2018年天津市中考数学模拟试题(含答案)

合集下载

【中考模拟】2018年天津市初中毕业生学业模拟考试数学试卷含答案

【中考模拟】2018年天津市初中毕业生学业模拟考试数学试卷含答案

请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!2018年天津市初中毕业生学业模拟考试数学·答题卡请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!姓名:__________________________准考证号:贴条形码区考生禁填:缺考标记违纪标记以上标志由监考人员用2B铅笔填涂选择题填涂样例:正确填涂错误填涂[×][√][/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。

2.选择题必须用2B铅笔填涂;填空题和解答题必须用0.5mm黑色签字笔答题,不得用铅笔或圆珠笔答题;字体工整、笔迹清晰。

3.请按题号顺序在各题目的答题区域内作答,超出区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠、不要弄破。

注意事项一、选择题(每小题3分,共36分)1[A][B][C][D]2[A][B][C][D]3[A][B][C][D]4[A][B][C][D]5[A][B][C][D]6[A][B][C][D]7[A][B][C][D]8[A][B][C][D]9[A][B][C][D]10[A][B][C][D]11[A][B][C][D]12[A][B][C][D]二、填空题(每小题3分,共18分)13._________________________14._________________________15._________________________16._________________________17._________________________18.(Ⅰ)_____________________(Ⅱ)__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!三、解答题(共66分,解答应写出文字说明、证明过程或演算步骤)19.(本小题8分)(Ⅰ)_____________________;(Ⅱ)_____________________;(Ⅲ)12345(Ⅳ)_____________________.20.(本小题8分)(Ⅰ)_____________________.(Ⅱ)(Ⅲ)21.(本小题10分)(Ⅰ)DCEBOA(Ⅱ)CFEDA BO22.(本小题10分)53°60°NBACABC请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!23.(本小题10分)解:(Ⅰ)表一购进甲种服装的数量/件1020x购进甲种服装所用费用/元8001600①________购进乙种服装所用费用/元5400②________③________表二购进甲种服装的数量/件1020x甲种服装获得的利润/元④________800⑤________乙种服装获得的利润/元27002400⑥________(Ⅱ)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!24.(本小题10分)(Ⅰ)xyO ABB'O'(Ⅱ)xyO'B'BAO(Ⅲ)_________________________.25.(本小题10分)(Ⅰ)(Ⅱ)。

2018年天津市中考数学模拟测试题

2018年天津市中考数学模拟测试题

∴=
,解得 x=30+10 .∴河的宽度为( 30+10 )米 .
23.
24. 解:( 1)45°, ;(2)①
- 2;②
.
25. 解:( 1)∵ 抛物线过( 0,-3 )点,∴- 3a= -3 ∴ a=1 ∴y =x2-2x -3 ∴y= x2- 2x- 3=( x- 1) 2- 4∴抛物线C 1 的顶点坐标为( 1,-4 )
EF∥ MN,小聪在河岸
MN上点 A 处用测角仪测得河对岸小树 C 位于东北方向,然后沿河岸走了 30 米,到达 B 处,
测得河对岸电线杆 D位于北偏东 30°方向,此时,其他同学测得 CD=10米.请根据这些数
据求出河的宽度. (精确到 0.1 )(参考数据: 2 ≈ 1.414 , 3 ≈ 1.132 )
与 t 之间的函数关系式 .
25. 已知抛物线 C1 的函数解析式为 y=ax 2-2x-3a, 若抛物线 C1 经过点 (0 , -3).
⑴求抛物线 C1 的顶点坐标 .
⑵已知实数 x> 0,请证明 x+ 1 ≥ 2,并说明 x 为何值时才会有 x+ 1 =2;
x
x
⑶若将抛物线先向上平移 4 个单位,再向左平移 1 个单位后得到抛物线 C2 ,设 A(m, y 1),
3
请结合题意填空:完成本题的解答:
(Ⅰ)解不等式 (1) ,得

(Ⅱ)解不等式 (2) ,得

(Ⅲ)把不等式 (1) 和 (2) 的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为

20. 为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,
从该地区随机抽取部分七年级学生作为样本, 采用问卷调查的方法收集数据 (参与问卷调查

天津市2018年中考数学试题(含解析)-推荐

天津市2018年中考数学试题(含解析)-推荐

2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B.C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】 (1). ; (2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。

2018年天津市中考数学模拟试卷答案

2018年天津市中考数学模拟试卷答案
答案解析部分
一、单选题 1.【答案】C 【考点】有理数的混合运算 【解析】 【解答】原式=﹣2×5﹣3=﹣10﹣3=﹣13, 故答案为:C 【分析】根据绝对值的性质化简之后,再由有理数乘法和减法运算法则计算即可. 2.【答案】B 【考点】特殊角的三角函数值 【解析】 【解答】sin60°=
√3 2

1
【解析】解答:
因此选择 C.
分析: 分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘 方,即把分子、分母分别乘方,然后再进行乘除运算. 8.【答案】D 【考点】二元一次方程组的解,解二元一次方程组 【解析】 【解答】解:将两个方程相加,可得(x+y)+(3x-5y)=3+4, 得 4x-4y=7, 则 x-y
故选 D. 【分析】求 a-b,则由两方程相加,方程的左边可变为 4x-4y,即可解出 x-y。 9.【答案】B 【考点】图形的旋转 【解析】 【解答】解:∵△ABC 绕点 A 旋转到△AED 的位置, ∴AD=AC,∠BAE=∠CAD, ∵AD=AC, ∴∠ACD=∠ADC=65°, ∴∠CAD=180°﹣65°﹣65°=50°, ∴∠BAE=50°, ∵AE⊥BC, ∴∠ABC=90°﹣∠BAE=40°. 故选 B. 【分析】先根据旋转的性质得 AD=AC,∠BAE=∠CAD,再根据等腰三角形的性质和三角形内 角和计算出∠CAD=50°,则∠BAE=50°,然后利用互余计算∠ABC 的度数. 10.【答案】C 【考点】反比例函数的性质 【解析】 【解答】因为点(-2,y1)、(-1,y2)、(1,y3)在反比例函数 y =������ 的图象上, 则 y1=− ,y2=−3,y3=3,
2 2 2 2 1 1 3 3

2018年天津市中考数学试题及参考答案附原卷(word版)

2018年天津市中考数学试题及参考答案附原卷(word版)

2018年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.试卷满分120分.考试时间100分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()23-的结果等于()A.5 B.﹣5 C.9 D.﹣92.cos30°的值等于()B C.1 DA.23.今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为()A.0.778×105B.7.78×104C.77.8×103D.778×1024.下列图形中,可以看作是中心对称图形的是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6)A.5和6之间B.6和7之间C.7和8之间D.8和9之间7.计算23211x xx x-+++的结果为()A.1 B.3 C.31x+D.31xx++8.方程组10216x yx y=⎧⎨+=⎩+的解是()A.64xy=⎧⎨=⎩B.56xy=⎧⎨=⎩C.36xy=⎧⎨=⎩D.28xy=⎧⎨=⎩9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数12yx=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x110.如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB11.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF12.已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴的右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c =2有两个不相等的实数根;③﹣3<a+b<3.A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算2x4·x3的结果等于.14.计算的结果等于.15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y=x向上平移2个单位长度,平移后的直线的解析式为.17.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF 的中点,连接DG,则DG的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度);(2)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′.当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组31, 413. xx x≥⎧⎨≤⎩++①②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?21.(10分)已知AB是Oe的直径,弦CD与AB相交,∠BAC=38°.(1)如图①,若D为»AB的中点,求∠ABC和∠ABD的大小;(2)如图②,过点D作Oe的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.22.(10分)如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.23.(10分)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.24.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证:△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).25.(10分)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(1)当抛物线经过点A时,求顶点P的坐标;(2)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(3)无论m取何值,该抛物线都经过顶点H.当∠AHP=45°时,求抛物线的解析式.。

2018年天津市中考数学模拟试卷(含详细解析)

2018年天津市中考数学模拟试卷(含详细解析)
故选 A. 【分析】主视图是从主视方向看到的图形,也可以说是从正面看到的图形. 6.【答案】C
·9·
【考点】估算无理数的大小
【解析】【解答】解:∵
√32
×
√1
2
+
√20
=
4
+
√20
,而
4 < √20 < 5

∴原式运算的结果在 8 到 9 之间.
故选 C.
7.【答案】C
【考点】分式的乘除法
【解析】解答:
(A) y1>y2>y3
(B) y2>y1>y3
(C) y3>y1>y2
(D) y3>y2>y1
(11) 如图,在平面直角坐标系中,Rt△OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为
·2·
(3, 3 ),点 C 的坐标为( 1 ,0),点 P 为斜边 OB 上的一动点,则 PA+PC 在下列选 2
2
故答案为:B. 【分析】根据特殊角的三角函数值即可得出答案. 3.【答案】C 【考点】轴对称图形,中心对称及中心对称图形 【解析】【解答】A. 此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不 是中心对称图形,不符合题意;B. 此图形沿一条直线对折后能够完全重合,∴此图形是轴对 称图形,不是中心对称图形,不符合题意。 C. 此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转 180∘能与原图形重 合,是中心对称图形,符合题意; D. 此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形, 不符合题意。 故答案为:C. 【分析】如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图 形; 把一个图形绕着某一点旋转 180°,如果它能与另一个图形重合,那么就说这两个图形关 于这个点对称或中心对称. 4.【答案】C 【考点】科学记数法—表示绝对值较大的数 【解析】【解答】解:将 2098.7 亿元用科学记数法表示是 2.0987×1011 , 故答案为:C. 【分析】用科学记数法表示绝对值较大的数,一般形式为 a× 10������,其中 1≤|a|<10,n 为由原 数的整数位数减 1,即 2098.7 亿元用科学记数法表示是 2.0987×1011。 5.【答案】A 【考点】简单几何体的三视图 【解析】【解答】解:从正面看到的图形是

2018年天津市中考数学模拟试题及参考答案

2018年天津市中考数学模拟试题及参考答案

2018年天津市中考数学模拟试题及参考答案2018年天津市中考模拟试题数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.△ABC中,∠A,∠B均为锐角,且(tanB ﹣)(2sinA ﹣)=0,则△ABC一定是()A.等腰三角形 B.等边三角形C.直角三角形 D.有一个角是60°的三角形3.下列四个图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .4.如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()A.(﹣4,2) B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)5.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1036.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.(3分)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A .B .C .D .8.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C .﹣D .9.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70° B.80°C.84°D.86°10.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A .3B .4C .5D .411.如图,在△ABC 中,AB=AC ,AD 是△ABC 的中线,E 是AB 上一点,P 是AD 上的一个动点,则下列线段的长等于BP +EP 最小值的是( )A .BCB .ADC .ACD .CE12.已知抛物线y=x 2﹣2mx ﹣4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20)二、填空题(本大题共6小题,每小题3分,共18分)13.计算:a 5÷a 2= .14.方程=1的解是 .15.某人把四根绳子紧握在手中,仅在两端露出它们的头和尾,然后随机地把一端的四个头中的某两个相接,另两个相接,把另一端的四个尾中的某两个相接,另两个相接,则放开手后四根绳子恰好连成一个圈的概率是 .16.如果反比例函数y=(k 是常数,k ≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随x 的值增大而 .(填“增大”或“减小”)17.如图,在△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AB 的长为 .18.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6=三、解答题(本大题共7小题,共66分。

