。

腔体滤波器设计参数

腔体滤波器设计参数

腔体滤波器设计参数
腔体滤波器是一种常见的微波滤波器,用于在微波频段实现信号的选择性过滤。

腔体滤波器的设计参数包括中心频率、带宽、插入损耗、群延迟、阻抗匹配、尺寸和材料等。

首先,中心频率是腔体滤波器设计的关键参数之一,它决定了滤波器能够通过的频率范围。

中心频率的选择应该与应用场景和信号频率相匹配,通常通过腔体的尺寸和电磁模式来确定。

其次,带宽是指滤波器在中心频率附近的频率范围,决定了滤波器的频率选择性能。

带宽的选择需要考虑到信号的带宽需求以及滤波器的实际工作条件,通常通过腔体的谐振模式和传输线的特性来实现。

插入损耗是指信号通过滤波器时所损失的功率,是衡量滤波器性能好坏的重要指标之一。

设计腔体滤波器时需要尽量降低插入损耗,可以通过优化腔体结构、选择合适的材料和加工工艺来实现。

群延迟是指信号通过滤波器后引起的相位延迟,对于时域要求严格的应用,群延迟的稳定性和低波动性是重要考虑因素之一。

阻抗匹配是指滤波器输入输出端口与外部电路之间的阻抗匹配,设计时需要考虑端口的阻抗特性以及传输线的匹配网络,以确保滤
波器与外部电路之间的良好匹配。

此外,腔体滤波器的尺寸和材料也是设计参数中需要考虑的重
要因素。

尺寸和材料的选择会影响到滤波器的工作频率范围、功耗、制造成本等方面。

综上所述,腔体滤波器的设计参数涉及到中心频率、带宽、插
入损耗、群延迟、阻抗匹配、尺寸和材料等多个方面,设计时需要
综合考虑这些参数,并根据具体的应用需求进行合理的选择和优化。

腔体滤波器设计参数

腔体滤波器设计参数

腔体滤波器设计参数
腔体滤波器是一种常用于信号处理的滤波器,它利用腔体的共振特性来滤除特定频率的信号。

设计腔体滤波器时,需要考虑以下几个参数。

1. 中心频率:腔体滤波器的中心频率是指滤波器对信号进行滤波的中心频率。

中心频率的选择取决于所需滤波的频率范围。

对于窄带滤波器,中心频率通常选择在信号的频谱中心。

2. 带宽:带宽是指在中心频率附近允许通过的频率范围。

带宽的选择取决于所需滤波的频率范围和滤波器的应用。

较窄的带宽可以提高滤波器的选择性,但可能导致信号衰减。

3. 增益:增益是指滤波器在中心频率处对信号的放大或衰减程度。

增益可以用来调节滤波器的输出信号强度,以适应系统的需求。

4. 阻带衰减:阻带衰减是指滤波器在中心频率附近对非理想频率的信号的衰减程度。

阻带衰减的大小取决于滤波器的设计和制造质量。

5. 相位响应:相位响应是指滤波器对输入信号的相位特性的影响。

良好的相位响应可以保持信号的相位准确性,避免引入额外的相位失真。

腔体滤波器的设计参数包括中心频率、带宽、增益、阻带衰减和相位响应。

根据具体的应用需求和信号特性,可以灵活选择这些参数,
以实现滤波器的设计目标。

设计一个良好的腔体滤波器,需要综合考虑这些参数,并进行合理的优化和调整,以满足实际应用的要求。

腔体滤波器设计-毕业论文开题报告

腔体滤波器设计-毕业论文开题报告

腔体滤波器1、研究背景及意义近些年来随着毫米波、微波技术的迅速发展,无线通信得到了空前的发展,微波频带出现了相对拥挤的状况。

所以,能够选频的微波滤波器越来越受到研究者的重视。

而微波滤波器作为一种频率选择装置,是现代毫米波、微波通信系统中一个非常重要的组成部分,是微波、毫米波系统中不可缺少的器件之一,其性能的优劣可以影响到整个系统的质量。

