2018天津高考理科数学试卷含答案
【高考真题】2018年天津理数高考试题(word版有答案)
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
学科#网答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么()()()P AB P A P B =+ .·如果事件A ,B 相互独立,那么()()()P AB P A P B = .·棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð (A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减(C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年高考天津卷理科数学真题及答案
2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B =+ . 如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高.棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集为R,集合{02}A x x=<<,{1}B x x=≥,则()=RA B(A) {01}x x<≤(B) {01}x x<<(C) {12}x x≤<(D) {02}x x<<(2)设变量x,y满足约束条件5,24,1,0,x yx yx yy+≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩则目标函数35z x y=+的最大值为(A) 6 (B) 19 (C) 21(D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为(A) 1 (B) 2 (C) 3 (D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为(A) a b c >> (B) b a c >> (C) c b a >> (D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增 (D)在区间3[,2]2ππ上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A) 221412x y -=(B) 221124x y -=(C) 22139x y -=(D) 22193x y -=(8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅AE BE 的最小值为(A)2116(B) 32 (C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年高考天津卷理科数学真题与答案
.2018 年一般高等学校招生全国一致考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试用时 120 分钟。
第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页。
答卷前,考生务势必自己的姓名、准考据号填写在答题考上,并在规定地点粘贴考试用条形码。
答卷时,考生务势必答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第 I 卷注意事项:1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
2.本卷共 8 小题,每题 5 分,共 40 分。
参照公式:假如事件 A,B互斥,那么P( AU B)P( A) P(B) .假如事件 A,B 互相独立,那么P( AB)P( A) P(B) .棱柱的体积公式V Sh ,此中 S 表示棱柱的底面面积,h 表示棱柱的高 .1棱锥的体积公式 V Sh,此中S表示棱锥的底面面积,h 表示棱3锥的高 .一.选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的.(1) 设全集为 R,会合A { x 0x 2} , B{ x x1} ,则A I (e R B)(A){ x 0x1}(B){ x 0x1}(C){ x 1x2}(D) { x 0x2}x y5,(2) 设变量x,y知足拘束条件2x y4,则目标函数 z3x 5y 的最大x y1,y0,值为(A)6(B)19(C) 21(D)45(3)阅读如图的程序框图,运转相应的程序,若输入 N的值为20,则输出 T 的值为(A) 1(B) 2(C) 3(D) 4(4) 设x R ,则“| x 1 | 1”是“x31”的2 2(A)充分而不用要条件(B)必需而不充分条件(C)充要条件(D)既不充分也不用要条件(5) 已知a log 2 e , b ln 2 , c log 11,则 a,b,c 的大小关系为23(A) a b c(B) b a c(C) c b a(D) c a b(6) 将函数y sin(2 x) 的图象向右平移个单位长度,所得图象对应510的函数(A) 在区间[3,5] 上单一递加(B) 在区间[3, ]上单一444递减(C) 在区间[5,3] 上单一递加(D) 在区间[3,2 ]上单422调递减(7) 已知双曲线x2y20) 的离心率为2,过右焦点且垂直于a2b21( a0, bx 轴的直线与双曲线交于A,B 两点.设 A,B 到双曲线同一条渐近线的距离分别为 d1和 d2,且 d1d2 6 ,则双曲线的方程为(A)x2y21(B) x2y21412124.(C)x2y21(D) x2y213993(8) 如图,在平面四边形ABCD中,AB BC,AD CD , BAD 120,AB ADuuur uur1.若点E为边CD上的动点,则AE BE 的最小值为(A)21(B) 3(C)25(D)316216第Ⅱ卷注意事项:1.用黑色墨水的钢笔或署名笔将答案写在答题卡上。
2018年高考天津卷理科数学真题及答案
优秀学习资料欢迎下载
2018年普通高等学校招生全国统一考试(天津卷)
数学(理工类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并
在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!
第I卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:
如果事件A,B互斥,那么()()()
P A B P A P B .
如果事件A,B相互独立,那么()()()
P AB P A P B .
棱柱的体积公式V Sh,其中S表示棱柱的底面面积,h表示棱柱。
2018年普通高等学校招生全国统一考试(天津卷) 理科数学试题及详解
2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+.如果事件A ,B 相互独立,那么()()()P AB P A P B =.棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高.棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B ()(A){01}x x <≤(B){01}x x << (C){12}x x ≤<(D){02}x x <<1.【答案】B【解析】由题意可得{}1Bx x =<R ,结合交集的定义可得(){}01A B x =<<R ,故选B .(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩则目标函数35z x y =+的最大值为()(A) 6 (B) 19 (C) 21 (D)452.【答案】C【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=-+=⎧⎨⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为max 35325321z x y =+=⨯+⨯=,故选C .(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为() (A) 1 (B) 2 (C) 3 (D)43.