高性能热塑性复合材料在汽车领域应用的主要问题

合集下载

热塑性复合材料的加工技术现状应用及发展趋势

热塑性复合材料的加工技术现状应用及发展趋势

热塑性复合材料的加工技术现状应用及发展趋势热塑性复合材料是指由热塑性树脂基体和增强材料(如玻璃纤维、碳纤维等)组成的材料。

它具有良好的机械性能、化学稳定性和耐磨性,广泛应用于航空航天、汽车、电子、建筑等领域。

随着科学技术的发展,热塑性复合材料的加工技术也不断推进,应用范围也在不断扩大。

在热塑性复合材料的加工技术方面,目前主要有预浸法、树脂浸渍法和树脂缠绕法等。

预浸法是将热塑性树脂浸渍到增强材料中,形成预浸料,然后通过压塑和热固化等工艺进行成型。

这种加工技术具有成型周期短、生产效率高、成本低等优点,适用于大批量生产。

但是预浸法的工艺控制要求较高,需要保持一定的工艺温度和压力,以确保产品的质量。

树脂浸渍法是将增强材料浸渍到热塑性树脂中,形成蜂巢结构后加热熔融,然后采用压塑成型。

这种加工技术具有成型性能好、质量稳定等优点,适用于复杂产品的生产。

但是树脂浸渍法需要较长的热固化时间,加工周期较长。

树脂缠绕法是将热塑性树脂涂覆在纤维上,通过控制缠绕角度和缠绕层数,形成复杂的形状。

这种加工技术具有成型灵活、节约材料等优点,适用于空间限制较大的产品。

但是树脂缠绕法需要掌握一定的工艺技巧,以确保产品质量。

热塑性复合材料的加工技术在航空航天、汽车等行业得到了广泛的应用。

在航空航天领域,热塑性复合材料可以用于制造机翼、机身等零部件,以提高飞机的载重能力和燃油效率。

在汽车行业,热塑性复合材料可以用于制造车身、底盘等部件,以提高汽车的安全性和节能性能。

随着科学技术的不断进步,热塑性复合材料的加工技术也在不断发展。

一方面,加工工艺越来越精细化和自动化,提高了生产效率和产品质量。

另一方面,新型材料的研发和应用也为热塑性复合材料的加工技术带来了新的发展方向。

例如,纳米级增强材料的应用可以改善热塑性复合材料的力学性能和耐热性能;3D打印技术的应用可以实现复杂形状的制造,提高产品的适应性和精度。

综上所述,热塑性复合材料的加工技术在应用和发展方向上都取得了很大的进展。

tpu复合材料

tpu复合材料

tpu复合材料Tpu复合材料。

TPU复合材料是一种由热塑性聚氨酯(TPU)和其他材料混合而成的复合材料,具有优异的性能和广泛的应用领域。

TPU复合材料在汽车、航空航天、运动器材、医疗器械等领域有着重要的应用,其独特的性能使其成为各行业中不可或缺的材料之一。

首先,TPU复合材料具有优异的耐磨性和耐腐蚀性。

由于TPU本身具有良好的耐磨性和耐腐蚀性,因此与其他材料复合后,使得复合材料具有更加出色的性能。

在汽车领域,TPU复合材料常用于制作汽车内饰件和外饰件,能够有效延长汽车零部件的使用寿命,提高汽车的整体质量和品质。

在医疗器械领域,TPU复合材料常用于制作医疗器械的外壳和零部件,能够有效抵御外部环境对医疗器械的侵蚀,保障医疗器械的使用安全和稳定性。

其次,TPU复合材料具有优异的弹性和柔韧性。

TPU本身是一种弹性材料,与其他材料复合后,使得复合材料具有更加出色的弹性和柔韧性。

在运动器材领域,TPU复合材料常用于制作运动鞋、运动服等产品,能够有效提高产品的舒适度和使用寿命,满足运动爱好者对产品性能的需求。

在航空航天领域,TPU复合材料常用于制作飞机零部件和航天器材料,能够有效提高产品的抗冲击性和耐久性,保障航空航天设备的安全性和可靠性。

最后,TPU复合材料具有优异的加工性和成型性。

TPU具有良好的流动性和可塑性,与其他材料复合后,使得复合材料具有更加出色的加工性和成型性。

在工业制品领域,TPU复合材料常用于制作各种工业零部件和机械配件,能够有效提高产品的加工效率和生产效益,满足工业生产对材料性能的需求。

在家居用品领域,TPU复合材料常用于制作各种家居用品和日常用品,能够有效提高产品的外观质感和使用体验,满足消费者对产品质量的需求。

