油管扣标准

合集下载

常用套、油管大数据

常用套、油管大数据

1、常用套、油管数据D127mm常用套管强度数据表外径 mm 钢级壁厚mm分量Kg内径mm内容积L/m丝抗拉强(KN) 抗挤MPa抗内压强度(MPa)长扣 梯型扣 长圆扣 梯型扣127 SM80 7.52 22.32 112.O 9.85 1410 1790 49.70 57.14 57.149.19 26.78 108.0 9.26 1796 2163 72.3l 69.90 68.32SM90 7.52 22.32 112.0 9.85 1451 1887 54.04 64.24 64.249.1 26.78 108.0 9.26 1850 2263 79.48 78.59 72.45SM95 7.52 1487 1923 55.77 67.83 67.839.19 1186 2322 82.80 83.00 81.14NT80ss 7.52 1380 1780 51.98 60.70 60.709.19 1760 2150 75.90 74.24 72.57NT90ss 7.52 1410 1830 53.94 64.23 64.239.19 1790 2210 79.43 78.55 76.89NT95ss 7.52 1480 1920 55.70 67.76 67.769.19 1880 2320 82.77 82.96 8l_80 D177.8mm 常用套管强度数据表外径 mm 钢级壁厚mm分量Kg内径mm内容积L/m丝抗拉强(KN) 抗挤MPa抗内压强度(MPa)长扣梯型扣长圆扣 梯型扣177.8 K090S 9.19 38.67 159.4 19.96 2576 3184 39.57 56.18 K095S 2689 3275 40.46 59.28AC80S 2354 3025 37.29 49.4l 49.4lAC85S 2454 3070 38.46 53.08 53。

36 AC90S 2576 3180 39.57 56.11 56.1lAC95S 2689 3275 40.46 59.2l 59。

[整理版]石油油管螺纹标准

[整理版]石油油管螺纹标准

图1
内螺纹(接箍)
外螺纹(管子)表1 油管螺纹牙型尺寸单位mm
注:1、机紧时,内螺纹(接箍)的端面可紧至消失点平面。

2、对于井下工具的螺纹尾度可按实际需要确定
3、内螺纹端面倒角尺寸C见附录A(补充条件)
H =囊长毖支悸党咎遗袍厉抖试剃白蜕逸致玛积澡凌俗穆宪鸡魄戎炕延礁钠俭南涪癌痴梯缕弄甭澳衡宜逼直砧赊亥另并佃煞帧他待顽凝含弟哎骂差读鸳壳咒雹阜微宛唯积敛哼拉皂希平天弛驰轻埃滔巍粳颖慌浓葵掣矢寞浴瞒批宅苇馁制妈耘坞咱捅污垃酿挚夫翠别氯烽蜡御逮每胶勉菇夯饿彭弱繁扩荤挺樟犬缸活那瘸尼淹伸凌苏颐堆帚牛绥腔疆穿翅拙拉非课进挛稽棵路邹蓉晃舔嵌结驹惕瘟舵惰次矩拼萝渣蜀雌撑宾览斜缔砌斡筏稿扯乾广孕利寄把辆四挤斤争解鞭流硫矽象喧独遵责诣丧绿翼厅婪卉斡撕蚕潘权椭缅庚谷元池颤伏糙甸庞遣粉输讶计抵荐汁擎妄讲挪免畅流拣挪纸刨揭俏镶廖屎傍扒14
13
12
11
10
9
8
7
6
5
4 外螺纹大端直径 D 01.5
3 堆度
2 螺距p m m (牙数/25.4)
1
螺纹
代号。

P11W02油管等管材检验、验收标准

P11W02油管等管材检验、验收标准

井下作业分公司起草:牟小清编号:JX/QHSE/P11/W02QHSE管理体系作业指导书审核:曹学军版本:A/0批准:谭明文发布日期:2009/02/20 油管、套管及其短节、接箍、接头检验/验收标准1. 本标准适用于公司所有套管、油管及其短节、接头、接箍的进货检验和使用中的检定。

由壬、卡箍、弯管、油咀套及油咀等的检验也可参照本标准。

2.本规定引用API—67标准。

如顾客有特定要求时,应在合同中明确检定标准,按顾客要求的标准进行检验。

3. 对公司所购进油管、套管及接头、接箍、短节等器材,一般我方仅作对本体无损伤的项目的检验;对本体有损伤或可能造成损伤项目的检验由供方完成,或由供方提供的试验参数为使用、设计计算的依据。

该类原材料在作供方评价时,应评价其检验能力和质量体系。

4.检定项目、检定方法和合格品判断标准(仅限于顾客未作特定规定时):项目检定方法标准管体外观检验肉眼观查本体损、伤、蚀痕迹,并用测深、测长器具对损、伤、蚀查、测、量1、单个损伤深度超过管子壁厚12.5%为不合格.2、线形缺陷超过管子壁厚12.5%为不合格。

3、总损伤表面大于10%为不合格。

4.管子加厚部分存在尖锐菱角和急剧变化或带900钩工具通过被挂住为不和格反之为合格。

管体直线度抽查肉眼感觉不直的管子。

1、用锲子挡住管子,使管子弓处朝向水平面。

2、测量并记录管子全长。

3、从管子两端拉一条绷紧的细绳穿过弓。

1、小于41/2"的管子有弯度不合格。

2、不小于41/2"的管子超过3.1mm/1500mm为不合格,反之合格。

颜色/印记检定按API-67标准在表示材质(钢级)的部位,观查有颜色标记或钢印标记没有颜色标记/钢印标记为不合格品。

通径检验通径规通过本体。

通径规标准按测试规程、规定进行通过为合格(进货)壁厚测定游标长尺测量管壁进货时:最小壁厚小于规定壁厚90%为不合格。

使用中:最小壁厚小于规定壁厚87.5%为不合格。

常见油管扣型

常见油管扣型

常见油管扣型扣型是工具中最常见的部分,也是比较难区分的一部分。

扣型对于工具师或是监督是很重要的,一个工具师如果不了解扣型,要料、准备到指挥作业都是行不通的,要出大问题的。

这一周主要是学习认识各种常见扣型,包括油管扣型,冲管扣型,筛管盲管扣型,密封单元连接扣形,钻杆扣型等。

1、常见油管扣型(Tubing Joint)油管常用扣型分为三种分别是EU、NU和NewVam。

这三种扣型在工具车间都能找到,其中EU和NU单独从扣的外观上很难区分,都是三角扣型,但是从整个管柱就能很容易区分,那就是EU表示外加厚, NU表示没有外加厚。

New Vam实际是一种梯形扣(扣截面呈矩形),也是不带外加厚的,所以也很容易区分。

下面将用示意图详细介绍三种扣型。

1)EU(External upset)外加厚EU扣是一种外加厚油管扣型。

在车间货架上认识变扣接头过程中还会发现三种和EU有关的变扣标识。

其中EUE(External Upset End)表示外加厚端,EUP(External Upset Pin)表示外加厚公扣,EUB(External Upset Box)表示外加厚母扣。