【答案】B【解析】结合流程图运行程序如下:首先初始化数据:20N =,2i =,0T =, 20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =,故选B .(4)设x ∈R ,则“11||22x -<”是“31x <”的()(A)充分而不必要条件(B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件 4.【答案】A【解析】绝对值不等式111110122222x x x -<⇔-<-<⇔<<, 由311x x <⇔<,据此可知1122x -<是31x <的充分而不必要条件.故选A .(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为() (A) a b c >> (B) b a c >>(C)c b a >>(D)c a b >>5.【答案】D【解析】由题意结合对数函数的性质可知:2log e 1a =>,()21ln 20,1log e b ==∈,12221log log 3o 3e l g c ==>, 据此可得c a b >>,故选D .(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减(C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减6.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为()(A)221412x y -=(B)221124x y -= (C)22139x y -=(D)22193x y -= 7.【答案】C【解析】设双曲线的右焦点坐标为()(),00F c c >,则A B x x c ==, 由22221c y a b -=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得21bc b d c -==,22bc b d c +==, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率为2c e a ==,据此可得23a =,则双曲线的方程为22139x y -=,故选C .(8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则⋅AE BE 的最小值为() (A)2116 (B) 32 (C) 2516(D) 38.【答案】A【解析】建立如图所示的平面直角坐标系,则10,2A ⎛⎫- ⎪⎝⎭,B ⎫⎪⎪⎝⎭,30,2C ⎛⎫ ⎪⎝⎭,D ⎛⎫ ⎪ ⎪⎝⎭,点E 在CD 上,则()01DE DC λλ=≤≤,设(),E x y ,则:32x y λ⎛⎫⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭,即32x y λ⎧⎪=⎨=⎪⎪⎪⎩,据此可得32E λ⎫⎪⎪⎝⎭,且331222AE λ⎛⎫=+ ⎪ ⎪⎝⎭,3322BE λ⎛⎫=-⎪ ⎪⎝⎭,由数量积的坐标运算法则可得:33312222AE BE λλ⎛⎛⎫⋅=-+⨯+ ⎪ ⎝⎭⎝⎭⎝, 整理可得:()()23422014AE BE λλλ⋅=-+≤≤,结合二次函数的性质可知,当14λ=时,AE BE ⋅取得最小值2116,故选A .第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年高考天津卷理数真题(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð(A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增 (D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年天津高考数学试卷(理科)
2018年普通高等学校招生全国统一考试(天津卷)数 学(理工类)一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. (2018年天津理)设全集为R ,集合{}20<<=x x A ,{}1≥=x x B ,则=⋂)(B C A RA .{}10≤<x x B .{}10<<x xC .{}21<≤x xD .{}20<<x x【答案】B【解析】由题意可得:{}1<=x x B C R ,结合交集的定义可得:.{}10)(<<=⋂x x B C A R 【考点】交集的运算法则+补集的运算法则 【难度】★★★2.(2018年天津理)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为( )A .6B .19C .21D .45【答案】C【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点(2,3)A ,所以max 35325321z x y =+=⨯+⨯=. 本题选择C 选项.【考点】求线性目标函数()0z ax by ab =+≠的最值, 【难度】★★★3.(2018年天津理)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4【答案】B【解析】结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,10Ni=,结果为整数, 执行11,13T T i i =+==+=,此时不满足5i ≥;203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12,15T T i i =+==+=,此时满足5i ≥; 跳出循环,输出2T =.故选择B 选项. 【考点】程序框图 【难度】★★★4. (2018年天津理)设R x ∈,则“2121<-x ”是“13<x ”的( ) A. 充分而不必要条件 B. 必要而不重复条件 C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】绝对值不等式 102121212121<<⇔<-<-⇔<-x x x ,由113<⇔<x x .据此可知2121<-x 是13<x 的充分而不必要条件.本题选择A 选项.【考点】绝对值不等式的解法+充分不必要条件 【难度】★★★5.(2018年天津理)已知e a 2log =,2ln =b ,31log 21=c ,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D【解析】由题意结合对数函数的性质可知:1log 2>=e a ,)1,0(log 12ln 2∈==eb ,ec 2221log 3log 31log >==,据此可得:c a b >>.本题选择D 选项. 【考点】对于指数幂的大小的比较. 【难度】★★★6.(2018年天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间]45,43[ππ上单调递增 B .在区间],43[ππ上单调递减 C .在区间]2,4[ππ上单调递增D .在区间],2[ππ上单调递减【答案】A【解析】由函数sin(2)5y x π=+的图象平移变换的性质可知: 将sin(2)5y x π=+的图象向右平移10π个单位长度之后的解析式为:sin[2())]sin 2105y x x ππ=-+=则函数的单调递增区间满足:222()22k x k k z ππππ-≤≤+∈,即()44k x k k z ππππ-≤≤+∈,令1=k 可得函数的一个单调递增区间为]45,43[ππ,选项A 正确. 函数的单调递减区间满足:3222()22k x k k z ππππ+≤≤+∈, 即3()44k x k k z ππππ+≤≤+∈, 令1=k 可得函数的一个单调递减区间为]47,45[ππ,选项C ,D 错误;故选择A 选项. 【考点】本题主要考查三角函数的平移变换,三角函数的单调性 【难度】★★★7.(2018年天津理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -= 【答案】C【解析】设双曲线的右焦点坐标为(,0)(0)F c c >,则A B x x c ==,由22221c y a b -=可得:2b y a=±,不妨设: 22(,),(,)b b A c B c a a-,双曲线的一条渐近线方程为0bx ay -=,据此可得:221bc b d c -==,222bc b d c +==, 则12226,bcd d b c+===则23,9b b ==,双曲线的离心率:2c e a ====, 据此可得:23a =,则双曲线的方程为22139x y -=,故选择C 选项.