高中数学证明不等式的基本方法

合集下载

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。

但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。

我就来总结一下不等式的证明方法。

01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。

前者为作差法,后者为作商法。

但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。

02分析法和综合这两个方法我们一般会一起使用。

分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。

如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。

我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。

当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。

03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。

这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。

反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。

04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。

放缩法的目的性强,必须恰到好处,。

同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。

不等式证明的常用方法

不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。

高中数学不等式的证明方法

高中数学不等式的证明方法

高中数学不等式的证明方法高中数学中,不等式的证明是一个非常重要的部分。

搞懂这些证明不仅能帮助你解决复杂的数学问题,还能在考试中加分。

接下来,我们就一起“啃”啃这块“硬骨头”,看一看如何在不等式的世界里游刃有余。

1. 不等式的基本概念1.1 什么是不等式?简单来说,不等式就是两个数或者两个表达式之间的大小关系,比如 ( a > b ) 或者( x leq y )。

它们告诉我们一个数大于、等于或小于另一个数。

1.2 不等式的类型常见的不等式有:大于不等式 ( a > b )、小于不等式 ( a < b )、大于等于不等式 ( a geq b ) 和小于等于不等式 ( a leq b )。

不同的类型会在证明方法上有所不同。

2. 不等式证明的基本方法2.1 直接证明法这种方法最简单,直观明了。

比如,我们要证明 ( 2 + 3 > 4 ),那就是直接算出结果,2+3确实大于4。

这种方法适合比较简单的证明。

2.2 反证法反证法就是假设一个错误的情况,然后推导出矛盾,从而证明最初的假设是对的。

例如,要证明 ( x > 3 ) 对于某个特定的 ( x ) 成立,我们可以假设 ( x leq 3 ),然后找到一个矛盾,进而证明 ( x > 3 ) 是对的。

2.3 归纳法归纳法特别适合处理涉及多个步骤的问题。

我们先证明最简单的情况,然后假设对于某个 ( n ) 成立,接着证明对于 ( n+1 ) 也成立。

这种方法特别适合证明不等式的一些规律。

3. 常用的不等式证明技巧3.1 均值不等式均值不等式在不等式证明中非常有用。

比如,算术平均数和几何平均数的关系,就是一个经典的例子。

记住这个不等式:算术平均数总是大于或等于几何平均数。

这个原理可以帮助我们解决很多看似棘手的问题。

3.2 柯西不等式柯西不等式是一个很有用的工具,特别是在处理向量或矩阵时。

它告诉我们,对于任意的向量 ( mathbf{a} ) 和 ( mathbf{b} ),都有 ((mathbf{a} cdot mathbf{b})^2 leq (mathbf{a} cdot mathbf{a})(mathbf{b} cdot mathbf{b}))。

高中数学 第一章 不等式的基本性质和证明的基本方法 1.5.1 不等式证明的基本方法 新人教B版选修

高中数学 第一章 不等式的基本性质和证明的基本方法 1.5.1 不等式证明的基本方法 新人教B版选修

负数,要证 a>b,只需证
a b<1
.
基础自测
1.下列关系中对任意 a<b<0 的实数都成立的是
A.a2<b2
B.lg b2<lg a2
C.ba>1
D.12a2>12b2
解析 a<b<0,∴a2>b2>0,∴lg a2>lg b2,故选 B.
答案 B
()
2.已知 a>0 且 a≠1,P=loga(a3+1),Q=loga(a2+1),则 P、Q
解析
|a|+|b|
mn =
|a+b| |a-b|
=(|a|a|++|bb||)·|a|-|a|b-| |b||
||a|-|b||
=||aa22- -bb22||=1,∴m=n.
答案 =
课堂小结 1.比较法有两种形式,一是作差;二是作商.用作差证明不 等式是最基本、最常用的方法.它的依据是不等式的基本性质. 2.步骤是:作差(商)―→变形―→判断.变形的目的是为了判 断.若是作差,就判断与 0 的大小关系,为了便于判断,往往把 差式变为积或完全平方式.若是作商,两边为正,就判断与 1 的 大小关系. 3.有时要先对不等式作等价变形再进行证明,有时几种证 明方法综合使用.
●反思感悟:实数大小的比较常用 a>b⇔a-b>0 或“ab>1, 且 b>0⇒a>b”来解决,比较法的关键是第二步的变形,一 般来说,变形越彻底,越有利于下一步的符号判断.
1.设 a>0,b>0 且 a≠b,试比较 aabb 与 abba 的大小. 解 aaabbbba=aa-b·bb-a=aba-b. 当 a>b>0 时,ab>1,a-b>0,则aba-b>1, 于是 aabb>abba.当 b>a>0 时,0<ab<1,a-b<0, 则aba-b>1,于是 aabb>abba. 综上所述,对于不相等的正数 a、b,都有 aabb>abba.