除了用pin和box表示公扣母扣外,其他表示公扣有1. external thread 2. male 3. male thread。

母扣有1. female thread 2. internal thread 3. box 4. box thread。

图1-1 EU扣型2)NU(Non-upset)没有外加厚NU表示是没有外加厚的油管接头。

除了没有外加厚外和EU一般还有一种区别就是NU一般每英寸10扣,EU一般每英寸8扣。

其中NUE表示非加厚端或者说端部非加厚。

同样E表示End。

图1-2 NU扣型3)New VAM这种扣型特点是扣截面基本为矩形,螺距间隔相等,锥度不大,没有外加厚。

在车间的生产滑套套筒端部见到。

图1-3 New VAM扣型2. 常用钻杆扣型总结钻杆扣一般常见为REG和IF扣,其他如FH等在工具车间没有找到。

各类扣型总结分析

各类扣型总结分析

1、常见油管扣型(Tubing Joint)油管常用扣型分为三种分别是EU、NU和NewVam。

这三种扣型在工具车间都能找到,其中EU和NU单独从扣的外观上很难区分,都是三角扣型,但是从整个管柱就能很容易区分,那就是EU表示外加厚NU表示没有外加厚。

New Vam实际是一种梯形扣(扣截面呈矩形),也是不带外加厚的,所以也很容易区分。

下面将用示意图详细介绍三种扣型。

1)EU(External upset)外加厚EU扣是一种外加厚油管扣型。

在车间货架上认识变扣接头过程中还会发现三种和EU 有关的biano标识。

其中EUE(External Upset End)表示外加厚端,EUP(External Upset Pin)表示外加厚公扣,EUB(External Upset Box)表示外加厚母扣。

除了用pin和box表示公扣母扣外,其他表示公扣有1. external thread 2. male 3. male thread。

母扣有1. female thread 2. internal thread 3. box 4. box thread。

图1-1 EU扣型2)NU(Non-upset)没有外加厚NU表示是没有外加厚的油管接头。

除了没有外加厚外和EU一般还有一种区别就是NU一般每英寸10扣,EU一般每英寸8扣。

其中NUE表示非加厚端或者说端部非加厚。

同样E表示End。

[以上说法来源《石油大典》。

]图1-2 NU扣型3)New VAM这种扣型特点是扣截面基本为矩形,螺距间隔相等,锥度不大,没有外加厚。

在车间的生产滑套套筒端部见到。

图1-3 New VAM扣型2.钻杆常用扣型总结钻杆扣一般常见为REG和IF扣,其他如FH等在工具车间没有找到。

根据师傅经验REG扣和IF扣一般分别是5扣/in和4扣/in,但是大于4-1/2”即使是4扣/in也是REG扣,也就是说大于4-1/2”一般都是REG扣,小于4-1/2”IF扣较多。

扣

1、常见油管扣型(Tubing Joint)油管常用扣型分为三种分别是EU、NU和NewVam。

这三种扣型在工具车间都能找到,其中EU和NU单独从扣的外观上很难区分,都是三角扣型,但是从整个管柱就能很容易区分,那就是EU表示外加厚NU表示没有外加厚。

New Vam实际是一种梯形扣(扣截面呈矩形),也是不带外加厚的,所以也很容易区分。

下面将用示意图详细介绍三种扣型。

1)EU(External upset)外加厚EU扣是一种外加厚油管扣型。

在车间货架上认识变扣接头过程中还会发现三种和EU 有关的biano标识。

其中EUE(External Upset End)表示外加厚端,EUP(External Upset Pin)表示外加厚公扣,EUB(External Upset Box)表示外加厚母扣。

除了用pin和box表示公扣母扣外,其他表示公扣有1. external thread 2. male 3. male thread。

母扣有1. female thread 2. internal thread 3. box 4. box thread。

图1-1 EU扣型2)NU(Non-upset)没有外加厚NU表示是没有外加厚的油管接头。

除了没有外加厚外和EU一般还有一种区别就是NU一般每英寸10扣,EU一般每英寸8扣。

其中NUE表示非加厚端或者说端部非加厚。

同样E表示End。

[以上说法来源《石油大典》。

]图1-2 NU扣型3)New VAM这种扣型特点是扣截面基本为矩形,螺距间隔相等,锥度不大,没有外加厚。

在车间的生产滑套套筒端部见到。

图1-3 New VAM扣型2.钻杆常用扣型总结钻杆扣一般常见为REG和IF扣,其他如FH等在工具车间没有找到。

根据师傅经验REG扣和IF扣一般分别是5扣/in和4扣/in,但是大于4-1/2”即使是4扣/in也是REG扣,也就是说大于4-1/2”一般都是REG扣,小于4-1/2”IF扣较多。

油管标准大纲

油管标准大纲

油管标准:(1)API SPEC5CT(2)SY/T6194-1996油管用途:①、抽取油汽:油气井打完并固井之后,在油层套管中放置油管,以抽取油气至地面。

②、注水:当井下压力不够,通过油管往井里注水。

③、注蒸汽:在稠油热采过程中,要用隔热油管向井下输入蒸汽。

④、酸化和压裂:在打井后期或为了提高油气井的产量,需要对油气层输入酸化和压裂的介质或固化物,介质和固化物都是通过油管输送的。

油管分类:油管分为平式油管(NU)、加厚油管(EU)和整体接头油管。

平式油管是指管端不经过加厚而直接车螺纹并带上接箍。

加厚油管是指两管端经过外加厚以后,再车螺纹并带上接箍。

整体接头油管是指一端经过内加厚车外螺纹,另一端经过外加厚车内螺纹,直接连接不带接箍。

油套管管柱结构油套管管柱典型结构示意见图1。

油管钢级:油管钢级有:H40、J55、N80、L80、C90、T95、P110。

N80分为N80-1和N80Q,二者的相同点是拉伸性能一致,二者的不同点是交货状态和冲击性能区别,N80-1按正火状态交货或当终轧温度大于临界温度Ar3且张力减径后经过空冷时,又可用热轧代替正火,冲击功和无损检验均不作要求;N80Q必须经过调质(淬火加回火)热处理,冲击功应符合API5CT规定,且应进行无损检验。