【考点】待定系数法求双曲线的标准方程;渐近线方程 【难度】★★★★8.(2018年天津理)如图,在平面四边形ABCD 中,BC AB ⊥,CD AD ⊥,︒=∠120BAD ,1==AD AB . 若点E 为边CD 上的动点,则⋅的最小值为( )A .1621 B .23 C..1625D . 3【答案】A【解析】建立如图所示的平面直角坐标系,则)210(,A ,)023(,B ,)230(,C ,)023(,-D ,点E 在CD 上,则)10(≤≤=λλ,设),(y x E ,则:)23,23(),23(λ=+y x ,即⎪⎪⎩⎪⎪⎨⎧==+λλ232323y x , 据此可得:)23,23,23(λλ-E ,且:31)22AE λ=+u u u r,3)2BE λ=-u u u r ,由数量积的坐标运算法则可得:331()(()222222AB BE λλλλ⋅=-+⨯+u u u r u u u r ,整理可得:23(422)(01)4AB BE λλλ⋅=-+≤≤u u u r u u u r ,结合二次函数的性质可知,当41=λ时,BE AB ⋅取得最小值1621. 本题选择A 选项.【考点】向量的数量积+向量的坐标运算+数量积的几何意义 【难度】★★★★第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.(2018年天津理)i 是虚数单位,复数67i___________12i+=+. 【答案】4i -【解析】由复数的运算法则得:67i (67i)(12i)205412i (12i)(12i)5ii ++--==-++-. 【考点】复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力. 【难度】★★★10.(2018年天津理)在5)21(xx -的展开式中,2x 的系数为____________.【答案】25【解析】结合二项式定理的通项公式有:r r r rrr r x C xx C T 2355551)21()21(--+-=-=,令2235=-r 可得:2=r ,则2x 的系数为:251041)21(252=⨯=-C . 【考点】二项式定理 【难度】★★★11.(2018年天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥EFGH M -的体积为__________.【答案】121 【解析】分析:由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积. 详解:由题意可得,底面四边形EFGH 为边长为22的正方形,其面积21222=⎪⎪⎭⎫ ⎝⎛=EFGH S , 顶点M 到底面四边形EFGH 的距离为21=d , 由四棱锥的体积公式可得:.121212131=⨯⨯=-EFGH M V 【考点】四棱锥的体积 【难度】★★★12.(2018年天津理)已知圆0222=-+x y x 的圆心为C ,直线⎪⎪⎩⎪⎪⎨⎧-=+-=t y t x 223221(为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为___________. 【答案】21【解析】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.详解:由题意可得圆的标准方程为:1)1(22=+-y x , 直线的直角坐标方程为:)1(3+-=-x y ,即02=-+y x , 则圆心到直线的距离:222201=-+=d , 由弦长公式可得:2)22(122=-⨯=AB , 则2122221=⨯⨯=∆ABC S . 【考点】直线与圆的位置关系+点到直线的距离.【难度】★★★13.(2018年天津理)已知,a b R ∈,且360a b -+=,则128ab+的最小值为__________. 【答案】14【解析】由360a b -+=可知36a b -=-,且:312228aa b b -+=+, 因为对于任意x , 20x >恒成立,结合均值不等式的结论可得:31122284aa b b-+=+≥==. 当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14. 【考点】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 【难度】★★★★14.(2018年天津理)已知0>a ,函数⎪⎩⎪⎨⎧>-+-≤++=0,220,2)(22x a ax x x a ax x x f ,若关于x 的方程ax x f =)(恰有2个互异的实数解,则a 的取值范围是______________. 【答案】)8,4( 【解析】:分类讨论:当0≤x 时,方程ax x f =)(即ax a ax x =++22,整理可得:)1(2+-=x a x ,很明显1-=x 不是方程的实数解,则12+-=x x a ,当0>x 时,方程ax x f =)(即ax a ax x =-+-222, 整理可得:)2(2-=x a x ,很明显2=x 不是方程的实数解,则22-=x x a ,令⎪⎪⎩⎪⎪⎨⎧>-≤+-=0,20,1)(22x x x x x x x g ,其中)2-111(12+++-=+-x x x x ,424222+-+-=-x x x x原问题等价于函数)(x g 与函数a y =有两个不同的交点,求a 的取值范围.结合对勾函数和函数图象平移的规律绘制函数)(x g 的图象, 同时绘制函数a y =的图象如图所示,考查临界条件, 结合0>a 观察可得,实数a 的取值范围是)8,4(.【考点】函数零点的求解与判断 【难度】★★★★15.(2018年天津理)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值.【答案】(Ⅰ)3B π=;(Ⅱ)b =;sin(2)A B -=【解析】(Ⅰ)在ABC ∆中,由正弦定理sin sin a bA B=,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0,π)B ∈,可得3B π=.(Ⅱ)在ABC ∆中,由余弦定理及2,3,3a c B π===,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =.因为a c <,故cos A =.因此sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 【考点】1.同角三角函数的基本关系;2.两角差的正弦与余弦公式;3.二倍角的正弦与余弦公式;4.正弦定理、余弦定理 【难度】★★★16.(2018年天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i )答案见解析;(ii )76. 【解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为2:2:3, 由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (Ⅱ)(i )随机变量X 的所有可能取值为0,1,2,3.)3,2,1,0()(37334=⋅==-k C C C k x P kk 所以,随机变量X 的分布列为随机变量X 的数学期望712354335182351213510)(=⨯+⨯+⨯+⨯=X E . (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”; 事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则C B A ⋃=,且B 与C 互斥,由(i )知,)2()(==X P B P ,)1()(==X P C P ,故76)1()2()()(==+==⋃=X P X P C B P A P .所以,事件A 发生的概率为76.【考点】超几何分布+分层抽样. 【难度】★★★ 17.(2018年天津理)如图,//AB BC 且BC AD 2=,CD AD ⊥,//EG AD 且AD EG =,//CD FG 且FG CD 2=, DG ⊥平面ABCD ,2===DG DC DA . (I )若M 为CF 的中点,N 为EG 的中点,求证:MN//平面CDE ; (II )求二面角F BC E --的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为︒60,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ)1010;(Ⅲ)33. 