天津市2018年中考数学试题(解析版)

天津市2018年中考数学试题(解析版)

2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。

2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆一.选择题(共2小题)1.(2020•南开区二模)如图,五边形ABCDE 是⊙O 的内接正五边形,AF 是⊙O 的直径,则∠BDF 的度数是( )A .18°B .36°C .54°D .72°2.(2019•滨海新区模拟)一个圆的内接正六边形的边长为4,则该圆的内接正方形的边长为( )A .2√2B .4√2C .4√3D .8二.填空题(共2小题)3.(2020•天津一模)如图所示,平行四边形内有两个全等的正六边形,若阴影部分的面积记为S 1,平行四边形的面积记为S 2,则S 1S 2的值为 .4.(2018•红桥区模拟)如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于 .三.解答题(共33小题)5.(2020•北辰区一模)已知四边形ABCD 是平行四边形,且以AB 为直径的⊙O 经过点D .(Ⅰ)如图(1),若∠BAD=45°,求证:CD与⊙O相切;(Ⅱ)如图(2),若AD=6,AB=10,⊙O交CD边于点F,交CB边延长线于点E,求BE,DF的长.6.(2020•天津模拟)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)连结OC,如果PD=2√3,∠ABC=60°,求OC的长.7.(2019•滨海新区一模)如图,Rt△ACB中,∠ACB=90°,O为AB上一点.⊙O经过点A,与AC交于点E,与AB交于点F,连接EF.(Ⅰ)如图1,若∠B=30°,AE=2,求AF的长;(Ⅱ)如图2,DA平分∠CAB,交CB于点D,⊙O经过点D;①求证:BC为⊙O的切线:②若AE=3,CD=2,求AF的长.8.(2019•和平区二模)如图,已知⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线交⊙O于点D.(1)图①,当BC为⊙O的直径时,求BD的长.(2)图②,当BD=5时,求∠CDB的度数.9.(2018•西青区二模)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA 上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.10.(2018•东丽区二模)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;(Ⅱ)若⊙O半径为2,TC=√3,求AD的长.11.(2018•河西区一模)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上的一点,CE交⊙O于点F,连接OC,AC,若∠DAO=105°,∠E=30°.(Ⅰ)求∠OCE的度数;(Ⅱ)若⊙O的半径为2√2,求线段EF的长.12.(2020•红桥区三模)在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;̂上一点,连接DC并延长,与AB的延长线相交于点P,连接AD,(Ⅱ)如图②,D为AC若AD=CD,∠P=30°,求∠CAP的大小.13.(2020•和平区三模)已知在△ABC中,BC⊥AB.AB是⊙O的弦,AC交⊙O于点D,且D为AC的中点,延长CB交⊙O于点E,连接AE.(I)如图①,若∠E=50°,求∠EAC的大小;(1)如图②,过点E作⊙O的切线,交AC的延长线于点F.若CF=2CD,求∠CAB的大小.14.(2020•滨海新区二模)如图①,在⊙O中,AB为直径,C为⊙O上一点,∠A=30°,过点C作⊙O的切线,与AB的延长线相交于点P.(Ⅰ)求∠P的大小;(Ⅱ)如图②,过点B作CP的垂线,垂足为点E,与AC的延长线交于点F,①求∠F的大小;②若⊙O的半径为2,求AF的长.15.(2020•西青区二模)已知⊙O是△ABC的外接圆,过点A作⊙O的切线,与CO的延长线交于点P,CP与⊙O交于点D.(I)如图①,若△ABC为等边三角形,求∠P的大小;(II)如图②,连接AD,若PD=AD,求∠ABC的大小.16.(2020•红桥区二模)已知AB是⊙O的直径,弦CD与AB相交于点E,∠BAC=52°.̂的中点,求∠ABC和∠ABD的大小;(Ⅰ)如图①,若D为AB(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若AE=AC,求∠P的大小.17.(2020•南开区二模)如图1,AB是⊙O的直径,弦CD⊥AB于G,过C点的切线与射线DO相交于点E,直线DB与CE交于点H,OG=BG,BH=1.(Ⅰ)求⊙O的半径;(Ⅱ)将射线DO绕D点逆时针旋转,得射线DM(如图2),DM与AB交于点M,与⊙O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.18.(2020•滨海新区一模)如图,△ABC内接于⊙O.(Ⅰ)如图①,连接OA,OC,若∠B=28°,求∠OAC的度数;(Ⅱ)如图②,直径CD的延长线与过点A的切线相交于点P.若∠B=60°,⊙O的半径为2,求AD,PD的长.19.(2020•和平区一模)已知AB是⊙O的直径,点C在⊙O上.(Ⅰ)如图①,点D在⊙O上,且AC=CD,若∠CDA=20°,求∠BOD的大小;(Ⅱ)如图②,过点C作⊙O的切线,交BA的延长线于点E,若⊙O的直径为2√3,AC=√3,求EA的长.20.(2020•河北区模拟)已知AB是⊙O的直径,C为⊙O上一点,∠OAC=58°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小.21.(2020•和平区模拟)已知,AB为⊙O的直径,C,D为⊙O上两点,过点D的直线EF 与⊙O相切,分别交BA,BC的延长线于点E,F,BF⊥EF(I)如图①,若∠ABC=50°,求∠DBC的大小;(Ⅱ)如图②,若BC=2,AB=4,求DE的长.22.(2019•北辰区二模)已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC =25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.23.(2019•津南区二模)已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.24.(2019•红桥区二模)已知△ABC内接于⊙O,AB为⊙O的直径,过点O作AB的垂线,与AC相交于点E,与过点C的⊙O的切线相交于点D.(Ⅰ)如图①,若∠ABC=67°,求∠D的大小;(Ⅱ)如图②,若EO=EC,AB=2,求CD的长.25.(2019•西青区二模)已知AB是⊙O的直径,C为⊙O上一点,OC=4,∠OAC=60°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小及P A的长;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小及P A的长.26.(2019•滨海新区二模)已知AB是⊙O的直径,点C,D在⊙O上,CD与AB交于点E,连接BD.(Ⅰ)如图1,若点D是弧AB的中点,求∠C的大小;(Ⅱ)如图2,过点C作⊙O的切线与AB的延长线交于点P,若AC=CP,求∠D的大小.27.(2019•河北区二模)已知,⊙O的半径为1,直线CD经过圆心O,交⊙O与C、D两点,直径AB⊥CD,点M是直线CD上异于C、D、O的一个动点,直线AM交⊙O于点N,点P是直线CD上另一点,且PM=PN.(Ⅰ)如图1,点M在⊙O的内部,求证:PN是⊙O的切线;(Ⅱ)如图2,点M在⊙O的外部,且∠AMO=30°,求OP的长.28.(2019•和平区一模)已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B =70°,连接DO,CO,DC(1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.29.(2019•河西区模拟)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C(Ⅰ)若∠ADE=25°,求∠C的度数(Ⅱ)若AB=AC,求∠D的度数.30.(2018•河西区二模)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.31.(2018•津南区一模)已知P A与⊙O相切于点A,B、C是⊙O上的两点.(Ⅰ)如图①,PB与⊙O相切于点B,AC是⊙O的直径,若∠BAC=25°;求∠P的大小;(Ⅱ)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小.32.(2018•滨海新区一模)如图,AB为⊙O的直径,C为⊙O上一点.(Ⅰ)如图①,若C为半圆的中点,求∠CAB的度数.(Ⅱ)如图②,若∠CAB=20°,D为AC的中点,连接OD并延长交⊙O于点E,过点C的切线CF与AE的延长线交于点F,求∠ECF的度数.33.(2018•西青区一模)已知△ABC中,点D是BC边上一点,以AD为直径的⊙O与BC 相切于点D,与AB、AC分别交于点E、F(Ⅰ)如图①,若∠AEF=52°,求∠C的度数.(Ⅱ)如图②,若EF经过点O,且∠AEF=35°,求∠B的度数.34.(2018•河北区一模)已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠P AC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠P AM=∠DAN.35.(2018•红桥区模拟)如图,AB是⊙O的直径,OD垂直于弦AC交于点E,交⊙O于点D,F是BA延长线上一点,若∠CDB=∠F.(Ⅰ)求证:FD与⊙O的相切;(Ⅱ)若AB=10,AC=8,求FD的长.36.(2018•和平区模拟)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E(Ⅰ)如图①,求∠CED的大小;(Ⅱ)如图②,当DE=BE时,求∠C的大小.37.(2018•河北区二模)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆参考答案与试题解析一.选择题(共2小题)1.【解答】解:∵AF 是⊙O 的直径,五边形ABCDE 是⊙O 的内接正五边形,∴CF̂=DF ̂,BC ̂=DE ̂,∠BAE =108°, ∴BF̂=EF ̂, ∴∠BAF =12∠BAE =54°,∴∠BDF =∠BAF =54°,故选:C .2.【解答】解:∵圆内接正六边形的边长是4,∴圆的半径为4.那么直径为8.圆的内接正方形的对角线长为圆的直径,等于8.∴圆的内接正方形的边长是4√2.故选:B .二.填空题(共2小题)3.【解答】解:如图,则S 阴影=2(S △BEF +S 四边形FGMN ),设正六边形的边长为a ,由于正六边形的存在,所以∠BEF =60°,则可得BE =EF =2a ,BC =4a ,AB =3a ,则在Rt △BEF 中可得其高EP =√3a ,同理可得FQ =√32a ,∴S 1=2(S △BEF +S FGMN )=2(12•BF •EP +FG •FQ ) =2(12•2a •√3a +√32a •a ) =3√3a 2,而S 2=BC •h =4a •3√32a =6√3a 2, ∴S 1S 2=12, 故答案为:12.4.【解答】解:连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边, ∴∠AOB =360°6=60°,∠AOC =360°4=90°,∴∠BOC =30°,∴n =360°30°=12,故答案为:12三.解答题(共33小题)5.【解答】(Ⅰ)证明:连接OD .∵∠A =45°,OA =OD ,∴∠A =∠ADO =45°,∴∠BOD =90°.∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠CDO +∠BOD =180°.∴∠CDO =∠BOD =90°.∴OD ⊥DC ,∴CD 与⊙O 相切.(Ⅱ)如图2中,连接DE ,EF ,BD .∵AB是⊙O直径,∴∠ADB=90°.∵AD∥BC,∴∠ADB=∠EBD=90°.∴DE是⊙O直径.∴DE=AB=CD=10.∴BE=BC=AD=6.在Rt△DEF和Rt△CEF中,EF2=DE2﹣DF2,EF2=CE2﹣CF2∴DE2﹣DF2=CE2﹣CF2.设DF=x,则CF=10﹣x.∴102﹣x2=122﹣(10﹣x)2.解得x=145.即DF=145.6.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴AB =BE ;(2)解:∵OD ∥BE ,∠ABC =60°, ∴∠DOP =∠ABC =60°,∵PD ⊥OD ,∴tan ∠DOP =DP OD , ∴2√3OD =√3,∴OD =2,∴OP =4,∴PB =6,∴sin ∠ABC =PC PB ,∴√32=PC 6, ∴PC =3√3,∴DC =√3,∴DC 2+OD 2=OC 2,∴(√3)2+22=OC 2,∴OC =√7.7.【解答】(Ⅰ)解:∵AF 是⊙O 的直径, ∴∠AEF =90°,∵∠ACB =90°,∴∠AEF =∠ACB ,∴EF ∥AB ,∴∠AFE =∠B =30°,(Ⅱ)①证明:连接OD,如图2所示:∵DA平分∠CAB,∴∠DAC=∠DAO,∵OA=OD,∴∠DAO=∠ADO,∴∠DAC=∠ADO,∴OD∥AC,∴∠ODB=∠ACB=90°,∴BD⊥OD,∵⊙O经过点D,∴BC为⊙O的切线;②解:连接DE,如图3所示:∵BC为⊙O的切线,∴∠CDE=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴CD:CA=CE:CD,∴CD2=CE×CA,即22=CE(CE+3),解得:CE=1,或CE=﹣4(舍去),∴CA=4,设⊙O的半径为r,∵EF∥BC,∴AFBF =AECE=31=3,∴AF=3BF=2r,∴BF=23r,∵OD∥AC,∴△BOD∽△BAC,∴OD AC =OB AB,即r 4=r+23r 2r+23r , 解得:r =52,∴AF =2r =5.8.【解答】解:(1)如图1中,连接CD . ∵BC 为⊙O 直径,∴∠CDB =90°,∴∠CAB =90°,∵AD 是∠CAB 的角平分线,∴∠DAB =12∠CAB =45°,∴∠DCB =∠DAB =45°∴△CDB 为等腰直角三角形,∵BC =10,∴BD =5√2.(2)连接OD 、OB ,∵⊙O 直径为10,∴OB =OD =5,∴BD =5,∴OB =OD =BD ,∴△OBD是等边三角形,∴∠BOD=60°,∵CD̂=DB̂,∴∠ACD=∠BAD=30°,∴∠BAC=60°,∵四边形CABD是圆内接四边形,∴∠CDB+∠BAC=180°,∴∠CDB=120°.9.【解答】解:(I)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=12∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(Ⅱ)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.10.