高中数学知识点总结(不等式选讲 第二节 不等式的证明)

 高中数学知识点总结(不等式选讲 第二节 不等式的证明)

第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。

不等式的证明方法经典例题

不等式的证明方法经典例题

不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 222≥+的变式应用。

常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。

一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。

1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。

2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。

6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。

四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。

9、1<b ,求证:1)1)(1(22≤--+b a ab 。

10、122=+y x ,求证:22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10. 14、解不等式15+--x x >21 15、-1≤21x --x ≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。

平均不等式常用于综合法的标度。

分析方法:不等式两边的关系不够清晰。

通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。

4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。

同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。

高中数学竞赛不等式的证明方法 (比较法)

高中数学竞赛不等式的证明方法 (比较法)

证明不等式的基本方法现实世界中的量,相等是相对的、局部的,而不等的绝对的、普遍的。

不等式的本质是研究“数量关系”中的“不等关系”。

对于两个量,我们常要比较它们之间的大小,或者证明一个量大于另一个,这就是不等式的证明。

不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如柯西不等式、平均值不等式等等,其中还需要用一些技巧性高的代数变形。

在这一部分我们主要来学习一些证明不等式的基本方法。

一.比较法一般而言,比较法有两种形式:(1)差值比较法:欲证B A ≥,只需证0≥-B A 即可; (2)商值比较法:若0>B ,欲证B A ≥,只需证1≥BA即可。

注意在利用比较法证明不等式时,常需要对所要证明的不等式进行恰当的变形,如因式分解、拆项、合并项等。

一.差值比较法要证明b a >,最基本的方法就是证明0>-b a ,即把不等式的两边相减,转化为比较差与0的大小问题。

这种方法称为差值比较法,有时也叫做比差法。

差值比较法证明不等式的步骤:“作差――变形――判断符号”,为了便于判断符号,往往把差式变形为积的形式或完全平方形式。

例1.已知b a ,都是正数,且b a ≠,求证:2233ab b a b a +>+。

分析:可以把不等式两边相减,通过适当的变形,转化为一个能明确确定正负的代数式。

证明:)()()()()()(b a b b a a b ab b a a ab b a b a ---=---=+-+2232232233=222))(())((b a b a b a b a -+=-- 因为b a ,都是正数,所以0>+b a , 又因为b a ≠,所以0)(2>-b a 从而0))((2>-+b a b a , 即0)()(2233>+-+ab b a b a 所以2233ab b a b a +>+。

评注:此题是不等式证明的典型题目,其拆项是有一定的技巧的,需要有较强的观察能力。

高中数学证明不等式的基本方法

高中数学证明不等式的基本方法

a=b=c
时,等
号成立.即三个正数的算术平均 不小于 它们的几何平均.
(2)基本不等式的推广 对于 n 个正数 a1,a2,…,an,它们的算术平均 不小于它们的几何平均,即
a1 a2 n an