【解析】依题意,可以建立以D 为原点,分别以,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图), 可得)0,0,0(D ,)0,0,2(A ,)0,2,1(B ,)0,2,0(C ,)2,0,2(E ,)2,1,0(F ,)2,0,0(G ,)1,23,0(M ,)2,0,1(N .(Ⅰ)依题意)0,2,0(=,)2,0,2(=. 设),,(0z y x n =为平面CDE 的法向量,则 0000n DC n DE ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r 即 ⎩⎨⎧=+=02202z x y 不妨令1-=z ,可得)1,0,1(0-=n .又3(1,,1)2MN =-u u u u r ,可得00=⋅n ,又因为直线MN ⊄平面CDE ,所以MN//平面CDE .(Ⅱ)依题意,可得(1,0,0)BC =-u u u r ,(1,2,2)BE =-u u u r ,(0,1,2)CF =-u u u r.设),,(z y x n =为平面BCE 的法向量,则 0n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即 ⎩⎨⎧=+-=-0220z y x x 不妨令1=z ,可得)1,1,0(=n . 设),,(z y x m =为平面BCF 的法向量,则0m BC m CF ⎧⋅=⎪⎨⋅=⎪⎩u r u u u rur u u u r 即 ⎩⎨⎧=+-=-020z y x 不妨令1=z ,可得)1,2,0(=m .因此有10103,cos =<,于是sin ,10m n <>=u r r . 所以,二面角F BC E --的正弦值为1010.(Ⅲ)设线段DP 的长为])2,0[(∈h h ,则点P 的坐标为),0,0(h , 可得),2,1(h BP --=.易知,)0,2,0(=为平面ADGE 的一个法向量,故cos ,BP DC BP DC BP DC ⋅<==u u u r u u u r u u u r u u u r u u u r u u u r ,由题意,可得2360sin 522==+︒h ,解得]2,0[33∈=h . 所以线段DP 的长为33. 【考点】空间向量的应用+线面平行的证明+二面角 【难度】★★★★18.(2018年天津理)设{}n a 是等比数列,公比大于0,其前n 项和为)(*N n S n ∈,{}n b 是等差数列,已知11=a ,223+=a a ,534b b a +=,6452b b a +=. (I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为)(*N n T n ∈,(i )求n T ;(ii )证明)(222)2)(1()(*212N n n k k b b T n nk k k k ∈-+=++++=+∑ 【答案】(Ⅰ)12-=n n a ,n b n =;(Ⅱ)(i )221--=+n T n n .(ii )证明见解析.【解析】(I )设等比数列{}n a 的公比为q .由11=a ,223+=a a可得022=--q q .因为0>q ,可得2=q ,故12-=n n a .设等差数列{}n b 的公差为d ,由534b b a +=,可得431=+d b 由6452b b a +=,可得 161331=+d b 从而 1,11==d b 故n b n = 所以数列{}n a 的通项公式为12-=n n a ,数列{}n b 的通项公式为n b n =(II )(i )由(I ),有122121-=--=n nn S ,故.2221)21(2)2()12(111--=--⨯=-=-=+==∑∑n n T n nk nk n kkn (ii )因为1222)2)(1(2)2)(1()222()2)(1()12112+-+=++⋅=++++--=++++++++k k k k k k k k k k k k b b T k k k k k k k (,所以222)1222()3242()2232()2)(1()(212342312-+=+-+++-+-=++++++=+∑n n n k k b b T n n n nk k k k Λ 【考点】数列通项公式+数列求和【难度】★★★★19.(2018年天津理)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为B . 已知椭圆的离心率为35,点A 的坐标为)0,(b ,且26=⋅AB FB . (I )求椭圆的方程;(II )设直线)0(:>=k kx y l 与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AOQ PQAQ ∠=sin 425(O 为原点) ,求k 的值. 【答案】(Ⅰ)14922=+y x ;(Ⅱ)21或2811 【解析】(Ⅰ)设椭圆的焦距为2c ,由已知有9522=a c ,又由222c b a +=,可得b a 32=.由已知可得,a FB =,b AB 2=, 由26=⋅AB FB ,可得6=ab ,从而3=a ,2=b .所以,椭圆的方程为14922=+y x .(Ⅱ)设点P 的坐标为),(11y x ,点Q 的坐标为),(22y x . 由已知有021>>y y ,故21sin y y AOQ PQ -=∠. 又因为OAB y AQ ∠=sin 2,而4π=∠OAB ,故22y AQ =.由AOQ PQAQ ∠=sin 425,可得2195y y =. 由方程组⎪⎩⎪⎨⎧=+=14922y x kxy 消去x ,可得49621+=k k y . 易知直线AB 的方程为02=-+y x ,由方程组⎩⎨⎧=-+=02y x kx y 消去x ,可得122+=k ky .由2195y y =,可得493)1(52+=+k k , 两边平方,整理得01150562=+-k k ,解得21=k ,或2811=k . 所以,k 的值为21或2811【考点】直线与椭圆的综合问题 【难度】★★★★20.(2018年天津理)已知函数xa x f =)(,x x g a log )(=,其中1>a .(I )求函数a x x f x h ln )()(-=的单调区间;(II )若曲线)(x f y =在点))(,(11x f x 处的切线与曲线)(x g y =在点))(,(22x g x 处的切线平行,证明aax g x ln ln ln 2)(21-=+; (III )证明当e e a 1≥时,存在直线l ,使l 是曲线)(x f y =的切线,也是曲线)(x g y =的切线.【答案】(Ⅰ)单调递减区间)0,(-∞,单调递增区间为)0(∞+,;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】(I )由已知,a x a x h xln )(-=,有a a a x h xln ln )(-='. 令0)(='x h ,解得0=x由,可知当x 变化时,)(x h ',)(x h 的变化情况如下表:所以函数)(x h 的单调递减区间为)0,(-∞,单调递增区间为)0(∞+,. (II )由a a x f xln )(=',可得曲线)(x f y =在点))(,(11x f x 处的切线斜率为a a x ln 1.由a x x g ln 1)(=',可得曲线)(x g y =在点))(,(22x g x 处的切线斜率为a x ln 12. 因为这两条切线平行,故有ax a a x ln 1ln 21=,即1)(ln 222=a a x x .两边取以a 为底的对数,得0ln log 2log 212=++a x x a ,所以aax g x ln ln ln 2)(21-=+. (III )曲线)(x f y =在点),(11x a x 处的切线.)(ln :1111x x a a a y l xx -⋅=-曲线)(x g y =在点)log ,(22x x a 处的切线)(ln 1log :2222x x ax x y l a -⋅=- 要证明当e e a 1≥时,存在直线l ,使l 是曲线)(x f y =的切线,也是曲线)(x g y =的切线, 只需证明当e e a 1≥时,存在),(1+∞-∞∈x ,),0(2+∞∈x ,使得1l 和2l 重合.