【解答】解:(Ⅰ)连接OT,如图1:∵TC⊥AD,⊙O的切线TC,∴∠ACT=∠OTC=90°,∴∠CAT+∠CTA=∠CTA+∠ATO,∴∠CAT=∠ATO,∵OA=OT,∴∠OAT=∠ATO,∴∠DAB=2∠CAT=50°,∴∠CAT=25°,∴∠ATC=90°﹣25°=65°;(Ⅱ)过O作OE⊥AC于E,连接OT、OD,如图2:∵AC⊥CT,CT切⊙O于T,∴∠OEC=∠ECT=∠OTC=90°,∴四边形OECT是矩形,∴OT=CE=OD=2,∵OE⊥AC,OE过圆心O,∴AE=DE=12AD,∵CT=OE=√3,在Rt△OED中,由勾股定理得:ED=2−OE2=√22−(√3)2=1,∴AD=2.11.【解答】解:(Ⅰ)∵CD是⊙O的切线,∴OC⊥CD,又AD⊥CD,∴AD∥OC,∴∠COE=∠DAO=105°,∴∠OCE=180°﹣∠COE﹣∠E=45°;(Ⅱ)作OM⊥CE于M,则CM=MF,∵∠OCE=45°,∴OM=CM=2=MF,在Rt△MOE中,ME=OMtanE=2√3,∴EF=ME﹣MF=2√3−2.12.【解答】解:(Ⅰ)如图①,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)连接OC,OD,∵AD=CD,∴∠AOD=∠COD,∵OA=OD=OC,∴∠OAD=∠ADO=∠ODC=∠DCO,∵∠P=30°,∴∠P AD+∠ADP=150°,∴∠COP=∠DCO﹣∠P=20°,∵∠CAP=12∠COP,∴∠CAP=10°.13.【解答】解:(1)连接ED,如图1,∵△ABC是直角三角形,∴∠ABC=90°,∴∠ABE=90°,∴AE是⊙O的直径,∴ED⊥AC,∵AD=DC,∴AE=CE,∴∠AED=∠CED=12∠AEC=12×50°=25°,∴∠EAC=90°﹣∠AED=90°﹣25°=65°;(2)连接ED,如图2,∵D为AC的中点,∴∠ABE=90°,∴AE是直径,∵EF是⊙OO的切线,∴∠AEF=90°,∵D为AC的中点,∴AC=2CD,∵CF=2CD,∴AC=CF,∴CE=12AF=AC,由(1)得AE=CE,∴AE=CE=AC,∴∠EAC=60°,∵AB⊥EC,∴∠CAB=12∠EAC=30°14.【解答】解:(Ⅰ)如图①中,连接OC.∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠A=30°,∴∠BOC=2∠A=60°,在Rt△OPC中,∠POC+∠P=90°,∴∠P=90°﹣60°=30°.(Ⅱ)如图②中,①由(Ⅰ)∠OCP=90°,又∵BF⊥PC,即∠PEB=90°,∴OC∥BF,∴∠F=∠ACO=∠A=30°,②由①∠F=∠A,∴AB=BF,连接BC,则∠BCA=90°,即BC⊥AF,∴AC=CF,∵∠BOC=60°,OC=OB,∴△OBC是正三角形,∴BC=OC=2,∴AC=√AB2−BC2=√42−22=2√3,∴AF=4√3.15.【解答】解:(Ⅰ)如图①,连接AO,∵△ABC为等边三角形,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∵∠AOC+∠AOF=180°,∴∠AOP=60°,∵P A是⊙O的切线,∴P A⊥AO,∴∠P AO=90°,∴∠P+∠AOP=90°,∴∠P=90°﹣∠AOP=90°﹣60°=30°;(Ⅱ)如图②,∵PD=AD,∴∠P=∠P AD,∵OA=OD,∴∠ADO=∠OAD,∵∠ADO=∠P+∠P AD=2∠P AD,∴∠OAD=2∠P AD,∵P A是⊙O的切线,∴P A⊥AO,∴∠P AO=90°,∴∠P AD+∠OAD=90°,∴∠P AD+2∠P AD=90°,∴∠P AD=30°,∴∠ADO=2∠P AD=60°,∴∠ADC=60°,∴∠ABC=∠ADC=60°.16.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=52°,∴∠ABC=90°﹣52°=38°,∵D为AB̂的中点,∴AD̂=BD̂,∴∠ACD=∠BCD=12∠ACB=45°,∴∠ABD=∠ACD=45°;(2)如图,连接OD,OC,∵AE=AC,∴∠ACE=∠AEC=64°,∵OA=OC,∴∠ACO=∠CAO=52°,∴∠OCD=∠ACE﹣ACO=12°,∵OC=OD,∴∠ODC=∠OCD=12°,∴∠POD=∠AEC﹣∠ODC=52°,∵DP是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,∴∠P=90°﹣∠POD=38°.17.【解答】解:(Ⅰ)如图1,连接OC,∵OG=BG,且OB⊥CG,∴OC=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠1=∠2=∠3=∠BCH=30°,∠4=60°,∴∠H=90°,∵BH=1,∴OC=BC=2BH=2,即圆O的半径为2;(Ⅱ)如图2,过点F作FE⊥DC.交DC延长线于点E,∴∠CFE+∠FCE=90°,∵OC⊥FC,∴∠OCG+∠FCE=90°,∴∠CFE=∠OCG,∴tan∠CFE=tan∠OCG,即CEEF=√33,设CE=x,则EF=√3x,∵GM=GD,MG⊥CD,∴∠MDG=45°,∵FE⊥ED,∴∠DFE=90°﹣∠MDG=45°=∠MDG,∴EF=ED=EC+CD,又∵CD=2CG=2×√22−12=2√3,∴√3x=x+2√3,解得x=3+√3,∴FC=2EC=6+2√3.18.【解答】解:(Ⅰ)∵∠AOC=2∠ABC,∠B=28°,∴∠AOC=56°,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=180°−56°2=62°;(Ⅱ)如图②,连接OA.∵P A与⊙O相切于点A,∴P A⊥OA,∵∠AOC=2∠ABC,∠B=60°,∴∠AOC=120°.∴∠POA=60°,又OA=OD,∴△AOD是等边三角形,∴AD=OA=2,∵∠P AO=90°,∴∠P=30°.在Rt△P AO中,PO=2OA=4,∴PD=PO﹣OD=2.19.【解答】解:(Ⅰ)如图①,连接OC,∵AC=CD,∠CDA=20°,̂=CD̂,∴∠CAD=∠CDA=20°,AC∴∠COD=∠AOC=2×20°=40°,∴∠AOD=80°,∴∠BOD=180°﹣80°=100°;(Ⅱ)如图②,连接OC,BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=2√3AC=√3,∴∠B=30°,∴∠CAB=60°,∵OC=OA,∴∠ACO=∠CAO=60°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠ECA=30°,∴∠E=∠CAO﹣∠ACE=30°,∴∠E=∠ACE,∴AE=AC=√3.20.【解答】解:(I)如图①,∵OA=OC,∠OAC=58°,∴∠OCA=58°∴∠COA=180°﹣2×58°=64°∵PC是⊙O的切线,∴∠OCP=90°,∴∠P=90°﹣64°=26°;(II)∵∠AOC=64°,∴∠Q=12∠AOC=32°,∵AQ=CQ,∴∠QAC=∠QCA=74°,∵∠OCA=58°,∴∠PCO=74°﹣58°=16°,∵∠AOC=∠QCO+∠APC,∴∠APC=64°﹣16°=48°.21.【解答】解(1)如图1,连接OD,BD,∵EF与⊙O相切,∴OD⊥EF,∵BF⊥EF,∴OD∥BF,∴∠AOD=∠B=50°,∵OD=OB,∴∠OBD=∠ODB=12∠AOD=25°;(2)如图2,连接AC,OD,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,AB=4,∴∠CAB=30°,∴AC=AB•cos30°=4×√32=2√3,∵∠ODF=∠F=∠HCO=90°,∴∠DHC=90°,∴AH=AO•cos30°=2×√32=√3,∵∠HAO=30°,∴OH=12OA=12OD,∵AC∥EF,∴DE=2AH=2√3.22.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=12∠AOD=12×90°=45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=12∠AOD=20°.23.【解答】解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴AD̂=CD̂,∴∠ABD=∠CBD=12×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.24.【解答】解:(Ⅰ)连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∵OC=OB,∴∠OCB=∠ABC=67°,∴∠BOC=46°,∵OD⊥AB,∴∠BOD=90°,∴∠DOC=44°,∴∠D=90°﹣44°=46°;(Ⅱ)连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A,∵EO=EC,∴∠1=∠2,∴∠D=∠DCE,∵∠DCE+∠1=∠BCO+∠1=90°,∴∠DCE=∠BCO=∠ABC=∠D,∵∠A+∠ABC=90°,∴∠A=30°,∴∠1=∠2=30°,∵AB=2,∴OA=1,∴OE=√3 2,∴OD=√3,∴CD=√3 3.25.【解答】解:(1)∵OA=OC,∠OAC=60°,∴△AOC是等边三角形,∴AC=OC=4,∠AOC=60°,∵过点C作⊙O的切线,与BA的延长线交于点P,∴∠OCP=90°,∴∠P=∠ACP=30°,∴P A=AC=4;(2)作CD⊥AB于D,∵∠AOC=60°,∴∠Q=30°,∵AQ=CQ,∴∠QAC=∠QCA=75°,∵∠OAC=∠OCA=60°,∴∠QAO=∠QCO=15°,∵∠AOC=∠POC+∠APC,∴∠APC=60°﹣15°=45°,∴△PCD是等腰直角三角形,∴PD=CD,∵CD=√32AC=2√3,AD=12AC=2,∴PD=2√3∴P A=AD+PD=2+2√3.26.【解答】解:(Ⅰ)如图1,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵D是弧AB的中点,̂=BD̂,∴AD∴AD=BD,∴△ABD是等腰直角三角形,∴∠ABD=45°,又∵∠C=∠ABD,∴∠C=45°;(Ⅱ)如图2,连接OC,∵CP是⊙O的切线,∴∠OCP=90°,∵AC=CP,∴∠A=∠P,∵∠COP=2∠A,∴∠COP=2∠P,∴在Rt△OPC中,∠COP+∠P=90°,∴2∠P+∠P=90°,∴∠P=30°,∴∠A=30°,∴∠D=∠A=30°.27.【解答】(Ⅰ)证明:连接ON,如图1,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN,∵∠AMO=∠PMN,∴∠PNM=∠AMO,∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°,即PN与⊙O相切.(Ⅱ)解:连接ON,如图2,∵∠AMO=30°,PM=PN,∴∠PNM=∠AMO=30°,∠OAN=60°,∴∠NPO=60°,∴OA=ON,∴△AON是等边三角形,∴∠AON=60°,∴∠NOP=30°,∴∠PNO=90°,∴OP=ONcos30°=132=2√33.28.【解答】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°﹣∠AOD﹣∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.29.【解答】解:(Ⅰ)连接OA,∵∠ADE=25°,∴由圆周角定理得:∠AOC=2∠ADE=50°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(Ⅱ)∵AB=AC,∴∠B=∠C.∵AÊ=AÊ,∴∠AOC=2∠B.∴∠AOC=2∠C.∵∠OAC=90°,∴∠AOC+∠C=90°.∴3∠C=90°.∴∠AOC=2∠C=60°.∴∠D=12∠AOC=30°.30.【解答】解:(1)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴DĈ=BD̂,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5√2,(2)如图②,连接OB,OD,OC.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=12∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴DĈ=BD̂,∴OD⊥BC,设垂足为E,∴BE=EC=OB•sin60°=5√3 2,∴BC=5√3.31.【解答】解:(Ⅰ)连接OB,∵P A,PB与⊙O相切于点A,B,∴P A=PB,∠P AO=∠PBO=90°,∴∠P AB=∠PBA,∵∠BAC=25°,∴∠PBA=90°﹣∠BAC=65°,∴∠P=180°﹣65°×2=50°;(Ⅱ)连接AB、AD,∵∠ACB=90°,∴AB为⊙O的直径,∴∠ADB=90°,∵PD=DB,∵P A与⊙O相切于点A,∴BA⊥AP,∴∠P=∠ABP=45°.32.【解答】解:(Ⅰ)如图①,∵C为半圆的中点,∴AĈ=BĈ,∴AC=BC,而AB为⊙O的直径,∴∠ACB=90°,∴△ACB为等腰直角三角形,∴∠CAB=45°;(Ⅱ)如图②,∵D为AC的中点,∴OE⊥AC,而OA=OC,∴OD平分∠AOC,∴∠COD=∠AOD=90°﹣20°=70°,∵OC=OD,∴∠OCE=∠OEC=12(180°﹣70°)=55°,∴OC⊥CF,∴∠OCF=90°,∴∠ECF=90°﹣55°=35°.33.【解答】解:(I)如图①,连接DF,∵BC是⊙O的切线,∴BC⊥AD,∴∠ADC=90°,∴∠F AD+∠C=90°,∵AD是⊙O的直径,∴∠AFD=90°,∴∠F AD+∠ADF=90°,∴∠C=∠ADF,∵∠AEF=∠ADF,∴∠C=∠AEF=52°;(II)如图②,∵AD和AF都是直径,∴OA=OE,∴∠OAE=∠AEF=35°,∵BC与⊙O相切于点D,∴BC⊥AD,∴∠ADB=90°,∴∠B=90°﹣∠OAE=90°﹣35°=55°.34.【解答】证明:(Ⅰ)如图1,连接OC,∵OA=OC,∴∠1=∠2,∵PC是⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴AD∥OC,∴∠2=∠3,∴∠1=∠3,即∠P AM=∠DAN;(Ⅱ)如图2,连接BM,∵AB是⊙O的直径,∴∠1+∠2=90°,∵AD⊥PN,∴∠AND+∠3=90°,∵ABMN时⊙O的内接四边形,∴∠AND=∠2,∴∠1=∠3,即∠P AM=∠DAN.35.【解答】(Ⅰ)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC(同位角相等,两直线平行),∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;(Ⅱ)由垂径定理可知,E是弦AC的中点,∵AB是直径,∴∠ACB =90°,∴BC =√102−82=6,∵OA =OB ,∴OE =12BC =3,∵AE ∥DF ,∴AE DF =OE OD , ∴4DF =35,∴DF =20336.【解答】解:(Ⅰ)∵四边形ABED 圆内接四边形, ∴∠A +∠DEB =180°,∵∠CED +∠DEB =180°,∴∠CED =∠A ,∵∠A =68°,∴∠CED =68°.(Ⅱ)连接AE .∵DE =BE ,∴DE ̂=BE ,̂∴∠DAE =∠EAB =12∠CAB =34°,∵AB 是直径,∴∠AEB =90°,∴∠AEC =90°,∴∠C =90°﹣∠DAE =90°﹣34°=56°37.【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.。