微波滤波器是无线通讯系统的重要组成部分,可以用于过滤或分离不同频率信号的一种元器件;其主要功能是只让需要的信号通过,抑制不需要的信号,使其不能通过滤波器。

从而有效地解决了当前急剧发展的无线通信信号所带来的有限频谱资源不足和紧缺的问题。

对于这些滤波器我们的要求也越来越苛刻。

差损小、功率大、体积小、重量轻等,另外在实际应用中,滤波器的生产周期也变得非常短,这就需要设计人员迅速而精确的设计出相应的滤波器。

滤波器种类很多,不同的场景和频段使用的滤波器不同。

腔体滤波器就是众多滤波器的一种。

它具有性能稳定、Q值高、功率大等特点,往往是同类型中最优秀的,所以具有非常高的研究价值。

滤波器设计的方法很多,可以概括如下:分布参数法影像参数法集总参数法网络综合法分析参数法,是根据插入相移函数和插入衰减函数,再应用波导或传输线理论,从而就可以得到微波滤波器的元件结构。

但我们使用最多的还是集总参数法,其中,影像参数法是以影像参数为基础,通过微波结构来模拟等效电路中的各个元件;网络综合法是以相移和衰减函数为基础,利用网络综合理论,先得出集总元件低通原型电路,再将集总元件原型电路中的各元件用微波结构来实现。

现在主要采用网络综合法,使滤波器的设计流程得到了简化。

随着计算机技术的发展,我们也可以通过电磁仿真软件进行仿真。

电磁仿真软件使设计滤波器的网络综合法得到不断的改进,这也极大的促进了滤波器设计技术的发展。

2、腔体滤波器的发展历史1901年,马可尼使用800kHz中波信号进行了横跨大西洋的无线电报试验,开创了人类通信的新纪元。

Ansoft_HFSS9.0进行腔体滤波器设计课件

Ansoft_HFSS9.0进行腔体滤波器设计课件

开始运算
33
查 看 结 果(一)
右键点击项目管理窗口中的Results,选择Creat Report,
在Traces对话框中添加s11、s12绘制PPT曲学习线交流
34
查 看 结 果(二)
在曲线图中可以看到,中心频率在450MHZ左右, 谐波在2.3GHZ附近产生。
PPT学习交流
35
PPT学习交流
2
确定单腔尺寸记录Q值
PPT学习交流
3
HFSS 作 图
新建一个设计,命名为“single”
PPT学习交流
4
画腔体
画一个长方体谐振腔,把各边长度
设置为参数,分别初始化为
53mm、50mm和65mm
命PP名T学该习交谐流振腔为“cavity”
5
画谐振杆
从谐振腔底部中心画谐振杆,设置
26
画 端 口(一)
画一个圆柱体,中心坐标“腔体_x/2,0,抽头高度”
半径为“抽头半径”长度为“端口P长PT学度习,交流初始化为-
27
10mm
画 端 口(二)
画一个圆柱体,中心坐标“腔体_x/2,0,抽头高度” 半径为“端口半径”长度为“端口长度” 端口半径初始化为2.3mm(保证端口50ohms)
看结果计算耦合系数
在solution data中查看结果,把求得的两个频率
带入耦合系数公式k=2*(f1-f2)/(f1+f2)=0.004487 如此,改变窗口大小或者耦合螺杆参数直到
耦合系数满足要求。这就是窗口P大PT学小习的交流确定方法
21
驱动模腔体确定谐波位置
PPT学习交流
22
说明
• 确定谐波的时候如果只用一个腔体则结果与实际 情况相差较大,我们常用2个耦合的腔体来确定 谐波位置。

讲解滤波器原理腔体滤波器原理解析

讲解滤波器原理腔体滤波器原理解析

讲解滤波器原理腔体滤波器原理解析越来越多的朋友想要了解滤波器原理,但对于不同的滤波器,其滤波器原理总是存在一定差异。

而本文主要讲解腔体滤波器原理,并于阐述滤波器原理后,向大家介绍腔体滤波器的应用。

如果你对本文的内容存在一定兴趣,那便耐心往下看吧。

近年来,伴随着科学技术的飞速发展,无线通信系统也在微波、毫米波技术的迅猛发展中得到了长足的进步。

而滤波器是一种典型的频率选择装置,它能够有效的抑制无用信号,使其不能通过滤波器,只有有用信号顺利通过滤波器,因此,滤波器性能的优劣直接影响到整个通信系统的质量,滤波器就是现代微波、毫米波通信系统中至关重要的器件之无线通讯系统可以的工作的频段很广,从几十MHZ 的低频段到几十GHZ 的高频段都可以正常工作。