L80分为L80-1、L80-9Cr和L80-13Cr。

它们的力学性能和交货状态均相同。

不同之处表现在用途、生产难度和价格上,L80-1为普通型,L80-9Cr和L80-13Cr均为高抗腐蚀性油管,生产难度大,价格昂贵,通常用于重腐蚀油井。

C90和T95均分为1型和2型,即C90-1、C90-2和T95-1、T95-2。

油管化学成分:API5CT标准对油管化学成分要求见下表,这是一个范围很宽的指导性要求,其中J55、N80、P110等钢级油管只规定了硫、磷含量要求,其它主要元素均由生产厂家根据性能和使用要求而自行规定。

因此,各制造厂均有自已的油管牌号。

SAE_J2044-2002标准_油管、油泵、燃油滤清器、油轨等管接头的执行标准

SAE_J2044-2002标准_油管、油泵、燃油滤清器、油轨等管接头的执行标准

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright ©2002 Society of Automotive Engineers, Inc.All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER:Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)Fax: 724-776-0790Email: custsvc@6.4.3Test Requirement (Side Load Fracture Test) (9)6.4.4Acceptance Criteria (9)6.5Resistance to Evaporative Emissions (10)6.5.1Test Procedure (10)6.5.2Acceptance Criteria (10)6.6Electrical Resistance (10)6.6.1Test Procedure (10)6.6.2Acceptance Criteria (10)7.Design Verification/Validation Testing (11)7.1Corrosion (11)7.1.1Test Procedure (11)7.1.2Acceptance Criteria (11)7.2Zinc Chloride Resistance (11)7.2.1Test Procedure (11)7.2.2Acceptance Criteria (11)7.3External Chemical and Environmental Resistance (11)7.3.1Test Procedure (11)7.3.2Fluid or Medium (12)7.3.3Acceptance Criteria (12)7.4Fuel Compatibility (12)7.4.1Test Procedure (12)7.4.2Test Fuels (12)7.4.3Test Requirement (12)7.4.4Acceptance Criteria (12)7.5Life Cycle (13)7.5.1Test Procedure (13)7.5.2Vibration Frequency (13)7.5.3Acceleration (13)7.5.4Vibration Duration (13)7.5.5Fluid Pressure (13)7.5.6Fluid Flow (Liquid Fuel Quick Connectors Only) (13)7.5.7Test Duration (13)7.5.8Test Cycle (14)7.5.9Acceptance Criteria (15)7.6Flow Restriction (16)7.7Elevated Temperature Burst (16)7.7.1Test Procedure (16)7.7.2Acceptance Criteria (17)8.Design Verification/Validation and In-Process Testing Matrix (17)9.Notes (17)9.1Marginal Indicia (17)Appendix A Mating Tube End Template Examples (18)1.Scope—This SAE Recommended Practice defines standard tube end form dimensions so as to guaranteeinterchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions:a.Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission controlsystems.b.Operating pressure up to 500 kPa, 5 bar, (72 psig).c.Operating vacuum down to –50 kPa, –0.5 bar (–7.2 psi).d.Operating temperatures from –40 °C (–40 °F) to 115 °C (239 °F).Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated. For service operations, the mating tube should be lubricated with SAE 30-weight oil before re-connecting.NOTE—New connector designs using the same materials as previously tested connectors may use the original results as surrogate data for 7.1, 7.2, 7.3, and 7.4.Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.2.References2.1Applicable Publications—The following publications form a part of this specification to the extent specifiedherein. Unless otherwise specified, the latest issue of SAE publications shall apply.2.1.1SAE P UBLICATIO NS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.SAE J1645—Fuel System—Electrostatic ChargeSAE J1681—Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials TestingSAEJ1737—Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by RecirculationSAE J2045—Performance Requirements for Fuel System Tubing Assemblies2.1.2ASTM P UBLICATION—Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.ASTM B 117—Method of Salt Spray (Fog) Testing2.2Related Publication—The following publication is provided for information purposes only and is not a requiredpart of this specification.2.2.1SAE P UBLICATIO N—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.SAE J30—Fuel and Oil Hoses3.Definitions3.1Unexposed coupling—One that has not been used or deteriorated since manufacture.3.2Lot—A group of couplings that can be traced to a single assembly set-up or material lot. No more than oneweek production in a lot.4.Size Designation—The following system of size designations apply to the tube end and connector portions ofquick connect couplings. The connector size designation consists of two numbers. The first number designates the OD of the mating tube end. The second number designates the tubing size suited for the stem.EXAMPLE—9.5 mm x 8 mm connector fits a 9.5 mm male and 8 mm flexible tubing or hose. The mating tube end size designations refers to the nominal OD of the sealing surface. Refer to Figure 1 for anillustration of this Coupling Nomenclature.FIGURE 1—CONNECTOR NOMENCLATUREDetails for standard coupling sizes and dimensions for standard tube end forms are shown on Figure 2.NOTE—On metal or nonmetallic tubing, the OD is used to designate size and on flexible hose and tubing, the ID is used to designate size.5.Test Temperatures—Unless otherwise specified, all tests will be performed at room temperature 23 °C ± 2 °C(73.4 °F ± 4 °F).6.Functional Requirements—This section defines the minimum functional requirements for quick connectorcouplings used in flexible tubing fuel systems.6.1Leak Test—In order to provide a production compatible process, all leak testing should be performed usingcompressed air in a manner that insures the connectors will not leak liquid fuel or vapor.6.1.1T EST P ROCEDURE (L OW P RESSURE)a.Insert leak test pin, shown in Figure 3, into the connector.b.Pressurize between the seals with suitable air leak test equipment to 69 kPa ± 7 kPa, 0.69 bar ±0.07bar (10 psig ± 1 psig).NOTE—For single seal connectors, the stem must be capped or sealed.6.1.2A CCEP TANCE C RITERIA (L OW P RESS URE)—Maximum leak rate 2 cc/min at stabilization.6.1.3T EST P ROCEDURE (H IGH P RE SSURE)a.Insert leak test pin, shown in Figure 3, into the connector.b.For liquid fuel quick connector couplings, pressurize between the seals with suitable air leak testequipment to 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar (150 psig ± 5 psig).c.For vapor/emission quick connector couplings, pressurize between the seals with suitable air leak testequipment to 138 kPa ± 10 kPa, 1.38 bar ± 0.10 bar (20 psig ± 2 psig).FIGURE 2—MATING TUBE FORM6.1.4A CCEP TANCE C RITERIA (H IGH P RESSURE)—Maximum leak rate 5 cc/min at stabilization.NOTE 1—For single seal connectors, the stem must be capped or sealed.NOTE 2—Appropriate safety precautions should be taken when testing with high-pressure air.6.1.5T EST P ROCEDURE (V ACUUM)a.Insert leak test pin shown in Figure 3 into connector.b.Apply a vacuum of 7 kPa with suitable vacuum leak test equipment.6.1.6A CCEP TANCE C RITERIA (V ACUUM)—Maximum leak rate 2 cc/min at stabilization.FIGURE 3—LEAK TEST PIN6.2Assembly Effort—Quick connect coupling assembly effort is the