n
a1a2
an ,当且仅当
a1=a2=…=an
时,等号成立.
对点自测
1.要证明 29 + 31 >2 5 ,可选择的方法有以下几种,其中最合理的是 (
.
解析:由
1 1 < <0 可得 b<a<0, a b
从而①不正确,②③正确;
a2 a 2 2ab b 2 (a b)2 对于④, -(2a-b)= = <0, b b b
即④正确.
答案:②③④
5.已知三个互不相等的正数 a,b,c 满足 abc=1.试证明:
a + b+ c<
1 1 1 + + . a b c
第 2节
证明不等式的基本方法
最新考纲
通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分 析法
Page
2
知识链条完善 考点专项突破 解题规范夯实
知识链条完善
知识梳理
1.比较法
a 1 b
把散落的知识连起来
方法
作差法
原理
a-b>0⇔a>b
a 1 b
作商法
⇔a>b(a>0,b>0)
2.综合法与分析法 (1)综合法:从 已知条件 出发,利用定义、公理、定理、性质等,经过一 系列的 推理 、论证而得出命题成立.
作差比较法. (2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商

高中数学第二讲证明不等式的基本方法综合法与分析法

高中数学第二讲证明不等式的基本方法综合法与分析法

2。

2.2 分析法课堂导学三点剖析一,利用分析法证明不等式【例1】 (1)设a>b 〉0,求证:333b a b a ->-。

(2)已知0〈α〈π,证明2sin2α≤cot 2α,并指出等号成立的条件。

证明:(1)要证333b a b a ->-,∵a>b〉0,有3b a ->0, ∴需证(3b a -)3>(33b a -)3,展开得a —b 〉a —323b a +b ab -323, 即证明)(3333b a ab -〉0, 也就是证33b a ->0,在题设条件下这一不等式显然成立,∴原不等式成立.(2)要证2sin2α≤cot 2α,由0<α<π知sinα〉0,只需证2sinα·sin2α≤1+cosα,即证明4sin 2αcosα-(1+cosα)≤0,也就是证(1+cosα)[4(1—cosα)cosα-1]≤0,而1+cosα>0,于是只要证-4cos 2α+4cosα—1≤0,即—(2cosα—1)2≤0,就是(2cosα-1)2≥0,这是显然的。

∴2sin2α≤cot 2α,等号在2cosα=1,α=3π时取得。

各个击破类题演练1若a ,b,c 三数均大于1,且ab=10,求证:log a c+log b c≥4lgc.证明:由于a>1,b 〉1,要证log a c+log b c≥4lgc,需证b ca clg lg lg lg +≥4lgc,而lgc>0, 因此只要证b a lg 1lg 1+≥4,即证b a b a lg lg lg lg +≥4。