天津市2018年中考数学试卷(word版,含答案)[1]

天津市2018年中考数学试卷(word版,含答案)[1]

天津市2018年中考数学试卷(word版,含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(天津市2018年中考数学试卷(word版,含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为天津市2018年中考数学试卷(word版,含答案)(word版可编辑修改)的全部内容。

2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)-的结果等于()A.5 B.5- C.9 D.9-2. cos30︒的值等于( )A.22B.3C.1 D.33. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为( )A.50.77810⨯ B.47.7810⨯ C.377.810⨯ D.277810⨯4.下列图形中,可以看作是中心对称图形的是( )A. B. C。

D.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C。

D.6。

估计65的值在( )A .5和6之间B .6和7之间C 。

7和8之间D .8和9之间7.计算23211x xx x +-++的结果为( ) A .1 B .3 C. 31x + D .31x x ++8.方程组10216x y x y +=⎧⎨+=⎩的解是( )A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩C 。

36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩9。

若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C 。

2018年天津市西青区中考数学二模试卷

2018年天津市西青区中考数学二模试卷

2018年天津市西青区中考数学二模试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3.00分)计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.182.(3.00分)2cos30°的值等于()A.1 B.C.D.23.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.4.(3.00分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.6.(3.00分)比较4,,的大小,正确的是()A.4<<B.4<<C.<4<D.<<4 7.(3.00分)计算﹣的结果为()A. B. C. D.8.(3.00分)二元一次方程组的解是()A.B.C.D.9.(3.00分)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′10.(3.00分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a11.(3.00分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.712.(3.00分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题:本大题共6小题,每小题3分,共18分)13.(3.00分)计算(a3)2÷(a2)3的结果等于.14.(3.00分)计算(2﹣)2的结果等于.15.(3.00分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.16.(3.00分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为.17.(3.00分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.18.(3.00分)如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(I)OM的长等于;(Ⅱ)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)19.(8.00分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8.00分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的中学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(10.00分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA 于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.22.(10.00分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)23.(10.00分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x 的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y,当y=12时,求x的值.24.(10.00分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).25.(10.00分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(I)求该抛物线的解析式和顶点坐标;(Ⅱ)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).2018年天津市西青区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3.00分)计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.18【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=﹣3+6=3,故选:A.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.(3.00分)2cos30°的值等于()A.1 B.C.D.2【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×=.故选:C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选:B.【点评】本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.4.(3.00分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:由图可得,俯视图为:.故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.(3.00分)比较4,,的大小,正确的是()A.4<<B.4<<C.<4<D.<<4【分析】直接分别将与和4比较大小,进而得出答案.【解答】解:∵=4,∴<,∵<,∴>4,∴<4<.故选:C.【点评】此题主要考查了实数比较大小,正确化简各数是解题关键.7.(3.00分)计算﹣的结果为()A. B. C. D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式====故选:A.【点评】本题考查分式的运算法则,解题的熟练运用分式的运算法则,本题属于基础题型.8.(3.00分)二元一次方程组的解是()A.B.C.D.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选:B.【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法或代入消元法解方程组,属于中考常考题型.9.(3.00分)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选:C.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.10.(3.00分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a【分析】根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=﹣,∴反比例函数y=﹣的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,∴a<b<0,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.11.(3.00分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选:B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.12.(3.00分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选:C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分)13.(3.00分)计算(a3)2÷(a2)3的结果等于1.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:原式=a6÷a6=1.故答案为:1.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算等知识,正确掌握相关运算法则是解题关键.14.(3.00分)计算(2﹣)222﹣4.【分析】利用完全平方公式计算.【解答】解:原式=20﹣4+2=22﹣4.故答案为22﹣4.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(3.00分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.16.(3.00分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)关于y轴的对称点是(1,2),∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.【点评】本题考查了一次函数图象与几何变换,关于y轴对称的点坐标特征,一次函数图象上点的坐标特征,熟练记忆函数平移规律是解题关键.17.(3.00分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】方法1、根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.方法2、先判断出BF=FG,进而得出△ABF≌△CDG,即可得出DG=BF=FG,最后得出CF=CD即可得出结论.【解答】解:方法1、∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.方法2、如图,过点C作CG⊥BD,∵AE⊥BD,∴∠AFE=∠CGD=90°,EF∥CG,∵点E是BC中点,∴BF=FG,∵四边形ABCD是矩形,∴AB=CD=,AB∥CD,∴∠ABF=∠CDG,∴△ABF≌△CDG,∴CF=CD=,故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.18.(3.00分)如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(I)OM的长等于4;(Ⅱ)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR即可得到结果.【解答】解:(Ⅰ)OM==4;故答案为4.(Ⅱ)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴当a=时,PA2+PB2取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR 交OM于P,则点P即为所求.【点评】本题考查了作图﹣应用与设计作图,轴对称﹣最短距离问题,勾股定理等知识,正确的作出图形是解题的关键.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)19.(8.00分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x<3;(Ⅱ)解不等式②,得x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x<3.【分析】求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.【解答】解:(Ⅰ)解不等式①,得:x<3;(Ⅱ)解不等式②,得:x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣2≤x<3,故答案为:x<3、x≥﹣2、﹣2≤x<3.【点评】本题考查了一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是求出不等式组的解集.20.(8.00分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的中学生人数为250,图①中m的值是12;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.【分析】(I)由1h人数及其所占百分比可得总人数,根据百分比之和为1可得m的值;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中每天在校体育锻炼时间大于等于1.5h的人数所占比例可得.【解答】解:(I)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为:250、12;(Ⅱ)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(Ⅲ)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点评】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.(10.00分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA 于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.【分析】(I)如图①,连接OQ.想办法求出∠OQB,∠AQB,∠OQE的大小即可解决问题;(Ⅱ)如图②中,连接OQ,想办法求出∠OQA即可解决问题;【解答】解:(I)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(Ⅱ)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【点评】本题考查切线的性质.等腰三角形的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(10.00分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)【分析】在Rt△AOC中,求出AC、OA、OC,在Rt△BOC中求出OB,即可解决问题.【解答】解:由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的长为6.0km,AB的长为1.7km.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.(10.00分)A ,B 两地相距20km .甲、乙两人都由A 地去B 地,甲骑自行车,平均速度为10km/h ;乙乘汽车,平均速度为40km/h ,且比甲晚1.5h 出发.设甲的骑行时间为x (h )(0≤x ≤2) (Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y 1(km )和y 2(km ),写出y 1,y 2关于x 的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y ,当y=12时,求x 的值. 【分析】(Ⅰ)根据“路程=速度×时间”可以得出表中数据;(Ⅱ)对于甲乙两者与A 地的距离的解析书把握住乙比甲晚1.5h 出发即可; (Ⅲ)甲,乙两人之间的距离为y 实际上是y 1,y 2的差的绝对值.【解答】解(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h 和40km/h ,且比甲晚1.5h 出发.当时间x=1.8 时,甲离开A 的距离是10×1.8=18(km ) 当甲离开A 的距离20km 时,甲的行驶时间是20÷10=2(时) 此时乙行驶的时间是2﹣1.5=0.5(时), 所以乙离开A 的距离是40×0.5=20(km ) 故填写下表:(Ⅱ)由题意知:y 1=10x (0≤x ≤1.5),(Ⅲ)根据题意,得当0≤x≤1.5时,由10x=12,得x=1.2当1.5<x≤2时,由﹣30x+60=12,得x=1.6因此,当y=12时,x的值是1.2或1.6【点评】本题根据题意写函数解析式的题目,需要注意分段函数的表达和应用,需要注意的是必须结合实际情况来解答问题.考查了学生的建模能力和分类思想.24.(10.00分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A 的长,然后利用相似三角形的对应边成比例与m=,即可求得t的值.【解答】解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OP B′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).【点评】此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.25.(10.00分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(I)求该抛物线的解析式和顶点坐标;(Ⅱ)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).【分析】(I)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,转化为解方程组即可.(Ⅱ)①先求出直线OA的解析式,点B坐标,抛物线的对称轴即可得出AB=7及直线OA解析式,继而得点P坐标,如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程m2+()2=52,解方程即可解决问题.②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【解答】解:(I)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.所以抛物线的顶点坐标为(,);(Ⅱ)①由题意B(5,0),A(4,4),∴直线OA的解析式为y=x,AB==7,∵抛物线的对称轴x=,∴P(,).如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四边形BOQC是平行四边形,∵BO=BC,∴四边形BOQC是菱形,设Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴点Q坐标为(﹣,)或(,);②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直线BH的解析式为y=﹣x+,当y=时,x=0,∴Q(0,).【点评】本题考查二次函数综合题、一次函数的应用、平行四边形的判定和性质、菱形的判定和性质、勾股定理、圆等知识,解题的关键是灵活运用所学知识,学会用方程的思想思考问题,学会构建一次函数,利用方程组求交点坐标,属于中考压轴题.。