即只需证明当e e a 1≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩有解,由①得22)(ln 11a a x x =,代入②,得.0ln ln ln 2ln 1ln 1111=+++-aa a x a a x a x x ③ 因此,只需证明当e e a 1≥时,关于1x 的方程③存在实数解. 设函数aaa x a xa a x u xx ln ln ln 2ln 1ln )(+++-=, 即要证明当e e a 1≥时,函数)(x u y =存在零点.x xa a x u 2)(ln 1)(-=',可知)0,(-∞∈x 时,0)(>'x u ; ),0(+∞∈x 时,)(x u '单调递减,又01)0(>='u ,01])(ln 1[2)(ln 12<-='a a a u ,故存在唯一的0x ,且00>x ,使得0)(0='x u ,即0)(ln 1002=-x a x a .由此可得)(x u 在),(0x -∞上单调递增,在)(0∞+,x 上单调递减.)(x u 在0x x =处取得极大值)(0x u .因为e e a 1≥,故1)ln(ln -≥a , 所以.0ln ln ln 22ln ln ln 2)(ln 1ln ln ln 2ln 1ln )(02000000≥+≥++=+++-=aa a a x a x a a a x a a x a x u x x 下面证明存在实数t ,使得0)(<t u .由(I )可得a x a x ln 1+≥, 当ax ln 1>时, 有aaa x a x a x x u ln ln ln 2ln 1)ln 1)(ln 1()(+++-+≤ aaa x x a ln ln ln 2ln 11)(ln 22++++-=,所以存在实数t ,使得0)(<t u因此,当e e a 1≥时,存在),(1+∞-∞∈x ,使得0)(1=x u .所以,当e e a 1≥时,存在直线l ,使l 是曲线)(x f y =的切线,也是曲线)(x g y =的切线. 【考点】用导数求函数的单调性、极值(最值) 【难度】★★★★★。
2018年高考数学真题试卷(理)(天津卷)含逐题详解
2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名,准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()R A C B = (A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45 (3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件 (5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -=(C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ⋅的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年高考理科数学天津卷及答案解析
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷参考公式:● 如果事件A ,B 互斥,那么()()()P A B P A P B ⋃=+. ● 如果事件A ,B 相互独立,那么()()()P AB P A P B =.● 棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. ● 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为R ,集合{}|02A x x =<<,{}|1B x x =≥,则()R A C B ⋂= ( )A .{}|01x x <≤B .{}|01x x <<C .{}|12x x ≤<D .{}|02x x <<2.设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩则目标函数35z x y =+的最大值为 ( )A .6B .19C .21D .453.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4 4.设x R ∈,则“1122x -<”是“31x <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知2log a e =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>6.将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递增B .在区间3,4ππ⎡⎤⎢⎥⎣⎦上单调递减C .在区间53,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间3,22ππ⎡⎤⎢⎥⎣⎦上单调递减7.已知双曲线()222210,0x ya b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( ) A .221412x y -=B .221124x y -= C .22139x y -=D . 22193x y -=8.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE ⋅的最小值为()毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)A .2116B .32C .2516D .3第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.请把答案填写在题中横线上) 9.i 是虚数单位,复数6+712ii=+ . 10.在5x ⎛ ⎝的展开式中,2x 的系数为 .11.已知正方形1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .12.已知圆2220x y x +-=的圆心为C,直线1,3x y ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 .13.已知,a b R ∈,且360a b -+=,则128a b +的最小值为 .14.已知0a >,函数()222,0,22,0.x ax a x f x x ax a x ⎧++≤⎪=⎨-+->⎪⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 .三、解答题:共80分。
完整word版,2018年高考真题——理科数学(天津卷)+Word版含解析
绝密★启用前2018 年一般高等学校招生全国一致考试( 天津卷 )数学(理工类 )本试卷分为第I 卷 (选择题 )和第 II 卷 (非选择题 )两部分,共150 分,考试用时120 分钟。
第 I 卷 1 至 2页,第 II 卷 3至5页。
答卷前,考生务势必自己的姓名、准考号填写在答题卡上,并在规定地点粘贴考试条形码。
答卷时,考生务势必答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第 I 卷注意事项:1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其他答案标号。
2.本卷共 8 小题,每题 5 分,共 40 分。