综上所述,TPU复合材料具有优异的性能和广泛的应用领域,是各行业中不可或缺的材料之一。

随着科技的不断进步和市场需求的不断增长,相信TPU复合材料将会在未来发展中发挥越来越重要的作用,为各行业的发展注入新的活力和动力。

热塑性弹性体最新发展现状

热塑性弹性体最新发展现状

热塑性弹性体最新发展现状热塑性弹性体(TPE)是一种能在热加工过程中保持弹性状态的材料。

它具有独特的物理性质,如高弹性、耐化学品侵蚀和环境适应性,因此被广泛应用于各种领域,包括汽车工业、医疗设备、包装、电子产品等。

以下是热塑性弹性体最近的发展现状。

1.新型材料的开发:为了满足不断发展的市场需求,研究人员不断努力开发新型的热塑性弹性体。

其中包括高性能的热塑性弹性体,如热塑性弹性体共混物、聚氨酯热塑性弹性体和弹性体复合材料。

这些新型材料具有更优异的力学性能和更广泛的应用范围。

2.技术的改进:近年来,研究人员通过改进生产工艺和技术,提高了热塑性弹性体的性能和可塑性。

例如,通过微观形变改善热塑性弹性体的劣化行为,提高抗疲劳性能和耐久性。

还利用纳米填料、纤维增强等技术改善热塑性弹性体的力学性能和阻燃性能。

3.应用领域的扩展:热塑性弹性体在汽车工业、医疗设备和电子产品等领域的应用逐渐扩展。

例如,热塑性弹性体被广泛应用于汽车密封件、橡胶刹车片、防护罩和支架等部件中,以提高汽车的安全性和舒适性。

在医疗设备领域,热塑性弹性体用于制作人工关节、手术器械等,具有良好的生物相容性。

同时,热塑性弹性体在电子产品领域用于制造柔性电路、触摸屏等,以提高产品的可靠性和使用寿命。

4.可持续发展的努力:随着环境保护意识的增强,研究人员也在努力开发可回收和可降解的热塑性弹性体。

这些新型材料可以用于替代传统的热塑性弹性体,并减少对环境的负面影响。

一些可降解的热塑性弹性体已经被应用于一次性餐具和包装材料中。

总之,热塑性弹性体作为一种具有广泛应用前景的新型材料,其发展势头良好。

通过不断地研究和创新,热塑性弹性体的性能和可塑性不断得到提高,应用领域也在不断扩展,同时也在追求可持续发展。

相信随着技术的不断进步,热塑性弹性体在各个领域的应用将会更加广泛。

GMT技术及其在汽车领域的应用

GMT技术及其在汽车领域的应用
3.1
防腐特点,因此,可以根据复合材料的使用环境和介
质条件,对基体树脂进行优选,一般都能满足使用要 求,热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能 一般热塑性复合材料都具有良好的介电性能, 不反射无线电电渡,透过微波性能良好等。由于热
GMT性能和特点
国产GMT的主要性能比较
表1国产GMT主要性能比较
(2)设计自由度大 热塑性复合材料的物理性能、化学性能、力学性 能,都可通过合理选择原材料种类、配比、加工方法、
纤维含量和铺层方式进行设计。由于热塑性复合材

④应用现状与效益,汽车用材料构成比例逐步发 生变化,轿车用材料尤其明显。总体来说,普通钢铁
用量下降,金属材料中高强度钢和轻金属趋于上升,
75
2008年
GMT应用效益举例
①Mercedes型车后椅骨架:原来是钢制,重量
6k∥个,GMT重量2kg/个,减少4k∥个,而且性能 好,易安装,可回收,占空间较小,安全性好; ②(VW)Golf A3型车车前端:原来的金属前端 由12个零件组成,改为GMT加工后,离线装配的零 件有大灯、风扇、散热器格栅、保险杠等组装成整体。 成本下降10%;单个重量下降33%(金属:6kg, GMT:4kg);可循环使用10%再生料不影响性能。
二种方案,其一是将基体树脂片直接从挤塑机挤出,
然后与玻纤毡叠合(一般为三层聚丙烯与二层毡结
合),进入钢带加压设备,经加热、加压,使熔融树脂
浸渍玻纤毡,然后经冷却、定长切断,制成片材;另一 方案是先生产出基体树脂片材。然后再和纤维毡叠 合成所需的厚度,进入钢带复合机,加热、加压复合 成GMT片材。 2.3关键技术 2.3.1界面 界面问题是影响GMT材料性能的关键,如基体 树脂分子链上不含活性基团,不能与经过常规偶联