2018-2020年天津中考数学复习各地区模拟试题分类(11)——图形的变化

2018-2020年天津中考数学复习各地区模拟试题分类(11)——图形的变化

2018-2020年天津中考数学复习各地区模拟试题分类(11)——图形的变化一.选择题(共11小题)1.(2020•河北区二模)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=55°,∠DAE=20°,则∠FED′的大小为()A.20°B.30°C.35°D.45°2.(2020•红桥区三模)如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于N,则线段EC的长为()A.2√7−2B.4C.5D.2√7+23.(2020•天津模拟)如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC 于点D,M是AD上的动点,连结BM,MN,则BM+MN的最小值是()A.8B.10C.√27D.2√74.(2020•河东区一模)如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A.15B.18C.20D.245.(2019•滨海新区一模)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BCO绕点C按顺时针旋转60°得到△ACD,则下列结论不正确的是()A.BO=AD B.∠DOC=60°C.OD⊥AD D.OD∥AB6.(2019•红桥区二模)如图,在矩形ABCD中,E为BC的中点,P为对角线AC上的一个动点,若AB=2,BC=2√3,则PE+PB的最小值为()A .√3B .3C .2√3D .67.(2019•天津一模)如图,直线l 表示一条河,点A ,B 表示两个村庄,想在直线l 的某点P 处修建一个向A ,B 供水的水站,现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设管道一定最短的是( )A .B .C .D .8.(2019•西青区一模)如图,菱形ABCD 的边长为1,点M 、N 分别是AB 、BC 边上的中点,点P 是对角线AC 上的一个动点,则MP +PN 的最小值是( )A .12B .1C .√2D .29.(2019•东丽区一模)如图,△ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC +PE 最小时,∠CPE 的度数是( )A .30°B .45°C .60°D .90°10.(2018•河西区二模)如图,Rt △AOB 中,∠AOB =90°,OA 在x 轴上,OB 在y 轴上,点A 、B 的坐标分别为(√3,0),(0,1),把Rt △AOB 沿着AB 对折得到Rt △AO ′B ,则点O ′的坐标为( )A.(32,52)B.(√32,32)C.(2√33,52)D.(4√33,32)11.(2018•天津二模)如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF 交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm二.填空题(共12小题)12.(2020•和平区三模)如图,在矩形ABCD中,AB=3,BC=5,对角线AC,BD交于点O.点M,N分别在边BC和CB的延长线上.将△NOM沿NM方向平移,得△BQP,点N,O,M的对应点分别为B,Q,P.再将△BQP沿BQ翻折,点P恰好落在点D上,此时点Q在PD上.则△NOM平移的距离为.13.(2020•河东区一模)如图,在由边长都为1的小正方形组成的网格中,点A,B,C均为格点,∠ACB =90°,BC=3,AC=4,D为BC中点,P为AC上的一个动点.(I)当点P为线段AC中点时,DP的长度等于;(II)将P绕点D逆时针旋转90°得到点P',连BP',当线段BP'+DP'取得最小值时,请借助无刻度直尺在给定的网格中画出点P,点P',并简要说明你是怎么画出点P,点P'的.14.(2020•西青区一模)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)边AC的长等于.(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A'B'C',使点B的对应点B'恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).15.(2020•红桥区模拟)如图,在每个小正方形的边长为1的网格中,点A ,点B ,点O 均落在格点上,则∠AOB 的正弦值为 .16.(2020•河东区一模)如图,正方形ABCD 的边长是9,点E 是AB 边上的一个动点,点F 是CD 边上一点,CF =4,连接EF ,把正方形ABCD 沿EF 折叠,使点A ,D 分别落在点A ′,D ′处,当点D ′落在直线BC 上时,线段AE 的长为 .17.(2020•北辰区一模)在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,点P ,Q 分别为线段AB ,AC 上的动点.(Ⅰ)如图(1),当点P ,Q 分别为AB ,AC 中点时,PC +PQ 的值为 ;(Ⅱ)当PC +PQ 取得最小值时,在如图(2)所示的网格中,用无刻度的直尺,画出线段PC ,PQ ,简要说明点P 和点Q 的位置是如何找到的 .18.(2019•和平区一模)如图,在每个小正方形边长为1的网格中,△OAB 的顶点O ,A ,B 均在格点上(1)OOOO 的值为 ;̂是以O为圆心,2为半径的一段圆弧在如图所示的网格中,将线段OE绕点O逆时针旋转得到(2)OOOE′,旋转角为α(0°<α<90°),连接E′A,E′B,当E′A+23E′B的值最小时,请用无刻度的直尺画出点E′,并简要说明点E′的位置是如何找到的(不要求证明).19.(2019•河西区一模)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=6,∠CBD=30°,则DF的长为.20.(2019•南开区一模)如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是.21.(2019•南开区三模)在矩形ABCD中,AB=3,AD=4,将其沿对角线BD折叠,顶点C的对应位置为G(如图1),BG交AD于E;再折叠,使点D落在点A处,折痕MN交AD于F,交DG于M,交BD于N,展开后得图2,则折痕MN的长为.22.(2018•东丽区一模)在如图所示的网格中,每个小正方形的边长都为1,点A,B,C均为格点,P,E 分别为BC,AB的中点.(Ⅰ)E到P的距离等于;(Ⅱ)将△ABC绕点C旋转,点A,B,E的对应点分别为A′,B′,E′,当PE′取得最大值时,请借助无刻度尺,在如图所示的网格中画出旋转后的△A′B′C,并简要说明你是怎么画出来的:23.(2018•红桥区模拟)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,F是CD上一点,DF=1,在对角线AC上有一点P,连接PE,PF,则PE+PF的最小值为.三.解答题(共13小题)24.(2020•河东区一模)如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角∠AEM=22°,在离建筑物CD,25米远的F点观测办公楼顶A点,测得的仰角∠AFB=45°(B,F,C在一条直线上).(I)求办公楼AB的高度;(II)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈037,cos22°≈0.93,tan22°≈0.40)(结果保留整数)25.(2020•河北区一模)在平面直角坐标系中,O为坐标原点,点A(0,4)、B(3,0).(Ⅰ)把图中的△OAB绕点O逆时针旋转得到△OA'B'.旋转角为α,且0°<α<180°.(i)如图(1),在旋转过程中,当α=60°时,求点B'的坐标;(ii)如图(2),当点O到AA'的距离等于AO的一半时,求α的度数.(Ⅱ)点D是OA的中点.将OD绕着点O逆时针旋转,在旋转过程中,点D的对应点为M.连接AM、BM,S为△ABM的面积,求S的取值范围(直接写出结果即可).26.(2020•红桥区模拟)如图,在一条笔直公路BD的正上方A处有一探测仪,AD=24m,∠D=90°.一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,1秒后到达C点,测得∠ACD=50°.(1)求B,C两点间的距离(结果精确到1m);(2)若规定该路段的速度不得超过25m/s,判断此轿车是否超速.参考数据:tan31°≈0.6,tan50°≈1.2.27.(2020•红桥区模拟)在平面直角坐标系中,O为原点,点A(1,0),点O(0,√3),把△ABO绕点O 顺时针旋转,得△A'B'O,记旋转角为α.(1)如图▱,当α=30°时,设A'B'与x轴交于点C,求点B'的坐标;(2)如图▱,当α=90°时,直线AA'与直线BB'相交于点M,求证△MAB'是等腰直角三角形.28.(2020•河北区模拟)将一个矩形纸片OABC放置在平面直角坐标系xOy内,点A(6,0),点C(0,4),点O(0,0).点P是线段BC上的动点,将△OCP沿OP翻折得到△OC′P.(Ⅰ)如图▱,当点C′落在线段AP上时,求点P的坐标;(Ⅱ)如图▱,当点P为线段BC中点时,求线段BC′的长度.29.(2019•北辰区二模)如图,在每个小正方形的边长为1的网格中,点A,B,C,D都在格点上.(Ⅰ)AC的长是.(Ⅱ)将四边形ABCD折叠,使点C与点A重合折痕EF交BC于点E,交AD于点F,点D的对应点为Q,得五边形ABEFQ.请用无刻度的直尺在网格中画出折叠后的五边形,并简要说明点E,F,Q的位置是如何找到的.30.(2019•红桥区二模)如图,小明在楼AB前的空地上将无人机升至空中C处,在C处测得楼AB的顶部A处的仰角为42°,测得楼AB的底部B处的俯角为31°.已知C处距地面BD的高度为12m,根据测得的数据,计算楼AB的高度(结果保留整数).(参考数据:tan42°≈0.90,tan48°≈1.11,tan31°≈0.60).31.(2019•滨海新区二模)随着科学技术的发展,导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到C地开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,导航显示车辆应沿北偏东58°方向行驶8km至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离(结果取整数).(参考数据:sin37°≈0.60,cos37°≈0.80,sin58°≈0.85,cos58°≈0.53)32.(2019•河西区二模)如图,从A地到B地的公路需经过C地,图中AC=30km,∠CAB=25°,∠CBA =45°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路(Ⅰ)求改直的公路AB的长;(Ⅱ)问公路改直后比原来缩短了多少km?