∵ab=10,有lga+lgb=1,于是只需证lga·lgb≤41, 而lga·lgb≤(2lg lg b a +)2=41。

∴不等式log a c+log b c≥4lgc 成立.变式提升1已知a>0,b 1—a 1>1,求证:ba ->+111。

证明不等式的三种常规思路

证明不等式的三种常规思路

思路探寻不等式证明问题是高中数学中的常见问题.此类问题常与不等式、三角函数、方程、集合、数列等知识综合在一起,重点考查同学们的逻辑推理能力、数学思维能力等.本文重点介绍证明不等式的三种技巧:作差比较法、作商比较法以及数学归纳法.一、作差比较法作差比较法是解答不等式证明问题的基本方法.在运用作差比较法证明不等式时,可直接将不等式左右两边的式子相减,将所得的差与0比较,若a -b >0,则a >b ;若a -b <0,则a <b .在化简差式时,常常需要用到配方、因式分解等技巧.例1.若集合M ={x |-1<x <1},试证明:当a 、b ∈M 时,||a +b <|1+ab |.证明:()a +b 2-()1+ab 2=a 2+2ab +b 2-(1+2ab +a 2b 2)=(a 2-1)(1-b 2),∵-1<a <1,-1<b <1,∴0≤a 2<1,0≤b 2<1,∴a 2-1<0,1-b 2>0,∴()a +b 2<()1+ab 2,即||a +b <|1+ab |.目标式中含有绝对值,需要将不等式两边平方,去掉绝对值符号,然后运用作差比较法,将不等号两边的式子作差,并对差式进行因式分解,结合已知条件证明差式小于0即可证明结论.二、作商比较法作商比较法的原理与作差比较法较为相似.在解题时,需要首先将不等式左右两边的式子相除,然后将除式化简,将所得的结果与1比较,当a >0,b >0时,若a b >1,则a >b ;若a b<1,则a <b .运用作商比较法解答不等式证明问题的关键是对商式化简,一般需要用到约分、分母有理化、换底公式等技巧.例2.已知存在a >0、b >0,>a +b .证明:a ba b =ab (a +b=()a +b ()a -ab +b ab ()a +b 2abab -1=1,∵a >0、b >0,∴ab >0,∴a b +b a>a+b .题目中给出了a >0,b >0的条件,要想证明>a +b,首先应对此不等式进行处理,运用作商比较法,通过分母有理化,证明商式大于1,便可证明不等式成立.三、数学归纳法一般地,证明一个与正整数n 有关的不等式常采用数学归纳法,其基本步骤为:(1)证明当n 取第一个值n 0(n 0∈N *)时不等式成立;(2)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时不等式也成立.只要完成这两个步骤,就可以断定不等式对从n 0开始的所有正整数n 都成立.在第二步中,常需运用放缩法、分析法来辅助解题.例3.试证明:1+122+132+ (1)2<2-1n (n ∈N *,n ≥2).证明:①当n =2时,1+14<2-12,不等式成立,②假设当n =k 时不等式成立,即1+122+132+ (1)2<2-1k ,当n =k +1时,1+122+132+…+1k 2+1()k +12<2-1k +1k ()k +1=2-1k +1k -1k +1=2-1k +1,即1+122+132+…+1k 2+1()k +12<2-1k +1,因此原不等式1+122+132+ (1)2<2-1n 在n ∈N *,n ≥2时成立.该不等式与正整数n 有关,可采用数学归纳法求证,分n =2和n =k 两步进行.上面在证明n =k +1不等式成立时,采用了放缩法.运用数学归纳法证明不等式较为直接,思路比较清晰,只需要按照两个步骤完成证明便可证明不等式成立.由上述分析可以看出,三种证明不等式成立的方法的适用范围各不相同.作差比较法适用于解答含有多项式的不等式问题;作商比较法适用于证明含有分式的不等式问题;数学归纳法适用于证明与正整数n 有关的不等式.(作者单位:江苏省南通市海门四甲中学)钱冬明53Copyright©博看网 . All Rights Reserved.。

基本不等式十大解题技巧

基本不等式十大解题技巧

基本不等式十大解题技巧
基本不等式是数学中的一个重要概念,也是高中数学中的重点和难点之一。

以下是基本不等式解题的十大技巧:
1. 均值不等式法:利用算术平均值与几何平均值的关系,将不等式中的变量转化为平均值的形式,然后利用均值不等式进行证明。

2. 柯西不等式法:利用柯西不等式,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。

3. 均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。

4. 几何平均值不等于算术平均值法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。

5. 利用三角不等式法:利用三角不等式,将不等式中的变量转化为三角形的三边长度,然后利用三角不等式进行证明。

6. 利用柯西不等式的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。

7. 利用平均不等式法:利用平均不等式,将不等式中的
变量转化为平均值的形式,然后利用不等式进行证明。

8. 利用柯西不等式法的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。

9. 利用均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。

10. 利用几何平均值不等于算术平均值法的逆推法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。

以上是基本不等式解题的十大技巧,掌握这些技巧可以帮助学生更好地理解和应用基本不等式。

高中数学第二讲证明不等式的基本方法综合法与分析法

高中数学第二讲证明不等式的基本方法综合法与分析法

2。

2.1 综合法课堂导学三点剖析一,利用综合法证明不等式【例1】 (1)若a>0,b 〉0,求证:ab b a 22+≥a+b.思路分析:主要利用不等式2ba +≥ab 和a 2+b 2≥2ab。