参照公式:假如事件A,B 互斥,那么.假如事件A,B 互相独立,那么.棱柱的体积公式,此中表示棱柱的底面面积,表示棱柱的高.棱锥的体积公式,此中表示棱锥的底面面积,表示棱锥的高.一 . 选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 设全集为R,会合,,则A. B. C. D.【答案】 B【分析】剖析:由题意第一求得,而后进行交集运算即可求得最后结果.详解:由题意可得:,联合交集的定义可得:.此题选择 B 选项 .点睛:此题主要考察交集的运算法例,补集的运算法例等知识,意在考察学生的转变能力和计算求解能力.2. 设变量 x, y 知足拘束条件则目标函数的最大值为A.6B.19C.21D.45【答案】 C【分析】剖析:第一画出可行域,而后联合目标目标函数的几何意义确立函数获得最大值的点,最后求解最大值即可 .详解:绘制不等式组表示的平面地区以下图,联合目标函数的几何意义可知目标函数在点 A 处获得最大值,联立直线方程:,可得点 A 的坐标为:,据此可知目标函数的最大值为:.此题选择 C 选项 .点睛:求线性目标函数z= ax+ by(ab≠0)的最值,当 b>0 时,直线过可行域且在y 轴上截距最大时,z 值最大,在 y 轴截距最小时,z 值最小;当b< 0 时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大 .3. 阅读右侧的程序框图,运转相应的程序,若输入N 的值为 20,则输出T 的值为A.1B.2C.3D.4【答案】 B【分析】剖析:由题意联合流程图运转程序即可求得输出的数值.详解:联合流程图运转程序以下:第一初始化数据:,,结果为整数,履行,,此时不知足;,结果不为整数,履行,此时不知足;,结果为整数,履行,,此时知足;跳出循环,输出.此题选择 B 选项 .点睛:辨别、运转程序框图和完美程序框图的思路:(1)要明确程序框图的次序结构、条件结构和循环结构.(2)要辨别、运转程序框图,理解框图所解决的本质问题.(3)依据题目的要求达成解答并考证.4. 设,则“”是“”的A.充分而不用要条件B.必需而不重复条件C.充要条件D.既不充分也不用要条件【答案】 A【分析】剖析:第一求解绝对值不等式,而后求解三次不等式即可确立二者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不用要条件.此题选择 A 选项 .点睛:此题主要考察绝对值不等式的解法,充分不用要条件的判断等知识,意在考察学生的转变能力和计算求解能力 .5. 已知,,,则a,b,c的大小关系为A. B. C. D.【答案】 D【分析】剖析:由题意联合对数函数的性质整理计算即可求得最后结果.详解:由题意联合对数函数的性质可知:,,,据此可得:.此题选择 D 选项 .点睛:对于指数幂的大小的比较,我们往常都是运用指数函数的单一性,但好多时候,因幂的底数或指数不同样,不可以直接利用函数的单一性进行比较.这就一定掌握一些特别方法.在进行指数幂的大小比较时,若底数不一样,则第一考虑将其转变成同底数,而后再依据指数函数的单一性进行判断.对于不一样底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又正确.6. 将函数的图象向右平移个单位长度,所得图象对应的函数A.在区间上单一递加B.在区间上单一递减C. 在区间上单一递加D.在区间上单一递减【答案】 A【分析】剖析:由题意第一求得平移以后的函数分析式,而后确立函数的单一区间即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度以后的分析式为:.则函数的单一递加区间知足:,即,令可得一个单一递加区间为:.函数的单一递减区间知足:,即,令可得一个单一递减区间为:.此题选择 A 选项 .点睛:此题主要考察三角函数的平移变换,三角函数的单一区间的判断等知识,意在考察学生的转变能力和计算求解能力.7. 已知双曲线的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A,B 两点 . 设A, B 到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B. C. D.【答案】 C【分析】剖析:由题意第一求得A,B 的坐标,而后利用点到直线距离公式求得 b 的值,以后求解 a 的值即可确立双曲线方程.详解:设双曲线的右焦点坐标为( c>0),则,由可得:,不如设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.此题选择 C 选项 .点睛:求双曲线的标准方程的基本方法是待定系数法.详细过程是先定形,再定量,即先确立双曲线标准方程的形式,而后再依据a,b,c,e 及渐近线之间的关系,求出a,b的值.假如已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8. 如图,在平面四边形ABCD 中,,,,. 若点 E 为边 CD 上的动点,则的最小值为A. B. C. D.【答案】 A【分析】剖析:由题意成立平面直角坐标系,而后联合点的坐标获得数目积的坐标表示,最后联合二次函数的性质整理计算即可求得最后结果.详解:成立以下图的平面直角坐标系,则,,,,点在上,则,设,则:,即,据此可得:,且:,,由数目积的坐标运算法例可得:,整理可得:,联合二次函数的性质可知,当时,获得最小值.此题选择 A 选项 .点睛:求两个向量的数目积有三种方法:利用定义;利用向量的坐标运算;利用数目积的几何意义.详细应用时可依据已知条件的特点来选择,同时要注意数目积运算律的应用.2018 年一般高等学校招生全国一致考试( 天津卷 )数学( 理工类 )第Ⅱ卷注意事项:2.本卷共 12 小题,共 110 分。
2018年天津市高考理科数学试题Word版含答案
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A,B互斥,那么•如果事件A,B相互独立,那么()()()P A B P A P B=+()()()P AB P A P B=.•圆柱的体积公式V Sh=.•圆锥的体积公式13V Sh =.其中S表示圆柱的底面面积,其中S表示圆锥的底面面积,h表示圆柱的高.h表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要ED CBA 求的.(1)i 是虚数单位,复数734ii+=+( ) (A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945(4)函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥ (D )(),2-?(5)已知双曲线22221x y a b -=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (6)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBFÐ;②2FB FD FA =?;③AE CE BE DE ??;④AF BD AB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件(8)已知菱形ABCD 的边长为2,120BAD ?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF ?,23CE CF ?-,则l m +=( ) (A )12 (B )23 (C )56 (D )712第Ⅱ卷注意事项:1.用黑色墨水钢笔或签字笔将答案写在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018天津理一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}【解析】因B ={x |x ≥1},所以∁R B ={x |x <1},因A ={x |0<x <2},故A ∩(∁R B )={x |0<x <1}.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为A . 6B . 19C . 21D . 45【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:⎩⎪⎨⎪⎧-x +y =1,x +y =5,,可得点A 的坐标为:A (2,3),据此可知目标函数的最大值为:z max =3×2+5×3=21.本题选择C 选项.3.阅读右边的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A . 1B . 2C . 3D . 4 【解析】结合流程图运行程序如下: 首先初始化数据:N =20,i =2,T =0,Ni=10,结果为整数,执行T =1,i =3,此时不满足i ≥5; N i =203,结果不为整数,执行i =4,此时不满足i ≥5; Ni=5,结果为整数,执行T =2,i =5,此时满足i ≥5; 跳出循环,输出T =2.4.设x ∈R ,则“|x -12|<12”是“x 3<1”的A .充分而不必要条件B .必要而不重复条件C .充要条件D .既不充分也不必要条件 【解析】绝对值不等式|x -12|<12,即-12<x -12<12,即0<x <1,由x 3<1,即x <1.据此可知|x -12|<12是x 3<1的充分而不必要条件.本题选择A 选项. 5.