(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈047,√2取1.414.)(结果保留小数点后一位)33.(2019•河西区模拟)已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN 交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上(Ⅰ)如图▱,当EP⊥BC时,▱求证CE=CN;▱求CN的长;(Ⅱ)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.34.(2019•南开区一模)如图,建筑物的高CD为10√3m.在其楼顶C,测得旗杆底部B的俯角α为60°,旗杆顶部A的仰角β为20°,请你计算:(1)建筑物与旗杆的水平距离BD;(2)旗杆的高度.(sin20°≈0.342,tan20°≈0.364,cos20°≈0.940,√3≈1.732,结果精确到0.1米)35.(2019•南开区三模)C919大型客机首飞成功,激发了同学们对航空科技的兴趣.如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)36.(2018•河北区模拟)如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,求AB的距离.(√2≈1.41,√3≈1.73,结果取整数)2018-2020年天津中考数学复习各地区模拟试题分类(11)——图形的变化参考答案与试题解析一.选择题(共11小题)1.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=55°,∵∠EAD=20°,∴∠AED=180°﹣55°﹣20°=105°,∴∠AEF=180°﹣105°=75°,由翻折的旋转可知,∠AED′=∠AED=105°,∴∠FED′=∠AED′﹣∠AEF=105°﹣75°=30°,故选:B.2.【解答】解:如图所示:过点M作MF⊥DC于点F,∵在边长为4的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=4,∠FDM=60°,∴∠FMD=30°,∴FD=12MD=1,∴FM=DM×cos30°=√3,∴MC=√OO2+OO2=2√7,由折叠知ME=AM=2,∴EC=MC﹣ME=2√7−2.故选:A.3.【解答】解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE.∵等边△ABC的边长为6,AN=2,∴BN=AC﹣AN=6﹣2=4,∴BE=EN=AN=2,又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,又∵N为AE的中点,∴M为AD的中点,∴MN是△ADE的中位线,∴DE=2MN,∴CN=2DE=4MN,∴CM=34 CN.在直角△CDM中,CD=12BC=3,DM=12AD=3√32,∴CM=√OO2+OO2=32√2,∴CN=2√7.∵BM+MN=CN,∴BM+MN的最小值为2√7.故选:D.4.【解答】解:设HD =x ,由已知HC =x +8∵P 是CH 的中点∴HP =8+O 2=4+12O有图形可知,△HP A 中,边HP 和边AP 边上高相等∴由面积法HP =AP∴AP =4+12O∵DP =HP ﹣HD =4−12O∴Rt △APD 中AP 2=DP 2+AD 2 ∴(4+12O )2=(4−12O )2+62 解得x =92 ∴HP =4+12×92=254∴Rt △ADH 中,HA =√OO 2+OO 2=√(92)2+62=152 ∴△APH 的周长为152+(4+12×92)×2=20 故选:C .5.【解答】解:由旋转的性质得,BO =AD ,CD =CO ,∠ACD =∠BCO ,∠ADC =∠BOC =150°, ∵∠ACB =60°,∴∠DCO =60°,∴△OCD 为等边三角形,∴∠DOC =60°,故A ,B 正确;∵∠ODC =60°,∠ADC =∠BOC =150°,∴∠ADO =90°,∴OD ⊥AD ,故C 正确;故选:D .6.【解答】解:作E 关于AC 的对称点E ',连结BE ',则PE +PB 的最小值即为BE '的长;∵AB =2,BC =2√3,E 为BC 的中点,∴∠ACB =30°,∴∠ECE '=60°,∵EC =CE ',∴E 'C =√3,过点E '作E 'C ⊥BC ,在Rt △E 'CG 中,E 'G =32,CG =√32,在Rt △BE 'G 中,BG =3√32,∴BE '=3;∴PE +PB 的最小值为3;故选:B .7.【解答】解:如图,作A关于直线l的对称点A′,连接A′B交直线l于P点,则此时为所求,故选:A.8.【解答】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.9.【解答】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故选:C.10.【解答】解:连接OO ′,作O ′H ⊥OA 于H .在Rt △AOB 中,∵tan ∠BAO =OO OO =√33,∴∠BAO =30°,由翻折可知,∠BAO ′=30°,∴∠OAO ′=60°,∵AO =AO ′,∴△AOO ′是等边三角形,∵O ′H ⊥OA ,∴OH =√32,∴OH ′=√3OH =32,∴O ′(√32,32), 故选:B .11.【解答】解:如图,连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6cm ,∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为BM +MD 的最小值,∴△BDM 的周长最短=(BM +MD )+BD =AD +12BC =6+12×4=6+2=8cm . 故选:C .二.填空题(共12小题)12.【解答】解:由翻折可得,BD =BP ,由平移可得,OM ∥QP ,又∵D ,Q ,P 三点共线,∴OM ∥DP ,又∵矩形ABCD 中,O 是BD 的中点,∴M 是BP 的中点,∴MP =12BP ,又∵矩形ABCD 中,AB =3,BC =5,∴AC =BD =√32+52=√34,∴MP =12√34,即△NOM 平移的距离为12√34, 故答案为:12√34.13.【解答】解:(Ⅰ)∵∠ACB =90°,BC =3,AC =4,∴AB =√OO 2+OO 2=5,∵D 为BC 中点,P 为线段AC 中点,∴DP =12AB =52;故答案为:52;(Ⅱ)如图,取格点E ,F ,G ,H ,连接EF ,GH ,它们分别与网格线交于点I ,J ,取格点B ′,连接IJ ,DB ′,它们相交于点P ′,则点P ′即为所求;取格点M ,N ,连接MN ,与网格线交于点L ,连接DL ,与网格线交于点P ,则点P 即为所求.14.【解答】解:(1)根据网格可知:AB =4,BC =3,∴AC =√OO 2+OO 2=5,故答案为:5;(2)取格点E ,F ,M ,N ,作直线EF ,直线MN ,MN 与EF 交于点A ′,EF 与AC 交于点B ′,连接CA ′.△A 'B 'C 即为所求.15.【解答】解:过A 作AE ⊥OB 于E ,由勾股定理可得:OB =√12+22=√5, ∵△ABO 的面积=12×3×2=3,∴AE =3×2OO =5=6√55, 由勾股定理可得:OA =√22+42=2√5,∴∠AOB 的正弦值=OO OO =6√5525=35, 故答案为:35 16.【解答】解:分两种情况:▱当D ′落在线段BC 上时,连接ED 、ED ′、DD ′,如图1所示:由折叠可得,D ,D '关于EF 对称,即EF 垂直平分DD ',∴DE =D ′E ,∵正方形ABCD 的边长是9,∴AB =BC =CD =AD =9,∵CF =4,∴DF =D ′F =CD ﹣CF =9﹣4=5,∴CD ′=√O′O 2−OO 2=3,∴BD '=BC ﹣CD '=6,设AE =x ,则BE =9﹣x ,在Rt △AED 和Rt △BED '中,由勾股定理得:DE 2=AD 2+AE 2=92+x 2,D 'E 2=BE 2+BD '2=(9﹣x )2+62, ∴92+x 2=(9﹣x )2+62,解得:x =2,即AE =2;▱当D ′落在线段BC 延长线上时,连接ED 、ED ′、DD ′,如图2所示:由折叠可得,D ,D '关于EF 对称,即EF 垂直平分DD ',∴DE =D ′E ,∵正方形ABCD 的边长是9,∴AB =BC =CD =AD =9,∵CF =4,∴DF =D ′F =CD ﹣CF =9﹣4=5,CD ′=√O′O 2−OO 2=3,∴BD '=BC +CD '=12,设AE =x ,则BE =9﹣x ,在Rt △AED 和Rt △BED '中,由勾股定理得:DE 2=AD 2+AE 2=92+x 2,D 'E 2=BE 2+BD '2=(9﹣x )2+122, ∴92+x 2=(9﹣x )2+122,解得:x =8,即AE =8;综上所述,线段AE 的长为2或8;故答案为:2或8.17.【解答】解:(1)PC +PQ 的值3√52; 根答案为:3√52;(2)如图所示,取格点E ,F ,连接EF 交AB 于点P ,交AC 于点Q .此时,PC +PQ 最短.(PC +PQ =PE +PQ ,根据垂线段最短,可知当EF ⊥AC 时,PE +PQ 最短), 故答案为:取格点E ,F ,连接EF 交AB 于点P ,交AC 于点Q18.【解答】解:(1)由题意OE =2,OB =3,∴OO OO =23, 故答案为23.(2)如图,取格点K ,T ,连接KT 交OB 于H ,连接AH 交OÔ于E ′,连接BE ′,点E ′即为所求. 故答案为:构造相似三角形把23E ′B 转化为E ′H ,利用两点之间线段最短即可解决问题.19.【解答】解:如图,在Rt △BDC 中,BC =6,∠DBC =30°,∴BD =3√3,∵∠BDC =90°,点E 是BC 中点,∴DE =BE =CE =12BC =3, ∵∠DBC =30°,∴∠BDE =∠DBC =30°,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABD =∠BDE ,∴DE ∥AB ,∴△DEF ∽△BAF ,∴OO OO =OO OO , 在Rt △ABD 中,∠ABD =30°,BD =3√3, ∴AB =92,∴OO OO =392=23, ∴OO OO =25,∴DF =25BD =25×3√3=6√35,故答案是:6√35.20.【解答】解:如图所示,作点O 关于BC 的对称点P ,连接PM ,将MP 沿着MN 的方向平移MN 长的距离,得到NQ ,连接PQ ,则四边形MNQP 是平行四边形,∴MN =PQ =2,PM =NQ =MO ,∴OM +ON =QN +ON ,当O ,N ,Q 在同一直线上时,OM +ON 的最小值等于OQ 长,连接PO ,交BC 于E ,由轴对称的性质,可得BC 垂直平分OP ,又∵矩形ABCD 中,OB =OC ,∴E 是BC 的中点,∴OE 是△ABC 的中位线,∴OE =12AB =3, ∴OP =2×3=6,又∵PQ ∥MN ,∴PQ ⊥OP ,∴Rt △OPQ 中,OQ =√OO 2+OO 2=√62+22=2√10,∴OM +ON 的最小值是2√10,故答案为:2√10.21.