证明:由a 2+b 2≥2ab,∴2(a 2+b 2)≥a 2+b 2+2ab,即2(a 2+b 2)≥(a+b)2。

∴ab b a 22+≥b a b a b a b a ++≥++222)()(2=a+b.(2)设a ,b ,c 都是正数,求证:2222222≥+++++a c c b b a (a+b+c ).思路分析:主要利用不等式2)(2222y x y x +≥+。

证明:由不等式a 2+b 2≥2)(22222b a ab b a +=++. ∴22b a +≥2ba +. 同理,2,22222ac a c cb c b +≥++≥+2)222(2222222=+++++=+++++∴ca cb ba a c cb b a (a+b+c )各个击破类题演练1已知a,b,c∈(0,+∞),且a ,b ,c 成等比数列,求证:a 2+b 2+c 2≥(a—b+c)2。

证明:左边-右边=2(ab+bc-ac)。

∵a,b ,c 成等比数列,∴b 2=ac.又∵a,b,c∈(0,+∞),∴0〈b=ac ≤2ca +〈a+c 。

∴a+c—b 〉0。

∴2(ab+bc —ac )=2(ab+bc —b 2)=2b(a+c —b )〉0,∴a 2+b 2+c 2>(a —b+c )2.变式提升1若a,b,c 是正数,能确定b a c c a b c b a +++++222与2c b a ++的大小吗? 解析:∵cb a +24+(b+c )≥4a, ac b +24+(c+a)≥4b, ba c +24+(a+b)≥4c , ∴c b a +24+a c b +24+ba c +24≥2(a+b+c ), 即b a c a c b c b a +++++222≥2c b a ++. 二、用综合法证明条件不等式【例2】 已知a,b ,c 〉0,且abc=1,求证:c b a ++≤a 1+b 1+c 1。

证明函数不等式的六种方法

证明函数不等式的六种方法

证明函数不等式的六种方法在高中数学中,函数的不等式是一个重要的主题。

证明函数不等式是一个基本的技能,它可以帮助学生更好地理解函数的性质并提高数学思维能力。

下面我们介绍六种证明函数不等式的方法。

1. 代数法这种方法是最常用的方法之一。

我们可以将不等式两边的函数展开,并进行简单的代数计算,以确定不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)展开,然后将它们相减,得到:f(x) - g(x) = x + 1因此,f(x) > g(x) 当且仅当 x > -12. 消元法这种方法通常适用于含有多个变量的不等式。

我们可以将其中一个变量消去,从而使不等式简化。

例如,我们要证明:f(x, y) > g(x, y)其中f(x, y) = x^2 + y^2g(x, y) = x^2 - y^2我们可以将y消去,得到:f(x, y) - g(x, y) = 2y^2因此,f(x, y) > g(x, y) 当且仅当 y ≠ 03. 极限法这种方法通常适用于连续函数的不等式。

我们可以将不等式两边取极限,以确定不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)的极限计算出来,得到:lim (f(x)) = +∞x→+∞lim (g(x)) = +∞x→+∞因此,f(x) > g(x) 当 x → +∞4. 导数法这种方法通常适用于在区间内单调的函数不等式。

我们可以计算函数的导数,以确定函数的单调性和不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^3 + 3x^2 + 3x + 1g(x) = x^2 + 2x + 1我们可以计算f(x)和g(x)的导数,得到:f'(x) = 3x^2 + 6x + 3g'(x) = 2x + 2由于f'(x) > g'(x) 在 [-1, +∞) 上成立,并且f(-1) > g(-1) ,因此,f(x) > g(x) 在 [-1, +∞) 上成立。