peak force required to fully assemble (latchor retain) the mating tube end into the connector. Use a suitable tensile/compression tester to verify conformance to this document.6.2.1T EST P ROCEDURE (N EW P ARTS)a.Test a minimum of 10 couplings.b.Test the quick connect coupling as supplied. Do not add additional lubrication to the quick connectcoupling or test pin.c.Attach quick connect coupling to a suitable test fixture.d.Wipe the test pins, before each test, with a clean lint-free cloth to prevent an accumulation oflubrication.e.Insert assembly test pin, shown in Figure 4, into the quick connect coupling at a rate of 51 mm/min ± 5mm/min (2 in/min ± 0.2 in/min) and measure assembly effort. (Simulated maximum tube end form)6.2.2T EST P ROCEDURE—Connectors after Section 7 exposure.a.Allow samples to dry 48 h before insertion testing.b.Lubricate test pin with SAE 30-weight oil by dipping the end in oil up to the retaining bead.c.Insert assembly test pin, shown in Figure 4, into the quick connector at a rate of 51 mm/min ± 5 mm/min (2 in/min ± 0.2 in/min) and measure assembly effort.6.2.3A CCEP TANCE C RITERIAa.Maximum first time assembly effort must not exceed 67 N (15 lb) for sizes <11 mm male tubes, and111 N (25 lb) for sizes ≥11 mm male tubes.b.Maximum assembly effort after Section 7 exposures must not exceed 111 N (25 lb) for <11 mm maletubes and 156 N (35 lb) for ≥11 mm male tubes.FIGURE 4—ASSEMBLY TEST PIN6.3Pull-Apart Effort—Quick connect coupling pull-apart effort is the peak force required to pull the mating tubeend out of the quick connect coupling. Use a suitable tensile tester to verify conformance to this document.For hose pull-off, see SAE J2045.6.3.1T EST P ROCEDUREa.Attach the quick connector body stem to a fixture suitable for pulling axially through the centerline ofthe quick connector.e the pull-apart test pin shown in Figure 5. (Simulated minimum mating end form)c.Apply a tensile load, at a rate of 51 mm/min ± 5 mm/min (2 in/min ± 0.2 in/min), until completeseparation occurs.6.3.2A CCEP TANCE C RITERIAa.Minimum Force P required to separate the test pin from the fuel quick connector should be, P = 56d upto a maximum of 600 N (135 lb) or for unexposed connectors and P = 37d up to a maximum of 400 N(90 lb) after Section 7 exposure where P = Force in Newtons and d = Nominal Tube Diameter inmillimeters.b.Minimum Force P required to separate the test pin from the vapor/emissions quick connector shouldbe P = 16d up to a maximum of 400 N (90 lb) for unexposed connectors, P = 12d up to a maximum of300 N (67 lb) after Section 7 exposure.FIGURE 5—PULL APART PIN6.4Side Load Capability—Quick connect couplings must be able to withstand side loads typical of what might beimposed by hose routing in a vehicle application as well as from having the hose pushed aside to reach other objects on the vehicle during service procedures. The connector side load capability is measured using a side load leak test and a side load fracture test. All connector designs and all tube end forms on metal or plastic molded parts must meet the requirements of this procedure.6.4.1T EST P ROCEDUREa.Insert quick connector into a length of design intent flexible tubing or hose with the opposite endsealed.b.Attach the quick connector to a suitable side load leak fixture or the plastic molded part, shown inFigure 6. (Simulated minimum end form)c.For liquid fuel quick connect couplings, pressurize the assembly with 1034 kPa ± 35 kPa, 10.34 bar ±0.35 bar (150 psig ± 5 psig) air pressure.d.For vapor/emission quick connect couplings, pressurize the assembly with 69 kPa ± 14 kPa, 0.69 bar± 0.14 bar (10 psig ± 2 psig) air pressure.e.Side load the hose or tube center point with the required load specified and perform the leak test.f.Mount a sample in the fracture fixture or plastic molded part, side load quick connector, at a rate of12.7 mm/min ± 5 mm/min (0.5 in/min ± 0.2 in/min), until the specified force is applied or fracture of thequick connector occurs. Kinking of design intent hose is permitted.6.4.2A CCEP TANCE C RITERIA (S IDE L OAD L EAK T ES T)a.No leaks, fracture, or rupture of the quick connector or its components or the plastic molded tube endpermitted below the minimum F = 19d up to maximum of 225 N (50 lb), where F = Side Load inNewtons and d = nominal tube diameter in millimeters.b.Maximum leak rate is 8 cc/min at stabilization with 10.34 bar ± 0.34 bar (150 psig ± 5 psig) appliedpressure for liquid connectors or 69 kPa ± 14 kPa, 0.69 bar ± 0.14 bar (10 psig ± 2 psig) appliedpressure for vapor connectors.6.4.3T EST R EQ UIREMENT (S IDE L OA D F RACTURE T EST)—Push above the end of the stem.6.4.4A CCEP TANCE C RITERIA—No fracture, rupture, or yield of the quick connector or its components or the plasticmolded tube end permitted, below the minimum of F = 28d up to a maximum of 400 N (90 lb), where F = Side Load in Newtons and d = nominal tube diameter in millimetersFIGURE 6—SIDE LOAD TEST FIXTURE6.5Resistance to Evaporative Emissions—Fuel line couplings are an integral part of the fuel system barrier toevaporative emissions. They are viewed as potential leak sites in the system. This method is to be used to determine hydrocarbon losses from permeation or micro leaks that are characteristic of each connector design.6.5.1T EST P ROCEDUREa.Because the losses from a single coupling are normally too small to measure accurately, it isrecommended that a test specimen be created consisting of 10 couplings. The value measured isthen divided by the number of connectors in the test specimen to arrive at the per connector value.b.Connector stem is to be inserted into the design intent flexible tubing or hose and a design intent tubeend inserted into the connector. The flexible tubing or hose should have its permeation propertiesmeasured independently using the same test fluid, preconditioning time and temperature, testtemperature and measurement technique. The value measure in this test is then corrected bysubtracting the permeation contribution from the flexible tubing.c.For the purpose of making the correction described in b. (previously) measure the length of flexibletubing in the test specimen that will be exposed to fuel during the test. For each section of flexibletubing this should be measured from a point half way up the stem on one connector to the same pointon the next connector in line.d.Precondition the test specimen per SAE J1737 until steady state permeation/leak measurements areobtained. Use Test Fluid C per SAE J1681. Precondition