已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b【解析】c =log 1213=log 23,a =log 2e ,由y =log 2x 在(0,+∞)上是增函数,知c >a >1.又b =ln 2<1,故c >a >b .6.将函数y =sin(2x +π5)的图像向右平移π10个单位长度,所得图像对应的函数( )A .在区间[3π4,5π4]上单调递增B .在区间[3π4,π]上单调递减C .在区间[5π4,3π2]上单调递增D .在区间[3π2,2π]上单调递减【解析】把函数y =sin(2x +π5)的图像向右平移π10个单位长度得函数g (x )=sin[2(x -π10)+π5]=sin 2x的图像,由-π2+2k π≤2x ≤π2+2k π(k ∈Z )得-π4+k π≤x ≤π4+k π(k ∈Z ),令k =1,得3π4≤x ≤5π4,即函数g (x )=sin 2x 的一个单调递增区间为[3π4,5π4],故选A .7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为A .x 23-y 29=1B .x 29-y 23=1C .x 24-y 212=1D . x 212-y 24=1【解析】由题意不妨设A (c ,b 2a ),B (c ,-b 2a ),不妨设双曲线的一条渐近线方程为y =ba x ,即bx -ay =0,则d 1=|bc -b 2|a 2+b 2,d 2=|bc +b 2|a 2+b 2,故d 1+d 2=|bc -b 2|a 2+b 2+|bc +b 2|a 2+b 2=bc -b 2+bc +b 2c =2b =6,故b =3.又ca =c 2a 2=a 2+b 2a 2=1+b 2a 2=2,故b 2=3a 2,得a 2=3.故双曲线的方程为x 23-y 29=1.8.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为A .2116B .32C .2516D .3【解析】以A 为坐标原点,AB 所在直线为x 轴,建立如图的平面直角坐标系,因在平面四边形ABCD 中,AB =AD =1,∠BAD =120°,故A (0,0),B (1,0),D (-12,32).设C (1,m ),E (x ,y ),故DC →=(32,m ,-32),AD →=(-12,32),因AD ⊥CD ,故(32,m ,-32)·(-12,32)=0,则32×(-12)+32(m -32)=0,解得m =3,即C (1,3).因E 在CD 上,故32≤y ≤3,由k CE =k CD ,得3-y 1-x=3-321+12,即x =3y -2,因AE →=(x ,y ),BE →=(x -1,y ),故AE →·BE →=(x ,y )·(x-1,y )=x 2-x +y 2=(3y -2)2-3y +2+y 2=4y 2-53y +6,令f (y )=4y 2-53y +6,y ∈[32,3].因函数f (y )=4y 2-53y +6在[32,538]上单调递减,在(538,3]上单调递增,故f (y )min =4×(538)2-53×538+6=2116.故AE →·BE →的最小值为2116. 二. 填空题:本大题共6小题,每小题5分,共30分。
9.i 是虚数单位,复数6+7i1+2i =___________. 【解析】由复数的运算法则得:6+7i 1+2i =6+7i1-2i 1+2i1-2i =20-5i5=4-i .点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力. 10.在(x -12x )5的展开式中,x 2的系数为____________. 【解析】结合二项式定理的通项公式有:T r +1=C r 5x 5-r(12x )r =(-12)r C r 5x 5-32r,令5-32r =2可得:r=2,则x2的系数为:C 25(12)2=52.11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积__________.【解析】连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,故EH ∥AC ,EH =12AC .因为F ,G 分别为B 1A ,B 1C 的中点,故FG ∥AC ,FG =12AC .故EH ∥FG ,EH =FG ,故四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,故四边形EHGF 为正方形.又点M 到平面EHGF 的距离为12,故四棱锥M -EFGH 的体积为13×⎝⎛⎭⎫222×12=112.12. 已知圆x 2+y 2-2x =0的圆心为C ,直线(为参数)与该圆相交于A ,B 两点,则△ABC 的面积为___________.【解析】由题意可得圆的标准方程为:(x -1)2+y 2=1,直线的直角坐标方程为:,即,则圆心到直线的距离:,由弦长公式可得:,则.13.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为__________.【解析】由题知a -3b =-6,因为2a >0,8b >0,故2a +18b ≥2×2a ×18b =2×2a -3b =22-6=14,当且仅当2a =18b ,即a =-3,b =1时取等号.14.已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是______________.【解析】当x ≤0时,由x 2+2ax +a =ax ,得a =-x 2-ax ;当x >0时,由-x 2+2ax -2a =ax ,得2a =-x 2+ax .令g (x )=⎩⎪⎨⎪⎧-x 2-ax ,x ≤0,-x 2+ax ,x >0.作出y =a (x ≤0),y =2a (x >0)的图像,函数g (x )的图像如图所示,g (x )的最大值为-a 24+a 22=a 24,由图像可知,若f (x )=ax 恰有2个互异的实数解,则a <a 24<2a ,解得4<a <8.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B -π6).(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.【解析】(1)在△ABC 中,由正弦定理a sin A =b sin B ,得b sin A =a sin B ,又由b sin A =a cos(B -π6),得a sin B =a cos(B -π6),即sin B =cos(B -π6),可得tan B =3.又B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b =7.由b sinA =a cos(B -π6),可得sin A =37.因a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A=2cos 2A -1=17.故,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.16.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; ②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)①随机变量X 的所有可能取值为0,1,2,3.P (X =k )=C k 4·C 3-k3C 37(k =0,1,2,3).故,随机变量X 的分布列为X 0 1 2 3 P13512351835435随机变量X 的数学期望E (X )=0×135+1×1235+2×1835+3×435=127.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥.由①知,P (B )=P (X =2),P (C )=P (X =1),故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.故,事件A 发生的概率为67.17.如图,AD ∥BC 且AD =2BC ,AD ⊥CD ,EG ∥AD 且EG =AD ,CD ∥FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E -BC -F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.