不等式的证明-高中数学知识点讲解

不等式的证明-高中数学知识点讲解

不等式的证明1.不等式的证明【知识点的知识】证明不等式的基本方法:1、比较法:(1)作差比较法①理论依据:a>b a﹣b>0;a<b a﹣b<0.②证明步骤:作差→变形→判断符号→得出结论.注:作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与的大小关系.(2)作商比较法푎푎①理论依据:,푏>1 ;,푏<1 ;b>0 a>b b<0 a<b②证明步骤:作商→变形→判断与 1 的大小关系→得出结论.2、综合法(1)定义:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得到命题成立,这种证明方法叫做综合法.综合法又叫做推证法或由因导果法.(2)思路:综合法的思索路线是“由因导果”,也就是从一个(组)已知的不等式出发,不断地用必要条件代替前面的不等式,直至推导出要求证明的不等式.3、分析法(1)定义:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法.(2)思路:分析法的思索路线是“执果索因”,即从要证的不等式出发,不断地用充分条件来代替前面的不等式,直到打到已知不等式为止.注:综合法和分析法的内在联系是综合法往往是分析法的相反过程,其表述简单、条理清楚.当问题比较复杂时,通常把分析法和综合法结合起来使用,以分析法寻找证明的思路,用综合法叙述、表达整个证明过程.4、放缩法1/ 2(1)定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种证明方法称为放缩法.(2)思路:分析证明式的形式特点,适当放大或缩小是证题关键.常用的放缩技巧有:2/ 2。

高中数学基本不等式证明

高中数学基本不等式证明

高中数学基本不等式证明高中数学中,基本不等式是指一些常见的不等式或不等式组,它们的成立非常重要,经常被用于证明其他不等式或解决实际问题。

下面,我将为您详细介绍几个常见的高中数学基本不等式以及它们的证明。

1. 平均不等式:对于任意正数a1,a2,...,an,有(a1+a2+...+an)/n ≥ (a1*a2*...*an)^(1/n)。

证明:我们可以利用数学归纳法进行证明。

首先,当n=2时,不等式成立,即(a1+a2)/2≥(a1*a2)^(1/2),这是平均值不等式的特殊情况。

假设当n=k时,不等式成立,即(a1+a2+...+ak)/k ≥(a1*a2*...*ak)^(1/k)。

当n=k+1时,考虑(a1+a2+...+ak+ak+1)/(k+1)与(a1*a2*...*ak*ak+1)^(1/(k+1))的大小关系。

由于(a1+a2+...+ak)/k ≥ (a1*a2*...*ak)^(1/k)(根据假设,这是成立的)。

我们可以将(a1+a2+...+ak+ak+1)分解为(k*(a1+a2+...+ak))/k+ak+1,利用不等式的性质,得到:(k*(a1+a2+...+ak))/k+ak+1 ≥k*(a1*a2*...*ak)^(1/k)*(ak+1)^(1/k+1)。