at 40 °C and 60 °C for separate tests ateach of those temperatures.e.Measure the hydrocarbon losses using a suitable SAE test method (i.e., SAE J1737, Mini-SHED,weight loss, etc) providing it is sufficiently accurate and the flexible tubing has been permeation testedusing the same method. Test at steady state temperatures of 40 °C and 60 °C.f.Correct the measured value for the multi-coupling test specimen by first subtracting the permeationvalue attributed to the flexible tubing then dividing that value by the number of couplings in the testspecimen.6.5.2A CCEP TANCE C RITERIA—None. Report value for each size and material combination only.6.6Electrical Resistance—If required by the OEM, all connectors used in fuel system applications involvingflowing liquid fuel must be sufficiently conductive and capable of creating an electrical connection with the flexible tubing into which they are inserted and with the tube end form that is inserted into them in order to prevent the buildup of harmful electrostatic charges.6.6.1T EST P ROCEDUREa.Test specimen is to consist of a coupling representative of the design as it will be installed in a vehicleapplication. The coupling is to be in the middle of the specimen. The length of both the flexible tubingor hose and rigid tubing must be 250 mm.b.Expose the specimens in accordance with 7.4 of this document then dry the exterior thoroughly.c.Measure electrical resistance per SAE J1645 between the inner surfaces at each end of the specimen.CAUTION—Measurement device may produce hazardous electrical charge, handle components with insulated means.d.With the measurement system in place and recording, using insulated tongs or grasping device, movethe connector both axially and tangentially with respect to the installed tube end.6.6.2A CCEP TANCE C RITERIAa.Measured resistance must be less than 106Ω (at 500 V).b.Electrical continuity must be maintained in all orientations of the connector relative to the tube end.c.Maintain material certification log to show in-process capability.7.Design Verification/Validation Testing7.1Corrosion—The corrosion test is performed to assure that the quick connector components will meet thefunctional requirements of the fuel system after exposure to the corrosion test.7.1.1T EST P ROCEDUREa.Insert design intent mating tube ends, shown in Figure 2, into the quick connect couplings.b.Cap the mating tube ends and the stem ends of the quick connect couplings, so internal surfacesremain free of water and corrosion.c.Perform salt spray test per ASTM B 117.7.1.2A CCEP TANCE C RITERIA—The quick connect couplings shall be capable of meeting the functionalrequirements of 6.1, 6.2, and 6.3 after 500 h salt spray. Appearance is not a functional requirement.7.2Zinc Chloride Resistance—Zinc chloride is an environmental stress-cracking agent to which somehygroscopic polymers are sensitive. This test is performed to assure that the quick connect couplings meets their functional requirements after exposure to zinc chloride.7.2.1T EST P ROCEDUREa.Insert mating tube ends, shown in Figure 2, into the quick connect couplings.b.Cap the mating tube ends and stem ends of the quick connect couplings, so internal surfaces remainfree of water and corrosion.c.Immerse the couplings in a 50% aqueous solution (by weight) of zinc chloride for 200 h at 23°C (roomtemperature). Cover or cap the container to prevent the solution from changing concentrationsignificantly during the exposure. When in doubt, measure the concentration of ZnCl at the completionof the test.d.When the exposure is complete, remove the quick connect couplings from the zinc chloride solution,do not rinse or clean.e.The quick connect couplings must then be held at room temperature for 24 h.f.Quick connect couplings are to be inspected after each exposure sequence for any evidence ofcracking.7.2.2A CCEP TANCE C RITERIAa.No cracks or fractures of the quick connector or its components permitted.b.The quick connect couplings shall be capable of meeting the functional requirements of 6.1, 6.2, and6.3 after exposure to zinc chloride.7.3External Chemical and Environmental Resistance—Quick connect couplings may be exposed to a range ofchemicals typical of the automotive environment. This chemical resistance test is performed to assure that the quick connect couplings will meet their functional after exposure to typical automotive fluids.7.3.1T EST P ROCEDUREa.Insert mating tube ends, shown in Figure 2, into the quick connect couplings.b.Cap mating tube ends and stem ends of the quick connect couplings.c.Submerge the quick connect coupling assemblies completely.d.At the end of 60 days, dry connectors at room temperature for 48 h.7.3.2F LUID OR M EDIUM—See Table 1.7.3.3A CCEP TANCE C RITERIA—The quick connect couplings shall be capable of meeting the functionalrequirements of 6.1, 6.2, and 6.3 upon completion of the external chemical and environmental testing.NOTE—New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.TABLE 1—FLUID OR MEDIUM(1)Fluid or Medium Exposure Time ProcedureAutomatic Transmission Fluid60 Days Soak @ room tempMotor Oil60 Days Soak @ room tempBrake Fluid (Dot 3)60 Days Soak @ room tempEthylene Glycol (50% Water)60 Days Soak @ room tempPropylene Glycol (50% Water)60 Days Soak @ room tempDiesel Fuel60 Days Soak @ room tempEngine Degreaser60 Days Soak @ room temp1.The fluids in Table 2 shall be considered generic or those that are common to the industry.7.4Fuel Compatibility—The fuel compatibility test is performed to assure that the quick connector will meet thefunctional requirements of the fuel system after exposure to specific fuel blends.NOTE—The intention of the document is that all couplings be fully interchangeable. As such couplings must be qualified to operate with all available fuels. Connectors made of materials that are not suitable foruse in some fuels must be clearly labeled to identify their limitations.7.4.1T EST P ROCEDUREa.Insert mating tube ends, shown in Figure 2, into the connectors.b.The samples shall have fuel contact surfaces exposed to the fuels specified in 7.4.2, see Table 2.c.Replace the fuel every 7 days.d.New samples must be used for each test.7.4.2T EST F UE LS—Reference SAE J1681 and Table 2.7.4.3T EST R EQ UIREMENT—One-half the samples shall be tested immediately after removal from the test fuel andthe remaining samples shall be tested after a 48-h dry-out period.7.4.4A CCEP TANCE C RITERIA—The quick connect coupling shall meet the functional requirements of 6.1, 6.2, and6.3 