解 依题意,可以建立以D 为原点,分别以DA →,DC →,DG →的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M ⎝⎛⎭⎫0,32,1,N (1,0,2).(1)证明 依题意DC →=(0,2,0),DE →=(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则⎩⎪⎨⎪⎧n 0·DC →=0,n 0·DE →=0,即⎩⎪⎨⎪⎧2y =0,2x +2z =0,不妨令z =-1,可得n 0=(1,0,-1).又MN →=⎝⎛⎭⎫1,-32,1,可得MN →·n 0=0,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC →=(-1,0,0),BE →=(1,-2,2),CF →=(0,-1,2).设n =(x ,y ,z )为平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x =0,x -2y +2z =0,不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则⎩⎪⎨⎪⎧m ·BC →=0,m ·CF →=0,即⎩⎪⎨⎪⎧-x =0,-y +2z =0,不妨令z =1,可得m =(0,2,1).因此有cos 〈m ,n 〉=m ·n |m ||n |=31010,于是sin 〈m ,n 〉=1010.所以,二面角E -BC -F 的正弦值为1010.(3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP →=(-1,-2,h ).易知,DC →=(0,2,0)为平面ADGE 的一个法向量,故|cos 〈BP →,DC →〉|=|BP →·DC →||BP →||DC →|=2h 2+5,由题意,可得2h 2+5=sin 60°=32,解得h =33∈[0,2].所以,线段DP 的长为33. 18.设{a n }是等比数列,公比大于0,其前n 项和为,是等差数列.已知,,,.(I)求和的通项公式; (II)设数列的前n 项和为,(i)求; (ii)证明.【解析】(I )设等比数列的公比为q .由可得.因为,可得,故.设等差数列的公差为d ,由,可得由,可得从而故 故数列的通项公式为,数列的通项公式为(II )(i )由(I ),有,故.(ii )因为,故.19.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B ,已知椭圆的离心率为53,点A 的坐标为(b ,0),且|FB |·|AB |=62. (1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ ||PQ |=524sin∠AOQ (O 为原点),求k 的值.【解析】(1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由已知可得,|FB |=a ,|AB |=2b ,由|FB |·|AB |=62,可得ab =6,从而a =3,b =2.故,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故|PQ |sin ∠AOQ =y 1-y 2.又因为|AQ |=y 2sin ∠OAB,而∠OAB =π4,故|AQ |=2y 2.由|AQ ||PQ |=524sin ∠AOQ ,可得5y 1=9y 2.由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y 24=1,消去x ,可得y 1=6k9k 2+4.易知直线AB 的方程为x +y -2=0,由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0,消去x ,可得y 2=2kk +1.代入5y 1=9y 2,可得5(k +1)=39k 2+4,将等式两边平方,整理得56k 2-50k +11=0,解得k =12或k =1128.故k 的值为12或1128.20.已知函数f (x )=a x ,g (x )=log a x ,其中a >1. ⑴.求函数h (x )=f (x )-x ln a 的单调区间;⑵.若曲线y =f (x )在点(x 1,f (x 1))处的切线与曲线y =g (x )在点(x 2,g (x 2))处的切线平行,证明:x 1+g (x 2)=-1ln a(2ln ln a ); ⑶.证明当a ≥e 1e 时,存在直线l ,使l 是曲线y =f (x )的切线,也是曲线y =g (x )的切线. 【解】⑴.由已知,h (x )=a x -x ln a ,有h ′(x )=(a x -1)ln a .令h ′(x )=0,解得x =0.由a >1,可知当x 变化时,h ′(x ),h (x )的变化情况如下表:故函数h (x )的单调递减区间(-∞,0),单调递增区间为(0,+∞).⑵.证明:由f ′(x )=a x ln a ,可得曲线y =f (x )在点(x 1,f (x 1))处的切线斜率为a x 1ln a .由g ′(x )=1x ln a,可得曲线y =g (x )在点(x 2,g (x 2))处的切线斜率为1/(x 2ln a ).因这两条切线平行,故有a x 1ln a =1/(x 2ln a ),即x 2a x 1(ln a )2=1.两边取以a 为底的对数得,x 1+log a x 2+2log a (ln a )=0,故x 1+g (x 2)=-1ln a (2lnln a ).⑶.证明:曲线y =f (x )在点(x 1,a x 1)处的切线l 1:y -a x 1=a x 1ln a (x -x 1).曲线y =g (x )在点(x 2,log a x 2)处的切线l 2:y -log a x 2=[1/(x 2ln a )](x -x 2).要证明当a ≥e 1e 时,存在直线l ,使l 是曲线y =f (x )的切线,也是曲线y =g (x )的切线,只需证明当a ≥e 1e 时,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使得l 1和l 2重合.即只需证明当a ≥e 1e 时,方程组a x 1ln a =1/(x 2ln a )①,a x 1(1-x 1ln a )=-1ln a+log a x 2②有解,由①得,ax 1(ln a )2=1x 2,代入②得,x 1+a x 1(1-x 1ln a )+1ln a(1+2lnln a )=0③,因此,只需证明当a ≥e 1e 时,关于x 1的方程③有实数解.设函数u (x )=x +a x (1-x ln a )+1ln a(1+2lnln a ),即要证明当a ≥e 1e 时,函数y =u (x )存在零点.u ′(x )=1-xa x (ln a )2,可知x ∈(-∞,0)时,u ′(x )>0;x ∈(0,+∞)时,u ′(x )单调递减,又u ′(0)=1>0,u ′(x )[1/(ln a )2]=1-a [1/(ln a )2]<0,故存在唯一的x 0,且x 0>0,使得u ′(x 0)=0,即1-x 0a x 0(ln a )2=0.由此可得u (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减.u (x )在x =x 0处取得极大值u (x 0).因a ≥e 1e ,故lnln a ≥-1,故u (x 0)=x 0+a x 0(1-x 0ln a )+1ln a(1+2lnln a ) =x 0+[1/x 0(ln a )2]+1ln a (1+2lnln a )≥1ln a(2+2lnln a )≥0. 下面证明存在实数t ,使得u (t )<0.由⑴得,a x ≥1+x ln a ,当x >1ln a 时,有u (x )≤x +(1+x ln a )(1-x ln a )+1ln a (1+2lnln a )=x +1-x 2(ln a )2+1ln a(1+2lnln a ),故存在实数t ,使得u (t )<0,因此,当a ≥e 1e 时,存在x 1∈(-∞,+∞),使得u (x 1)=0.故当a ≥e 1e 时,存在直线l ,使l 是曲线y =f (x )的切线,也是曲线y =g (x )的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,故在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.。