经过简单的变形,我们可以得到要证明的不等式,即(a1+a2+...+ak+ak+1)/(k+1) ≥ (a1*a2*...*ak*ak+1)^(1/k+1)。

根据数学归纳法的原理,平均不等式得证。

2.伯努利不等式:对于任意实数x>-1和正整数n,有(1+x)^n ≥ 1+nx。

证明:我们可以利用数学归纳法来证明伯努利不等式。

首先,当n=1时,左边为(1+x),右边为1+x,显然成立。

假设当n=k时,不等式成立,即(1+x)^k ≥ 1+kx。

当n=k+1时,考虑(1+x)^(k+1)和(1+(k+1)x)之间的大小关系。

高中数学证明不等式的九种常用方法

高中数学证明不等式的九种常用方法

ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1

∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*与“1”有关的证明
[ 题组 5] 18.已知 a , b, c ∈ R + , 且 a + b + c = 1, 求证 : 1 1 (1)a + b + c ≥ ; ( 2) a + b + c ≤ 3; (3)ab + bc + ca ≤ . 3 3 19.已知 a , b, c ∈ R + , 且 ab + bc + ca = 1, 求证 :
能求和的, 能求和的,先求和再放缩 不能求和的,先放缩再求和 不能求和的,
[ 题组 4]
二项式定理放缩
n
1 12 .求证:对一切 n ∈ N * ,都有 2 ≤ 1 + < 3. 求证: n 2 13 .数列{a n }的通项 a n = n,求证: a n < 求证: + 1. n 14 .已知各项均为正数的数 列{a n }满足 : 在 n ∈ N * 且 n > 1时,有
[题组 ] 题组2 4.若a > b > c,求证 bc 2 + ca 2 + ab 2 < b 2 c + c 2 a + a 2 b. 5.已知x , y ∈ R,求证 sin x + sin y ≤ 1 + sin x sin y . 6.已知a > 0, b > 0, m > 0, n > 0. 求证a m + n + b m + n ≥ a m b n + a n b m .
[ 题组5]
三角换元
x2 y2 = 1上,求证 : x + y ≤ 13 . 15.已知点 M ( x , y )在椭圆 + 9 4 都是实数, 16.已知a , b, c , d都是实数,且 a 2 + b 2 = r 2 , c 2 + d 2 = R 2 ( r > 0, R > 0), r 2 + R2 求证: | . 求证:ac + bd |≤ 2 17.已知a , b ∈ R, a 2 + b 2 ≤ 4, 求证:3a 2 − 8ab − 3b 2 |≤ 20. 求证: |
a +b 2
.
证明不等式的基本方法
综合法、 综合法、分析法
方法综述
常利用分析法找思路,综合法表述, 常利用分析法找思路,综合法表述,或分析综合结合 运用“ 等代数变形技巧, 运用“添”、“拆”、“并”等代数变形技巧,灵活 使用一些常用不等式 关注“ 这个常见条件 关注“1”这个常见条件
1、运用拆、并项等技巧,凑成能运用基本不等式的形式。 2、熟悉一些已证过的常用不等式形式:
证明不等式的常用技巧
换元
方法综述
三角换元的常见类型 三角换元的常见类型
(1)若x2 + y2 = r 2,可设 = r cosα, y = r sinα; x (2)若x2 + y2 ≤ k 2,可设 = r cosα, y = r sinα;(0 ≤ r ≤ k) x x2 y 2 (3)若 2 + 2 = r 2,可设 = ra cosα, y = rb sinα; x a b (4)对于 1− x2,可设 = cosθ或x = sinθ; x (5)对于 1+ x2,可设 = tanθ或x = cotθ; x (6)若x + y + z = xyz,可设 = tan A, y = tan B, z = tan C.( A + B + C = π ) x
[ 题组 2] 1 5 .求证 − 2 1 6 .求证 + 9
1 1 1 1 n −1 < 2 + 2 +L+ 2 < ( n = 2 ,3, 4, L) n +1 2 3 n n 1 1 1 +L+ < . 2 ( 2 n + 1) 25 4
放缩成裂项求和
1 1 1 + +L+ < 2 n. 2 3 n 8 .在 xoy 平面上有一系列点 P1 ( x1 , y1 ), P2 ( x 2 , y 2 ), L Pn ( x n , y n ), L , 7 .求证 2( n + 1 − 1) < 1 + 对每个非零自然数 n , 点 Pn 位于函数 y = x 2 ( x > 0 )的图象上 , 以点 Pn为圆心的圆与 x轴都相切 , 且圆 Pn与圆 Pn +1又彼此外切 , 若 x1 = 1, 且 x n +1 < x n ( n ∈ N *). 1 (1)求证:数列 是等差数列; 求证: 是等差数列; xn ( 2 ) 设圆 Pn的面积为 S n , Tn = S1 + S2 + L +