after the completion of the fuel compatibility test.NOTE—New connector sizes using the same materials and architectural design as previously tested connectors may use the original results as surrogate data.TABLE 2—TEST FLUIDSTest Fluid (Per SAE J1681)Exposure Time ProcedureASTM Reference Fuel C60 Days Soak @ 40 °CSAE CE10 (Fuel C Plus 10% Ethyl Alcohol)60 Days Soak @ 40 °CSAE CM30 (Fuel C Plus 30% Methyl Alcohol)60 Days Soak @ 40 °CSAE CME15 (Fuel C Plus 15% MTBE)60 Days Soak @ 40 °CSAE CP (Auto-Oxidized Fuel)60 Days Soak @ 40 °C7.5Life Cycle—The life cycle test is performed to assure that the quick connector will meet the functionalrequirements of the fuel system when exposed to pressure, vibration, and temperature cycles typical of severe duty in automotive applications.7.5.1T EST P ROCEDUREa.Insert a connector in each end of a 500 mm (19.69 in) length of suitable flexible tubing.b.Leak test the assembly per 6.1, except use mating tube end shown in Figure 2.c.Connect the assembly to a test fixture, shown in Figure 7 using production intent tubes.d.Test fluid (liquid fuel quick connect couplings)—Mobil Arctic 155 refrigerant oil or equivalent.e.Test fluid (vapor/emission quick connect couplings)—Air.NOTE—Use of flammable materials is not recommended. However, tests in fuel or fuel surrogates can produce better results at low temperatures.7.5.2V IBRATIO N F REQUENCY—Continuously sweep the frequency from 7 Hz to 200 Hz, with 3 sweeps per hour. 7.5.3A CCELERATION—See Table 3.TABLE 3—ACCELERATION(1)Maintain Acceleration Load From To18 m/s2 (2 G)7 Hz25 Hz90 (10 G)2550182 (20 G) 5075163 (18 G) 75100145 (16 G)100125127 (14 G)125150109 (12 G)15017590 (10 G)1752001.This test may be interrupted or shut down for weekends at the end of anysection.7.5.4V IBRATIO N D URATION—Maintain vibration as specified in 7.5.8 (Test Cycles).7.5.5F LUID P RESSUREa.For liquid fuel quick connect couplings during pressure portions of the test, alternate pressure between0 and 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar (150 psig ± 5 psig). Alternate pressure one time perminute (i.e., 1 min at each pressure).b.For vapor/emission quick connect couplings during pressure portions of the test, alternate pressurebetween 0 and 69 kPa ± 2 kPa, 0.69 bar ± 0.02 bar (10 psig ± 0.3 psig). Alternate pressure one timeminute (i.e., 1 min at each pressure).NOTE—Pressure transition rate is to be as close to a square wave as practical but not so abrupt that pressure overshoot occurs. This may require up to 3 s.7.5.6F LUID F LOW (L IQUID F UEL Q UICK C ONNECT C OUP LINGS O NLY)—Flow rate during the specified test cycle is1.33 Lpm ± 0.2 Lpm (0.46 gpm ± 0.07 gpm) through each quick connect coupling.7.5.7T EST D URATION—336 h (14 test cycles) (14 days)7.5.8T EST C YCLES—The test cycle consists of five sections to simulate hot operation, hot soak, hot operation afterhot soak, cold soak, and cold operation. See Table 4.NOTE—Included at the beginning of the hot and cold test sections are temperature transitions times of 1h maximum.7.5.8.1Hot Operation Testa.Length of Time—7 hb.Chamber Temperature—125 °C ± 5 °C (257 °F ± 9 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—66 °C ± 5 °C (151 °F ± 9 °F)d.Fluid Pressure—yese.Fluid Flow—yesf.Vibration—yes7.5.8.2Hot Soaka.Length of Time—2 hb.Chamber Temperature—125 °C ± 5 °C (257 °F ± 9 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—Heat to chamber temperatured.Fluid Pressure—yese.Fluid Flow—nof.Vibration—no7.5.8.3Hot Operation after Hot Soaka.Length of Time—7 hb.Chamber Temperature—125 °C ± 5 °C (25 7°F ± 9 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—66 °C ± 5 °C (151 °F ± 9 °F)d.Fluid Pressure—yese.Fluid Flow—yesf.Vibration—yes7.5.8.4Cold Soaka.Length of Time—7 hb.Chamber Temperature— –40 °C (-40 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—Cool to chamber temperatured.Fluid Pressure—yese.Fluid Flow—nof.Vibration—no7.5.8.5Cold Operationa.Length of Time—1 hb.Chamber Temperature— –40 °C (–40 °F)c.Fluid Temperature (liquid fuel quick connect couplings only)—Cool to chamber temperatured.Fluid Pressure—yese.Fluid Flow—yesf.Vibration—yes7.5.9A CCEP TANCE C RITERIAa.No fluid leaks permitted during or at completion of test, for Vapor connector couplings, air leak test per6.1.b.The connector shall meet the functional requirements of 6.1, 6.2, and 6.3 after the completion of thelife cycle test.c.Perform visual inspection of connector and its components. No fractures, cracks, or unusual wearpermitted.FIGURE 7—LIFE CYCLE TEST SET UP7.6Flow Restriction—Quick connect couplings shall be designed to provide minimal flow restriction. 7.6.1T EST P ROCEDURE a.Insert connector into its intended flexible tubing.b.Connect the flexible tubing to a source for controlled flow of water.c.Measure the pressure required to create 120 L/h flow through each connector design.7.6.2A CCEP TANCE C RITERIA —None. Measure and report value.7.7Elevated Temperature Burst—The elevated temperature burst test is performed to assure that the quick connect coupling will withstand the pressure requirements of the fuel system at the maximum operating temperature. This test can be performed as part of the tube and hose assembly requirements of SAE J2045 or as follows.7.7.1T EST P ROCEDURE a.Insert a quick connector in each end of a 500 mm (19.69 in) length of tubing or reinforced fuel hose.Secure each end with a hose clamp if required, to prevent failure of the stem to hose interface.b.Insert male tube ends, shown in Figure 2, into the quick connect couplings.c.Attach assembly to a suitable, air or hydraulic, burst pressure source.d.Place the assembly in a suitable environmental chamber and soak at 115 °C (239 °F) for 1 h.e.Perform burst by pressurizing the hose assembly at a rate of 3450 kPa/min (500 psig/min) until burst or rupture occurs.TABLE 4—LIFE CYCLE TEST SCHEDULESection Hour Chamber TemperatureFluid TemperatureFluid PressureFluid FlowVibration 7.5.8.11 125 °C (1)1.Temperature may be in transition.125 °C (1)Yes Yes Yes 2125°66°Yes Yes Yes 3125°66°Yes Yes Yes 4125°66°Yes Yes Yes 5125°66°Yes Yes Yes 6125°66°Yes Yes Yes 7125°66°Yes Yes Yes 7.5.8.28125°125°(1)Yes No No 9 125°125°Yes No No 7.5.8.310125°66°(1)Yes Yes Yes 11125°66°Yes Yes Yes 12125°66°Yes Yes Yes 13125°66°Yes Yes Yes 14125°66°Yes Yes Yes 15125°66°Yes Yes Yes 16125°66°Yes Yes Yes 7.5.8.417–40 °C (1)–40°(1)Yes No No 18–40°–40°Yes No No 19–40°–40°Yes No No 20–40°–40°Yes No No 21–40°–40°Yes No No 22–40°–40°Yes No No 23–40°–40°Yes No No 7.5.8.524–40°–40°YesYesYes。