因此,在无线通讯系统工作的频率范围内,就可以使用很多不同种类的滤波器。

并且随着现在越来越复杂的电磁环境,则需要性能要求更高的微波滤波器。

因此,对于- 一个性能优越的滤波器的设计,就需要在设计时更加关心如何降低有用信号在系统中的衰减,并且还能高效的处理出所需要的有用信号,并且能够很好的抑制其他无用信号对有用信号的强烈干扰。

1、腔体滤波器的工作原理腔体滤波器就是采用谐振腔体结构的微波滤波器;。

一个腔体能够等效成电感并联电容,从而形成一一个谐振级,实现微波滤波功能:较之其他性质的微波滤波器而言,腔体滤波器结构牢周,性能稳定可靠,体积更小,Q 值适中,高端寄生通带较远i可且其散热性好。

因此,在各大通信基站中腔体滤波器应用十分普遍。

就产品生产而言,腔体滤波器的性能与其结构参与构成的微波电路的性能密切相关,而它的装配是其生产过程中决定性能的重要环节之一。

高品质的螺纹装配是生产高性能腔体滤波器的关键。

由于腔体滤波器的产品结构特殊性,尤其是在螺纹装配过程中谐振频率调试的复杂程度,国内的滤波器生产几乎都采用传统的人工组装、调试,高性能的滤波器却只能从国外发达国家大量进口,究其原因,主要表现在:(1) 装配自动化水平不高,生产效率和产品质量低;(2) 近年来国家对工人劳动环境和劳动强度监管日益严格,人力成本持续上升;(3)劳动力流动率高,员工的技术能力难以保证;(4) 产品的创新力度不足。

微波腔体滤波器设计PPT课件

微波腔体滤波器设计PPT课件

Fn Un
En2
Pn2
2Fn2 2
Pn
N
1
n 1
1
n
取左半平面的根
-3
-2
-1
-20
-40
-60
1
2
3
注意到,General Chebyshev函数的特性: 带内为等波纹,带外特性和有限传输零点的个数和位置密切相关。
怎样由带外指标确定滤波器的阶数和有限传输零点的位置? 什么样的General Chebyshev函数是最优的?
可以证明,具有带外等波纹特性的General Chebyshev函数最优,即: • 具有同样阶数和有限传输零点个数的函数,带外等波纹的最优; • i+1个有限传输零点的函数带外特性优于i个有限传输零点的函数特性。
在工程设计中,设有限传输零点的个数是i,考察此时的最优特性:带外 等波纹的情况;如果不能满足指标,则要增加有限传输零点的个数;以此类推, 直到得到逼近函数。
其中 称此矩阵为耦合矩阵
Scaled external quality factor Normalized coupling coefficient
滤波器双口网络,有 S参数,有
由电压环路方程,得到 带入S参数表示式,得到
对于异步调谐情况,有
电容耦合腔体滤波器等效电路
可见,归一化阻抗矩阵Z和归一化导纳矩阵Y相同。 即,无论耦合腔体滤波器是感性耦合,还是容性耦合,亦或是混合 耦合,可以使用统一的公式表示。
然后在考虑如何实现该逼近函数的问题;当然在该过程中,可以预先对结 构等有所参考,对逼近函数的形式有所限定。
(2)优化的方法求解耦合矩阵
首先,根据预先设定的耦合拓扑结构定义耦合矩阵,常用两种方式:

腔体滤波器设计

腔体滤波器设计

基本概念
1. 窄带滤波器的相对带宽:BW=(f2-f1)/f0 f1,f2分别是通带的起止频率 f0是通带中心频率 窄带滤波器的相对带宽一般在20%以下
2. 几个概念的辨析:dB,dBm,dBc
2005-3-27
Allrizon Communication Corp
概念辨析
dB是一个表征相对值的值,当考虑甲的 功率相比于乙功率大或小多少个dB时, 按下面计算公式:10lg(甲功率/乙=
2
a1
a2 = 0 a2 = 0
S 22 = Reflected
Incident
S 12 = Transmitted
Incident
=
b2 a2
b
=
1
a2
a1 = 0 a1 = 0
Z0
Load
a1 = 0
b 1 Transmitted
DUT
S 12
b2
S 22
Reflected
Reverse
a2
Incident
2005-3-27
Allrizon Communication Corp
S-Parameters with Common Measurement Terms
S11 = forward reflection coefficient (input match) S22 = reverse reflection coefficient (output match) S21 = forward transmission coefficient (gain or loss) S12 = reverse transmission coefficient (isolation)

腔体滤波器设计参数

腔体滤波器设计参数

腔体滤波器设计参数腔体滤波器是一种用于音频信号处理的设备,它能够改变信号的频率特性。

设计一个腔体滤波器需要考虑以下几个参数:中心频率、带宽和增益。

中心频率是指滤波器的主要作用频率。

在设计腔体滤波器时,需要选择一个合适的中心频率,使得该频率处的信号能够得到有效的滤波处理。

例如,如果要设计一个音乐等级器,可以选择不同的中心频率来调节不同音频频段的音量。

带宽是指滤波器的频率范围。

不同的应用需要不同的带宽,例如,对于音频信号而言,低音频一般具有较宽的带宽,而高音频则具有较窄的带宽。

在设计腔体滤波器时,需要根据具体的应用需求来确定合适的带宽。

增益是指滤波器对信号的放大或衰减程度。

在腔体滤波器中,增益可以用来调节信号的音量。

例如,如果想要增强某个频段的音量,可以增加该频段的增益值。

为了实现以上参数的设定,可以使用不同类型的腔体滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

低通滤波器可以使低于设定频率的信号通过,而高通滤波器则可以使高于设定频率的信号通过。

带通滤波器可以使位于设定频率范围内的信号通过,而带阻滤波器则可以使位于设定频率范围内的信号被阻断。

腔体滤波器的设计需要考虑到信号处理的准确性和效果。

为了达到更好的信号处理效果,可以采用数字滤波器的设计方法。

数字滤波器可以通过数字信号处理器来实现,具有精确的滤波特性和较低的失真。

腔体滤波器的设计参数包括中心频率、带宽和增益。

通过选择合适的参数值和采用适当的滤波器类型,可以实现对音频信号的有效处理。

腔体滤波器的设计需要考虑到信号处理的准确性和效果,采用数字滤波器可以达到更好的滤波效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Reverse
a2
Incident
2005-3-27
Allrizon Communication Corp
S-Parameters with Common Measurement Terms
S11 = forward reflection coefficient (input match) S22 = reverse reflection coefficient (output match) S21 = forward transmission coefficient (gain or loss) S12 = reverse transmission coefficient (isolation)
将计算出的K值同Mii相结合准确计算出谐振器间的窗口大小(使 用工具为CST)
出设计图纸并调试,优化设计并作最终记录
2005-3-27
Allrizon Communication Corp
腔体滤波器的基本理论
电路模型
2005-3-27
Allrizon Communication Corp
耦合谐振滤波器最基本的耦合结构
腔体滤波器的设计流程
分析客户指标,结合机械结构初步确定谐振级数和Q值及零点个数 确定电路模型及拓扑结构
通过平面电路设计得到归一化耦合矩阵Mii及输入输出阻抗特性 (使用工具为TouchStone或Cleod)
机械结构设计验证上述电气指标设计特别是拓扑结构的可行性, 最终确定谐振级数和Q值