[题组 4]( 课本习题 ) 11.已知a1 , a 2 ,L , a n ∈ R + , 且a1a 2 L a n = 1, 求证(1 + a1 )(1 + a 2 )L (1 + a n ) ≥ 2 n . a 2b 2 + b 2c 2 + c 2a 2 12.已知a , b, c > 0, 求证 ≥ abc . a+b+c 13.已知a , b, c ∈ R + , 求证 2(a 3 + b 3 + c 3 ) ≥ a 2 (b + c ) + b 2 (a + c ) + c 2 (a + b ). 1 1 1 14.已知a > b > c , 求证 + + > 0. a −b b−c c−a 4 15.已知n > 0, 求证n + 2 ≥ 3. n 16.已知a , b, c为互不相等的实数 , 求证a 4 + b 4 + c 4 > abc(a + b + c ). 17.已知x , y , z ∈ R, a , b, c ∈ R + , 求证: 求证: b+c 2 c+a 2 a+b 2 x + y + z ≥ 2( xy + yz + zx ). a b c
k =1 n
11.已知函数 f ( x ) =
5 + 2x , 设正项数列{a n }满足a1 = 1, a n+1 = f (a n ). 16 − 8 x
5 (1)比较a n与 的大小,并说明理由. 的大小, 4 5 1 ( 2)设数列{bn }满足bn = − a n , 记S n为{bn }的前n项和, 求证:当 n ≥ 2时, S n < ( 2 n − 1). 求证: 4 4
1 1 1 1 1 2 1 2 < < > , 2 > , , 2 k k ( k − 1) k k ( k + 1) k k + k −1 k k + k +1 1 1 1 1 < , < n −1 n! n( n − 1) n! 2
方法综述
1、放缩成等比数列或可裂项求和的数列 2、适当调整从第几项开始放缩 3、注意放缩的幅度
2 2 2
a b c (1)a + b + c ≥ 3; ( 2) + + ≥ 3 ( a + b + c ). bc ac ab 20.已知实数 a , b, c满足 c < b < a , a + b + c = 1, a 2 + b 2 + c 2 = 1, 4 求证 : 1 < a + b < . 3
比较法证明不等式
[题组1] 1.已知ad ≠ bc,求证 (a 2 + b 2 )(c 2 + d 2 ) > (ac + bd ) 2 . 2.已知a ≠ b,求证 a 4 + 6a 2 b 2 + b 4 > 4ab(a 2 + b 2 ). 3.若a , b, m , n都是正数 , 且m + n = 1,证明 ma + nb ≥ m a + n b .
取特殊值, 常见的不等式: 对m , n取特殊值,可得到以下 常见的不等式: a 2 + b 2 ≥ ab + ab = 2ab, a 3 + b 3 ≥ a 2 b + ab 2 , a 4 + b 4 ≥ a 3b + ab 3 .
[题组3] 7.已知a , b是正实数,求证 (1)a a b b ≥ a b b a ; ( 2)a a b b ≥ (ab) 是正实数, 8.已知a , b, c是正数,求证 a 2a b 2b c 2 c ≥ a b + c b c + a c a + b . 是正数, 9.已知a > 2, 求证: a (a − 1) < log ( a +1) a . 求证: log 10.设a > 0, a ≠ 1,0 < x < 1.求证: a (1 − x ) > log a (1 + x ) . 求证: log
证明不等式的基本方法
比较法
比较法是最原始,也是最常用的证明不等式的方法 比较法是最原始,也是最常用的证明不等式的方法. 作差比较 • 直接作差 • 平方作差 • 取对数作差 方法综述 • …… 作商比较(同号的时候才能用 同号的时候才能用) 作商比较(同号的时候才能用) 作差后常见的处理方法: 作差后常见的处理方法: 配完全平方 因式分解 有理化 分类讨论 ……
添、减项放缩
[题组1] 1.已知a , b, c , d ∈ R + , 求证 a b c d 1< + + + < 2. a+b+d b+c+a c+d +b d +a+c 2.若a , b, c ∈ R, 求证:a 2 + ab + b 2 + a 2 + ac + c 2 ≥ a + b + c . 求证: n( n + 1) ( n + 1) 2 3.设S n = 1⋅ 2 + 2 ⋅ 3 + L + n ⋅ ( n + 1) , 求证: 求证: < Sn < . 2 2 1 1 1 1 4.(85上海 )求证: + )(1 + )(1 + )L(1 + 求证: (1 ) ≥ 2n + 1( n ∈ N *). 1 3 5 2n − 1
相关文档
最新文档