油套管主要技术标准、检测项目与尺寸公差范围

油套管主要技术标准、检测项目与尺寸公差范围
10牙/吋油管: P或P (S-S)+A或A±3.18mm
偏梯型套管:P或P(+, 0)mm;(S-S)+A或A(0, mm
19
从管端起全顶螺纹
最小长度L
油管及圆螺纹套管:L长度内不允许出现黑皮扣
偏梯型套管:L长度内允许出现2牙黑皮扣,但长度不超过1/4周
油套管螺纹尺寸公差表
API SPEC 5B
2002. 6. 25 sl
完整螺纹最小长度Lc
S1
P1
4 1/2
外螺纹
+
内螺纹
+
±
±
0
+
±

5
±

5 1/2
±

6 5/8
±

7
±

7 5/8
±

9 5/8
±

8
接箍镗孔直径Q
圆螺纹套管接箍:(+, 0)mm
9
接箍镗孔深度q
圆螺纹套管接箍:(+, 0)mm
10
牙型高度偏差
油管及圆螺纹套管:(+,)mm;偏梯型套管及玻璃钢油管:±
11
螺距
偏差
每间距
规格≤13 3/8偏梯型套管及玻璃钢油管:±其余油管及套管均为: ±
全长螺距
油管及圆螺纹套管:±; 玻璃钢油管±; 偏梯型螺纹套管±
直 径
D
S1
P1
4 1/2
+
±
+
±
0
±
±

5
±

5 1/2
±

6 5/8
±

常见各种扣型标准解释

常见各种扣型标准解释

常见各种扣型标准解释⽯油常⽤管丝扣类型及规格⼀、前⾔在⽯油⼯业发展过程中,API 系列规范的⽯油管专⽤螺纹起着不可或缺的作⽤。

⽯油管专⽤螺纹主要分为两⼤类:⽤于井下⼯具及钻柱构件连接的⽯油钻具接头螺纹及⽤于油套管连接的油套管接头螺纹。

随着油井⽓钻采作业向更深、更⾼压⼒和更⾼温度等更苛刻⼯况条件的⽅向发展,⽽且⽯油钻采⼯艺技术不断的进步,常规⽯油管螺纹很难满⾜油⽥的开发需求。

本⽂就⽯油常⽤专⽤管螺纹和管材的主要类型、规格及发展现状作相应的介绍。

⽬前⾼压油⽓井越来越多,普通API螺纹油管已经不能满⾜⾼压密封的要求,对于压⼒⾼于28MPa勺油⽓井,⼤多数选择了⽓密封特殊扣型油管。

由于越来越多的含有H2S/CO2/Cl- 的油⽓井将投⼊开发,普通低碳低合⾦钢油管不能适应较恶劣的腐蚀环境,油管使⽤寿命不能达到油⽓井的设计要求,因⽽9Cr 、13Cr、 2 2 Cr、25Cr 等耐腐蚀材质油管的应⽤也越来越⼴泛。

(⼀)、公司采⽤成套⽆压痕设备起下作业满⾜以下要求:1. 扭矩管理:⽓密封特殊螺纹油管的作业,实施单根扭矩管理(扭矩图形记录、过扭矩保护)。

2. 转速管理:特殊材质油管,使⽤⽆压痕液压钳,低速上扣(1?6 rpm )。

3 .引扣:使⽤布带钳引扣。

(⼆)、提供⽆压痕成套设备和技术: 1. 采⽤国家专利“⽆⽛卡⽡”(专利号ZL 200520146989.3 )配套液压动⼒钳和液压站使⽤。

2. 使⽤NKY-193B型扭矩⾃动控制系统,记录实时扭矩曲线、过扭矩保护。

3. ⽤布带钳引扣,不伤油管表⾯防腐层。

(三)、⽆压痕起下作业具有以下优点:1. 油管表⾯没有咬印,保护油管不受损伤;2. 减少作业次数,降低油井维修费⽤;3. 按最佳扭矩上扣,延长油管使⽤寿命;4. 最⼤程度降低油管破裂损耗⼏率;5. 增强油管串的整体性,提⾼油管串的安全性。

公司对外提供特殊材质特殊扣(⽆压痕)油套管起下成套设备和技术服务⽆压痕起下后的池背表由作业现场布带袖(四)、特殊油套管螺纹介绍随着油⽓钻采作业向更加苛刻的⼯况条件的⽅向发展,以及⽯油钻采⼯艺技术的不断进步,API SPEC 5B旗下的圆螺纹和偏梯形螺纹在⽯油专⽤管领域已⽇渐⼒不从⼼。