【解答】解:如图,由已知可得MN 垂直平分AD ,DF =12AD =2,FN =12AB =32, ∵AB =CD =GD ,∠A =∠G =90°,∠AEB =∠GED ,∴△ABE ≌△GDE ,设AE =x ,则BE =ED =4﹣x ,在Rt △ABE 中,由勾股定理得AB 2+AE 2=BE 2,即32+x 2=(4﹣x )2,解得x =78,易证△ABE ∽△FDM , ∴OO OO =OO OO ,即 783=OO 2,解得MF =712.∴MN =NF +FM =712+32=2512. 故答案为:2512. 22.【解答】解:(Ⅰ)∵AE =EB ,CP =PB ,∴PE =12AC =2,故答案为2.(Ⅱ)取格点D ,M ,N ,F ,T ,R ,连接DC ,MN ,相交于点B ′,连接TC ,FR ,相交于点A ′,连接B ′A ′,A ′C ,CB ′,则△A ′B ′C 即为所求.故答案为:取格点D ,M ,N ,F ,T ,R ,连接DC ,MN ,相交于点B ′,连接TC ,FR ,相交于点A ′,连接B ′A ′,A ′C ,CB ′,则△A ′B ′C 即为所求.23.【解答】解:如图作EH ⊥BC 于H .作点F 关于AC 的对称点F ′,连接EF ′交AC 于P ′,此时P ′E +P ′F 的值最小.∵正方形ABCD 的面积为12,∴AB =2√3,∠ABC =90°,∵△ABE 是等边三角形,∴BE =AB =2√3,∠ABE =60°,∴∠EBH =30°,∴EH =12BE =√3,BH =√3EH =3,∵BF ′=DF =1,∴HF ′=2, 在Rt △EHF ′中,EF ′=√22+(√3)2=√7,∴PE +PF 的最小值为√7,故答案为√7三.解答题(共13小题)24.【解答】解:(I )如图,过点E 作EM ⊥AB 于点M ,设AB 为x .Rt △ABF 中,∠AFB =45°,∴BF =AB =x ,∴BC =BF +FC =x +25,在Rt △AEM 中,∠AEM =22°,AM =AB ﹣BM =AB ﹣CE =x ﹣2,ME =BC =x +25,tan22°=OO OO ,则O −2O +25=25, 解得:x =20.即办公楼AB 的高度为20米;(II )由(1)可得:ME =BC =x +25=20+25=45.在Rt △AME 中,cos22°=OO OO . ∴AE =OO OOO22°=450.93≈48(米); 即A 、E 之间的距离约为48米.25.【解答】解:(Ⅰ)(i )如图(1)中,过点B ′作B ′E ⊥OB 于E .∵OB =OB ′=3,∠BOB ′=60°,∠OEB ′=90°,∴OE =OB ′•cos60°=32,EB ′=OB ′•sin60°=3√32, ∴B ′(32,3√32).(ii )如图(2)中,过点O 作OF ⊥AA ′于F .∵OF =12OA , ∴在Rt △AOF 中,sin ∠OAF =OO OO =12, ∴∠OAF =30°,∵OA =OA ′,∴∠OAF =∠OA ′F =30°,∴∠AOA ′=120°,即α=120°.(Ⅱ)如图(3)中,过点O 作OH ⊥AB 于H .∵∠AOB =90°,OA =4,OB =3, ∴AB =√OO +OO =√42+32=5, ∵12•OA •OB =12•AB •OH ,∴OH =125, ∵OM =12OA =2,∴当点M 落在线段OH 上时,△ABM 的面积最小,最小值=12×5×(125−2)=1,当点M 落在线段HO 的延长线上时,△ABM 的面积最大,最大值=12×5×(125+2)=11,∴1≤S ≤11.26.【解答】解:(1)∵Rt △ACD 中,OOO ∠OOO =OOOO , ∴OO =OOOOO50°≈241.2=20. ∵在Rt △ABD 中,OOO ∠OOO =OOOO , ∴OO =OO OOO31°≈240.6=40.∴BC =BD ﹣CD =20.(2)此轿车的速度O =OO O =201=20(O O ⁄)<25(O O ⁄),∴此轿车在该路段没有超速. 27.【解答】解:(1)当α=30°时,由已知,得OA =1,OO =√3, ∴OOO ∠OOO =OO OO =√33. ∴∠ABO =30°.∵△A 'B 'O 是△ABO 旋转得到的,∴OO ′=OO =√3,∠A 'B 'O =∠ABO =30°. ∵∠BOB '=30°, ∴∠B 'OA =60°, ∴B 'C ⊥OC . ∴OO =12OO′=√32, OO ′=√32OO′=32.∴点B '的坐标为(√32,32).(2)∵OB =OB ', ∴∠BB 'O =45°. ∴OA =OA ',∴∠OAA '=45°. ∵∠MAB '=∠OAA ', ∴∠MAB '=45°. ∴∠MB 'A =∠MAB '.∴∠AMB '=180°﹣∠MB 'A ﹣∠MAB '=90°. ∴△MAB '是等腰直角三角形. 28.【解答】解:(Ⅰ)∵A (6,0),点C (0,4), ∴OA =6,OC =4,由翻折可知:∠OPC =∠OP A , ∵BC ∥OA ,∴∠OPC =∠OP A , ∴∠POA =∠OP A , ∴OA =P A =6, 在Rt △P AB 中,∵∠B =90°,AB =4,P A =6,∴PB =√OO 2−OO 2=√62−42=2√5, ∴PC =BC ﹣PB =6﹣2√5, ∴P (6﹣2√5,4).(Ⅱ)如图▱,连接CC ′交OP 于D .在Rt △OPC 中,∵OC =4,PC =3, ∴OP =√OO 2+OO 2=√42+32=5,∵OP 垂直平分线段CC ′, 又∵12OP •CD =12OC •PC ,∴CD =3×45=125,PD =95,∵PC=PB,CD=DC′,∴BC′=2PD=18 5.29.【解答】解:(Ⅰ)AC=√2+4=2√5.故答案为2√5.(Ⅱ)如图所示,取格点O,H,M,N,连接HO并延长交AD,BC于点F,E,连接BN,DM相交于点Q,则点E,F,Q即为所求.30.【解答】解:如图,过点C作CE⊥AB于点E.依题意得:∠ACE=42°,∠CBD=31°,CD=12m.可得四边形CDBE是矩形.∴BE=DC,CE=DB.∵在直角△CBD中,tan∠CBD=OO OO,∴CE=DB=OO OOO31°.∵在直角△ACE中,tan∠ACE=OO OO.∴AE=CE•tan42°.∴AE=OOOOO31°•tan42°≈12×0.900.60=18(米).∴AB=AE+BE=30(米).答:楼AB的高度约为30米.31.【解答】解:如图,过点B作BD⊥AC,垂足为点D,由题意得∠BAD=58°,∠BCD=37°,AB=8,在Rt△ABD中,sin58°=OO OO,∴OOO58°=OO 8,∴BD=8 sin58°,在Rt△BCD中,sin37°=OO OO,∴sin37°=8OOO580OO,∴BC=8OOO58°OOO37°,∴BC≈11.答:B、C两地的距离约为11千米.32.【解答】解:(I )过点C 作CH ⊥AB 于点H , 在Rt △ACH 中,AC =30,∠CAB =25°,∴CH =AC •sin ∠CAB =AC •sin25°≈30×0.42; AH =AC •cos ∠CAB =AC •cos25°≈30×0.91; 又在Rt △BCH 中,∵∠CBA =45, ∴BH =CH ,∴AB =AH +BH ≈30×0.42+30×0.91=126+27.3≈39.9; 答:改直后的公路AB 的长为399km ; (Ⅱ)在Rt △BCH 中,sin ∠CBH =OO OO ,BC =OOOOO45°=√2CH , ∴BC =√2CH ≈1.414×30×0.42=17.8164≈17.8,∴AC +BC ﹣AB =30+17.8﹣39.9=7.9(km ) 答:改直后的路程缩短了7.9km .33.【解答】(Ⅰ)▱证明:∵△AME 沿直线MN 翻折,点A 落在点P 处, ∴△AME ≌△PME ,∴∠AEM =∠PEM ,AE =PE , ∵四边形ABCD 是矩形,∴∠ABC =90°,AB ∥CD ,AB ⊥BC , ∵EP ⊥BC , ∴AB ∥EP ,∴∠AME =∠PEM , ∴∠AEM =∠AME , ∴AM =AE , ∵AB ∥CD , ∴OO OO=OO OO,∴CN =CE ;▱解:设CN =CE =x ,∵四边形ABCD 是矩形,AB =4,BC =3,∠ABC =90°, ∴AC =√OO 2+OO 2=5, ∴PE =AE =5﹣x , ∵AB ∥EP , ∴OO OO=OOOO =45,即5−O O=45,解得:x =259,∴CN =259;(Ⅱ)解:由折叠的性质得:AE =PE , 由三角形的三边关系得,PE +CE >PC , ∴AC >PC , ∴PC <5,∴点E 是AC 中点时,PC 最小为0,当点E 和点C 重合时,PC 最大为AC =5, 即CP 的长的取值范围是:0≤CP ≤5,如图所示:当点C ,N ,E 重合时,PC =BC +BP =5, ∴BP =2,由折叠知,PM =AM ,在Rt △PBM 中,PM =4﹣BM ,根据勾股定理得,PM 2﹣BM 2=BP 2, ∴(4﹣BM )2﹣BM 2=4, 解得:BM =32,在Rt △BCM 中,根据勾股定理得,MN =√OO 2+OO 2=3√52; 即当CP 的长最大时MN 的长为3√52.34.【解答】解:(1)由题意四边形CDBE 是矩形, ∴CE =BD ,BE =CD =10√3m , 在Rt △BCE 中,∠BEC =90°,tanα=OOOO, ∴CE =√33=10(m ), ∴BD =CE =10(m ).(2)在Rt △ACE 中,∠AEC =90°,tanβ=OOOO , ∴AE =10•tan20°,∴AB =AE +BE =10×0.364+10×1.732≈21.0(m )35.【解答】解:∵BN ∥ED , ∴∠NBD =∠BDE =37°, ∵AE ⊥DE , ∴∠E =90°,∴BE =DE •tan ∠BDE ≈18.75(cm ), 如图,过C 作AE 的垂线,垂足为F , ∵∠FCA =∠CAM =45°, ∴AF =FC =25cm ,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.75(cm),答:线段BE的长约等于18.75cm,线段CD的长约等于10.75cm.36.【解答】解:如图,过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=AC•sin30°=40×12=20(千米),AD=AC•cos∠CAD=AC•cos30°=40×√32=20√3(千米),在Rt△BCD中,BD=OOOOOOOOO=20OOO45°=201=20(千米),∴AB=AD+DB=20√3+20=20(√3+1)≈55(千米),答:AB的距离约为55千米.。