利用双腔本征模三维模型确定谐振铜管尺寸并计算耦合系数K值 (使用工具为CST)
通常谐振在大约1/8波长或更短以减少滤波器的尺寸
谐振器可用矩形杆或圆杆,方腔圆杆的阻抗计算公式: Z=(60/er^0.5)ln(1.0787b/a) er:相对介电常数 b: 方腔的边长 a: 谐振杆的直径 通常b/a约为3以实现Q值最优
2005-3-27
Allrizon Communication Corp
[例] 甲功率比乙功率大一倍,那么10lg (甲功率/乙功率)=10lg2=3dB。也就是 说,甲的功率比乙的功率大3 dB。
2005-3-27
Allrizon Communication Corp
dBm是一个考征功率绝对值的值,计算公式为: 10lgP(功率值/1mw)。
[例1] 如果发射功率P为1mw,折算为dBm后为 0dBm。
Incident
=
b1 a1
b
=
2
a1
a2 = 0 a2 = 0
S 22 = Reflected
Incident
S 12 = Transmitted
Incident
=
b2 a2
b
=
1
a2
a1 = 0 a1 = 0
Z0
Load
ቤተ መጻሕፍቲ ባይዱ
a1 = 0
b 1 Transmitted
DUT
S 12
b2
S 22
Reflected
电路原理图
2005-3-27
Allrizon Communication Corp
场分布
2005-3-27
Allrizon Communication Corp
电场分布:越靠近腔体顶部越强
磁场分布:越靠近腔体底部越强
总体来讲:谐振器间以磁耦合为主,窗口开得越大,
调节螺钉深得越靠近底部则耦合越大,反之耦合越 小。在仿真计算中,TouchStone中的Mii和CST中的K 值都是表征谐振器间的耦合系数,也是我们在仿真 计算过程中遇到的最主要的参数,它直接影响我们 最终的机械设计和产品性能。
2005-3-27
Allrizon Communication Corp
Measuring S-Parameters
a1
Incident
Forward
S 11
Reflected
b1
S 21
Transmitted
b2
Z0
DUT
Load
a2 = 0
S 11 = Reflected
Incident
S 21 = Transmitted
基本概念
1. 窄带滤波器的相对带宽:BW=(f2-f1)/f0 f1,f2分别是通带的起止频率 f0是通带中心频率 窄带滤波器的相对带宽一般在20%以下
2. 几个概念的辨析:dB,dBm,dBc
2005-3-27
Allrizon Communication Corp
概念辨析
dB是一个表征相对值的值,当考虑甲的 功率相比于乙功率大或小多少个dB时, 按下面计算公式:10lg(甲功率/乙功率)
[例2] 对于40W的功率,按dBm单位进行折算后 的值应为:
10lg(40W/1mw)=10lg(40000) =10lg4+10lg10+10lg1000=46dBm。
2005-3-27
Allrizon Communication Corp
dBc也是一个表示功率相对值的单位,与dB的 计算方法完全一样。一般来说,dBc 是相对于 载波(Carrier)功率而言,在许多情况下,用 来度量与载波功率的相对值,如用来度量干扰 (如互调干扰、交调干扰等)以及耦合、杂散 等的相对量值。如通带插损为1dB,带外隔离为 91dB,则隔离度为90dBc.
腔体滤波器的分析与设计
边登峰
Dengfeng_bian@
Outline
腔体滤波器的设计流程 腔体滤波器的设计相关的基本理论 Q值分析和测试 交叉耦合的功能和使用 温度对产品的影响 EDA设计工具的使用 Q&A
2005-3-27
Allrizon Communication Corp
2005-3-27
Allrizon Communication Corp
决定谐振频率的因素
f0 1/ LC
2005-3-27
Allrizon Communication Corp
1.谐振频率同波长成反比。频率越高单腔尺寸越小,频 率 越低单腔尺寸越大
2. L同谐振杆的尺寸密切相关。谐振杆越长越细,L越大, 频率越低;谐振杆越短越粗,L越小,频率越高
馈源只与一个谐振器耦合,负载 端仅与一个谐振器耦合,且中间只 有一条耦合路径即主路径,各级谐 振器之间逐级耦合。
2005-3-27
Allrizon Communication Corp
梳状线滤波器结构示意图
2005-3-27
注意:接地良好与否直接影响性能!
Allrizon Communication Corp
3. C可用谐振杆与盖板的间隙大小和谐振杆的法兰盘大小来 反映。法兰盘越大间隙越小则C越大,频率越低;反之则C 越小,频率越高
2005-3-27
Allrizon Communication Corp
谐振器间的耦合是由平行耦合线间的边缘场得到
在无集总电容C的情况下,谐振线应是1/4波长(中心频率), 此时该结构是无通带的全阻带结构
相关文档
最新文档