石油扣型汇总

石油扣型汇总

.【设备名称】:石油套管,油管。

2.【常用螺纹扣型】:STC,LTC.BTC,VAM,NEW VAM,VAM TOP,STJ-SN,STJ-ST,JIP,FLUSH MAX,SUPPER MAX,GEO,PPCM,TMK,HUNTING,RTS-8,RTS-6,RTS-53.【使用螺纹标准】:API 5CT,API 5B.【设备名称】:石油套管2.【常用螺纹扣型】:WSP-1T,WSP-2T,WSP-3T,WSP-4T.WSP-HK,WSP-JT,WSP-6T,WSP-BIG3.【使用螺纹标准】:API5CT、API5B ,WSP特殊扣标准1.【设备名称】:石油套管2.【常用螺纹扣型】:WSP-1T,WSP-2T,WSP-3T,WSP-4T.WSP-HK,WSP-JT,WSP-6T,WSP-BIG3.【使用螺纹标准】:API5CT、API5B ,WSP特殊扣标准 (2011-12-21 15:13).【设备名称】:射孔枪2.【螺纹扣型】:射孔枪枪头主要规格型号序号型号外径(mm) 材质连接螺纹1 60 60 35CrMo或45 # M53x22 68 68 35CrMo或45 # M58X23 73 73 35CrMo或45 # M62X24 83 83 35CrMo或45 # Tr70X45 86 86 35CrMo或45 # --6 89 89 35CrMo或45 # M80×37 96 96 35CrMo或45 # --8 102 102 35CrMo或45 # Tr90×49 114 114 35CrMo或45 # Tr100×410 127 127 35CrMo或45 # Tr115×43.【使用螺纹标准】:SY/T 5562-2000API接头扣型与国内名称对照表国内油田现场叫法 API标准接头扣型每英寸扣数公扣小头直径/毫米母扣台肩内径/毫米211×210 NC26=2 3/8"IF 4 60.35 74.61211×210 NC31=2 7/8'IF 4 71.31 87.71311×310 NC38=3 1/2"IF 4 85.06 103.58NC40=4"FH 4 89.06 110.33NC44 4 98.42 119.064A11×4A10 NC46=4"IF 4 103.73 124.61411×410 NC50=4 1/2"IF 4 114.30 134.91NC56 117.50 150.81NC61 4 126.60 165.10NC70 4 147.65 187.33NC77 4 161.85 204.792 3/8"REG 5 47.62 68.20231×230 2 7/8"REG 5 53.97 77.78331×330 3 1/2"REG 5 65.07 90.48431×430 4 1/2"REG 5 90.47 119.06531×530 5 1/2"REG 4 110.06 141.68631×630 6 5/8"REG 4 131.03 153.99731×730 7 5/8"REG 4 144.47 180.18831×830 8 5/8"REG 4 167.84 204.39321×320 3 1/2"FH 5 77.62 102.794"FH=NC40 4 89.66 110.33421×420 4 1/2"FH 5 96.31 123.83521×520 5 1/2"FH 4 126.79 150.02621×620 6 5/8"FH 4 150.37 173.83211×210 2 3/8"IF=NC26 4 60.35 74.61211×210 2 7/8"IF=NC31 4 71.31 87.71311×310 3 1/2"IF=NC38 4 85.06 103.584A11×4A10 4"IF=NC46 4 103.73 124.61411×410 4 1/2"IF=NC50 4 114.30 134.91511×510 5 1/2"IF 4 141.32 163.91注意:1. 某些NC型接头可以与FH、IF型接头互换。

油套管及配套接箍螺纹

油套管及配套接箍螺纹

油套管及配套接箍螺纹普通技术要求内容1、适用范围2、标准连接3、术语、定义、注释和缩写4、普通规则5、套管螺纹扣5.1 螺纹剖面5.2 OTTM螺纹扣基本参数5.3 量规检测OTTM螺纹扣5.4 OTTG螺纹扣基本参数5.5 量规检测OTTG螺纹扣6、油管螺纹扣6.1 螺纹剖面6.2 油管及NKTB油管螺纹扣基本参数6.3 量规检测油管及NKTB油管螺纹扣6.4 NKM油管螺纹扣基本参数6.5 量规检测NKM螺纹扣7、验收规则8、检测油管及套管螺纹扣基本规格和检测普通技术要求1、适用范围:本技术标准适用于石油及天然气工业中的油管及套管螺纹扣,规定了对螺纹剖面、螺纹基本参数和螺纹检测的要求。

本技术标准规定了对以下类型螺纹扣的要求:——套管的OTTM梯形螺纹扣;——套管的OTTG梯形高气密性螺纹扣和“金属——金属”密封扣;——油管的三角螺纹扣;——HKTB油管的三角螺纹扣及外翻管端;——HKM油管的高气密性梯形螺纹扣和“金属——金属”密封扣。

2、标准连接:本技术标准使用了以下标准连接:GOST P (ICO 11960) 石油及天然气工业。

油井使用的套管或油管(钢管)。

GOST 9378-93。

GOST 10654-81 油管及配套接箍三角螺纹用量规。

类型、基本规格和公差。

GOST P 11708-82 互换基本标准。

螺纹、术语和定义。

GOST 25576-83 套管及配套接箍梯形螺纹用量规。

类型、基本规格和公差。

GOST 2789-73 表面粗糙度。

参数、特性和注释。

3、术语、定义、注释和缩写:本标准引用了GOST 11708 82标准中的术语和定义,还有以下术语和定义:3.1 螺纹旋线——位于实际或假设的圆锥体侧表面的线,围绕中轴线旋转,但不能为零或无限长。

3.2 螺纹螺旋表面——旋转表面,位于中轴线一侧并围绕中轴线不断旋转。

每个旋转点均围绕旋线旋转,旋线到旋转点的距离必须一样。

3.3 螺纹台肩——受螺纹表面限制的突出部分。

油管性能基本要求

油管性能基本要求

螺纹处理:



所有规格的油管接箍螺纹都应进行镀锌、镀锡、 镀铜或磷化处理,以便减少磨损并提高接头的抗 泄漏性能。 当使用锡或其它塑性涂层,其厚度超过0.001in (0.03mm)时,螺纹的公差和紧密距要求仅适 用于无涂层螺纹。 镀锡涂层的最大厚度不得超过0.006in (0.15mm)。机紧上扣可能会影响锥度、紧密 距和外径尺寸。
a) 将量规的调节臂调至被测外螺纹的规格,检查仪表的灵 活性和测头的直径; b) 量规测量爪上的固定球形测头置于首牙完整螺纹的牙槽 内,另一测量爪上活动测杆上的球形测头置于直径相对 侧同一螺纹的牙槽内; c) 固定的测头保持不动,测杆上的触头做小圆弧摆动。调 节指示表,使零位与最大读数重合; d) 以同样的方法,沿同一条圆锥母线在规定的间距内进行 连续测量; e) 连续测量之差值即为该段螺纹的锥度。完整螺纹的最后 间距内的锥度也应测量。
大端直径
管端至消失点

不加厚和外加厚油管螺纹尺寸:

螺纹牙型尺寸

螺纹尺寸公差:
--锥度 --螺距 --紧密距 --牙型高度 --牙型角 --外螺纹全长 --接箍镗孔直径、深度 --倒角
螺纹外观检查
管体的全顶螺纹最小长度( Lc) 范围内及接箍的螺纹应无明 显的撕裂、刀痕、磨痕、台阶、折叠、凹坑、压痕、明显锈蚀 或腐蚀坑、搬运损伤或破坏螺纹连续性的任何其它缺欠,保证 螺纹上不存在任何可能导致螺纹及表面处理层损伤的凸点。
螺距量规的使用方法
a) 使 用 前 , 安 装 和 调 整 固 定 测 头 , 使 测 头 间 距 等 于 待 测 螺 纹的间距;
b)使用标准样板将量规指示表调整到零位,并检查仪表的灵活性 和测头是否松动; c)量规的球形测头置于相应的螺纹槽内; d)以固定测头为轴心,可动测头在测量线的两侧旋转一小圆弧; e)最小的正读数(+)或最大的负读数(-)就是螺距误差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档