2018年天津市河西区中考数学一模试卷及答案详解模板

2018年天津市河西区中考数学一模试卷及答案详解模板

河西区2018 年中考数学一模试题一、选择题(本大题共 12 题,每小题 3 分,共 36 分,在每小题给出的 4 个选项中只有一项是符合题目要求的)1. 计算(-16)÷8 的结果等于( )A.21 B. -2 C.3 D. -1 2. tan60°等于( )A.21B.33 C.23 D. 3 3. 下列 logo 标志中,既是中心对称图形又是轴对称图形的是( )4.据 2017 年 1 月 16 日的渤海早报报道,2017 年天津市公共交通客运量达到 1510000000人次,较 2017 年增长 10.6%,将 1510000000 用科学计数法表示应为( )A.151×107B. 15.1×108C.15×107D.1.51×1095.如图,根据三视图,判断组成这个物体的块数是( )A. 6B. 7C. 8D. 96. 如图,要拧开一个边长为 a(a=6mm)的正六边形,扳手张开的开口 b 至少为( )A. 34mmB.36mmC.24mmD. 12mm7.如图,PA 、PB 分别切⊙O 于点 A 、B,若∠P=70°,则∠C 的大小为( )A. 45°B. 50°C. 55°D. 60°8. 一只蚂蚁在如图所示的树枝上寻找食物,假定蚂蚁在每个岔口都会随机地选择一条路径,则它获得食物的概率是( )A.21B.31C.41D.61 9. 一天,小亮看到家中的塑料桶中有一个竖直的玻璃杯,桶子和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2 倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位 h 与注水时间 t 之间关系的大致图像是( )10.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了 45 份合同.设共有 x 家公司参加商品交易会,则 x 满足的关系式为( )A.45)1(21=+x xB.45)1(21=-x x C. x(x + 1) = 45 D. x(x - 1) = 4511. 如图,在 Rt △ABC 中,CD 是边 AB 上的高,若 AC=4,AB=10,则 AD 的长为( )A.58 B. 2 C.25 D. 3 12.已知二次函数y=ax2+bx+c(a ≠0)的部分图象如图,图象经过(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当 x>-1 时,y 的值随x 值的增大而增大.其中,正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题:13.若 21=a ,则22)1(1)1(+++a a a 的值为 14.抛物线y=-2x 2+x-4的对称轴为 .15. 新华中学规定学生的学期体育成绩满分为 100 分,其中早操及体育课外活动占 20%,期中考试成绩占 30%.期末考试成绩占 50%.小惠的三项成绩依次是 95,90 分,85 分,小惠这学期的体育成绩 为 分.16. 已知反比例函数xy 8-=,则有: ①它的图象在一、三象限;②点(-2,4)在它的图像上③当 1<x<2 时,y 的取值范围是是-8<y<-4;④若该函数的图像上有两个点 A(x 1,y 1),B(x 2,y 2)那么当 x 1<x 2 时,y 1<y 2.以上叙述正确的是 .17.如图,△ABC 是边长为3的等边三角形,点 P 、Q 分别是射线 AB 、BC 上两个动点,且 AP=CQ ,PQ 交 AC 与 D,作 PE ⊥AC 于 E,那么 DE 的长度为 .18.如图,有一张长为 7 宽为 5的矩形纸片 ABCD,要通过适当的简拼,得到一个与之面积相等的正方形。

2018年天津市中考数学试卷(带解析)

2018年天津市中考数学试卷(带解析)

17.(3 分)如图,在边长为 4 的等边△ABC 中,D,E 分别为 AB,BC 的中点,
EF⊥AC 于点 F,G 为 EF 的中点,连接 DG,则 DG 的长为

【解答】解:连接 DE,
第 6页(共 18页)
∵在边长为 4 的等边△ABC 中,D,E 分别为 AB,BC 的中点, ∴DE 是△ABC 的中位线, ∴DE=2,且 DE∥AC,BD=BE=EC=2, ∵EF⊥AC 于点 F,∠C=60°, ∴∠FEC=30°,∠DEF=∠EFC=90°,
23.(10 分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,
每张会员证 100 元,只限本人当年使用,凭证游泳每次再付费 5 元;方式二:不
A.
B.
C.
D.
【解答】解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
第 1页(共 18页)
故选:A. 5.(3 分)如图是一个由 5 个相同的正方体组成的立体图形,它的主视图是( )
A.
B.Байду номын сангаасC.
第 7页(共 18页)
【解答】解:(1)由网格图可知
AC=
i
BC= h h i h
AB=
i
∵AC2+BC2=AB2
∴由勾股定理逆定理,△ABC 为直角三角形.
∴∠ACB=90°
故答案为:90°
(Ⅱ)作图过程如下:
取格点 D,E,连接 DE 交 AB 于点 T;取格点 M,N,连接 MN 交 BC 延长线于点
D.
【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三

(word完整版)天津市2018年中考数学试卷(word版,含答案),推荐文档

(word完整版)天津市2018年中考数学试卷(word版,含答案),推荐文档
1
2求点H的坐标•
(川)记K为矩形AOBC对角线的交点,SKDE的面积,求S的取值范围(直接写 出结果即可)•
25.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y x2mx 2m( m是常数), 定点为P.
(I)当抛物线经过点A时,求定点P的坐标;
(n)若点P在x轴下方,当AOP45时,求抛物线的解析式;
(W)2x1.
20.解:(I)28.
(n)观察条形统计图,
-1.051.2111.5141.8162.04’ “
••• x1.52,
5 11 14 16 4
•••这组数据的平均数是1.52.
•••在这组数据中,1.8出现了16次,出现的次数最多,
•••这组数据的众数为1.8.
15 15
•••将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5
(川) 无论m取何值,该抛物线都经过定点H.当AHP45时,求抛物线的解析式.
D,E,连接DE交AB于点T;取格点M,N,
连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点p',则点p'即为所

1
M
V
k
1
1
—-T
*
a- - *1

\t
/
N
7
T
-Ji
/
t
I
p
\
r
r―
1
fi
三、解答题
19•解:(I)x2;
kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(I)图①中m的值为
(n)求统计的这组数据的平均数、众数和中位数;
(川) 根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?

2018年天津市中考数学模拟试卷含答案

2018年天津市中考数学模拟试卷含答案

2018年天津市中考模拟试卷一、选择题:1.若|m|=3,|n|=5且m-n>0,则m+n的值是( )A.-2 B.-8或 -2 C.-8或 8 D.8或-22.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,则tanA的值为()A.0.6 B.0.8 C.0.75 D.3.下列图形中,既是轴对称图形又是中心对称图形的是()4.地球七大洲的总面积约是149 480 000km2,对这个数据保留3个有效数字可表示为( )A.149km2B.1.5×108km2C.1.49×108km2D.1.50×108km25.下列几何体中,正视图、左视图、俯视图完全相同的是()A.圆柱B.圆锥C.棱锥D.球6.的立方根是()A.2 B.±2 C.4 D.±47.计算:的结果为()8.用配方法解方程2x2+3=7x,方程可变形为()A.B.C.D.9.在数轴上表示a、b两数的点如图所示,则下列判断正确的是( )A.a+b>0 B.a+b<0 C.ab>0 D.|a|>|b|10.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AFD.BE=AD﹣DF11.已知一次函数y=kx﹣3与反比例函数y=﹣kx-1,那么它们在同一坐标系中的图象可能是()12.二次函数y=a(x﹣3)2+4(a≠0)的图象在1<x<2这一段位于x轴的上方,在5<x<6这一段位于x轴的下方,则a的值为()A.1 B.-1 C.2 D.﹣2二、填空题:13.计算:﹣3x2•2x=______14.若x 2﹣mxy+9y 2是完全平方式,则m 的值为 .15.一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .16.直线y=3x+6与两坐标轴围成的三角形的面积是______.17.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 .18.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则六边形444444F E D C B A 的面积是 .三、解答题: 19.解不等式组:,并在数轴上表示不等式组的解集.20.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)根据以上信息,解答下列问题:(1)该班共有名学生;(2)在扇形统计图中,185型校服所对应的扇形圆心角的大小为;(3)该班学生所穿校服型号的众数为,中位数为;(4)如果该校预计招收新生600名,根据样本数据,估计新生穿170型校服的学生大约有多少名?21.如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足BD:AB=AB:BC,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.(1)求证:AD是⊙O的切线;(2)若sin∠ABM=0.6,AM=6,求⊙O的半径.22.A.B两市相距150千米,分别从A.B处测得国家级风景区中心C处的方位角如图,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.23.今年“五一”小黄金周期间,我市旅游公司组织50名游客分散到A.B、C三个景点游玩.三个景点的门票价格如表所示:所购买的50张票中,B种票张数是A种票张数的3倍还多1张,设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购买门票总费用为w(元),求出w与x之间的函数关系式;(3)若每种票至少购买1张,且A种票不少于10张,则共有几种购票方案?并求出购票总费用最少时,购买A.B、C三种票的张数.24.已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,请直接写出线段AB,BE,AM之间的数量关系:;(2)当点E在边CB的延长线上,点M在边AD上时,如图②;请探索线段AB,BE,AM之间的数量关系,并证明;(3)若BE=,∠AFM=15°,则AM= .25.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A.B、P 的点,使得∠QAP=90°,求Q点坐标.答案解析一、选择题1.D2.B3.D4.A.5.A6.D7.B.8.B9.D10.B.11.B.12.D.13.答案为:﹣6x314.答案为:±6.15.答案为:0.25;16.答案为:6.17.答案为:y=0.5x+90.18.19.答案为:-17/9<x≤1.20.解:(1)该班共有的学生数=15÷30%=50(人);(2)175型的人数=50×20%=10(人),则185型的人数=50﹣3﹣15﹣10﹣5﹣5=12,所以在扇形统计图中,185型校服所对应的扇形圆心角=360°×=14.4°;(3)该班学生所穿校服型号的众数为165和170,中位数为170;故答案为50,14.4°,165和170,170;(4)600×=180(人),所以估计新生穿170型校服的学生大约有180名.21.22.解:AB不穿过风景区.理由如下:如图,过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,∵AD+DB=AB,∴CD•tanα+CD•tanβ=AB,∴CD= =(千米).∵CD=50>45,∴高速公路AB不穿过风景区.23.略24.25.(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴AB:PD=PB:CD,∴AB•CD=PB•PD;(2)AB•CD=PB•PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴AB:PD=PB:CD,∴AB•CD=PB•PD;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档