热塑性复合材料在汽车轻量化领域的应用及问题分析

热塑性复合材料在汽车轻量化领域的应用及问题分析
杰事杰申报的 “工程塑料选材 设计分析仿真工 程实验室”获得 了石油和化工联 合会的批准,杰 事杰成为行业第 一家拥有工程塑 料选材设计分析 仿真实验室的公 司,该实验室为 材料厂商和制件 厂商架起了一座 桥梁。
汽车轻量化的重要意义
汽车轻量化,是汽车行业发展的必由之路 节约能源、减少环境污染成为世界汽车工业界亟待解决的两大问题。 减轻汽车自重是节约能源和提高燃料经济性的最基本途径之一; 减轻汽车自身质量是降低汽车排放、提高燃油经济性的最有效措施之
LFT
CFT
热塑性复合材料
纤维长度与性能的关系
SFT:增强纤维长度0.2-0.6mm,LFT:纤维长度6-25mm; CFT:纤维连续
随着纤维保留长度的增加,材料的力学性能、刚度、冲击强度迅速增加。 LFT和CFT由于性能优良,故又称为先进热塑性复合材料。
长纤维增强热塑性复合材料
LFT所选用纤维 玻璃纤维、碳纤维、芳纶纤维、金属纤维、甚至有机纤维; 玻璃纤维价格便宜,性价比高,LFT中玻璃纤维用量占90%以上,其次是
一。世界铝业协会的报告指出,汽车的自身质量每减少10%,燃油的消 耗可降低6~8%;
根据最新资料,国外汽车 自身质量同过去相比减轻 了20%~26%。预计在未来 的10年内,轿车自身质量 还将继续减轻20%。
汽车轻量化水平的高低, 已成为衡量一个国家汽车 发展水平的重要标志。
汽车轻量化的途径
长纤维增强热塑性复合材料
LFT与BMC和SMC的比较优势
SMC:片状模塑料(Sheet Molding Compound) BMC:团状模塑料(Block Molding Compound)
SMC/BMC为热固性塑料,难以回收; SMC和BMC在模具内是热固化过程,加工周期长,生产效率低。 而LFT的成型过程是摸内物理冷却过程,速度快。 由于环境保护的压力,BMC和SMC逐步被LFT所取代。

热塑性复合材料的加工技术研究

热塑性复合材料的加工技术研究

热塑性复合材料的加工技术研究热塑性复合材料作为一种性能优异的新型材料,在众多领域展现出了巨大的应用潜力。

其独特的性能使得它在航空航天、汽车制造、电子设备等行业中备受青睐。

然而,要充分发挥热塑性复合材料的优势,就必须深入研究其加工技术。

热塑性复合材料的特性为其加工带来了一定的挑战。

与传统材料相比,热塑性复合材料通常具有较高的粘度和较低的热传导性。

这意味着在加工过程中,热量传递和材料流动的控制变得至关重要。

目前,常见的热塑性复合材料加工技术包括注塑成型、挤出成型、热压成型等。

注塑成型是一种广泛应用的加工方法。

在注塑过程中,将经过加热熔融的复合材料通过高压注入模具型腔,然后冷却固化成型。

这种方法生产效率高,适合大批量生产形状复杂的制品。

但注塑成型对材料的流动性要求较高,对于一些高粘度的热塑性复合材料,可能需要进行特殊的改性处理以提高其流动性。

挤出成型则主要用于生产连续的型材,如管材、板材等。

通过将复合材料加热至熔融状态,并在螺杆的推动下通过模具挤出成型。

挤出成型的优点是生产过程连续,能够高效地生产长尺寸的制品。

然而,挤出成型对于制品的截面形状和尺寸有一定的限制。

热压成型是将预浸料或片状材料放入模具中,在加热和加压的条件下使其固化成型。

这种方法适用于制造形状较为简单、尺寸较大的制品,并且能够获得较好的力学性能。

但热压成型的生产效率相对较低,不太适合大规模生产。

在热塑性复合材料的加工过程中,温度控制是一个关键因素。

温度过高可能导致材料降解,影响制品的性能;温度过低则会使材料流动性变差,难以充满模具型腔。

此外,压力的施加方式和大小也会对制品的质量产生重要影响。

纤维增强热塑性复合材料的加工还需要特别关注纤维的分布和取向。

纤维的均匀分布和合理取向能够显著提高制品的力学性能。

为了实现这一目标,在加工过程中可以采用特殊的模具设计和工艺参数优化。

除了上述传统的加工技术,一些新型的加工技术也在不断涌现。

例如,激光辅助成型技术利用激光的高能量来局部加热材料,从而实现更精确的成型和焊接。

热塑复合材料

热塑复合材料

热塑复合材料热塑复合材料是一种由两种或两种以上的材料组合而成的新型材料,它具有独特的性能和优势,被广泛应用于工程领域。

热塑复合材料由热塑性树脂和增强材料组成,通过热压或注塑工艺制成。

本文将重点介绍热塑复合材料的特点、应用领域和发展趋势。

首先,热塑复合材料具有优异的性能。

由于其由热塑性树脂和增强材料组成,因此具有优异的机械性能和耐热性能。

同时,热塑复合材料还具有较好的耐腐蚀性和耐磨性,能够在恶劣环境下长期使用。

此外,热塑复合材料还具有较好的成型性能,可以通过热压或注塑工艺轻松制成各种形状的制品,满足不同工程需求。

其次,热塑复合材料在工程领域有着广泛的应用。

由于其优异的性能,热塑复合材料被广泛应用于航空航天、汽车制造、建筑结构、电子设备等领域。

在航空航天领域,热塑复合材料可以制成轻量化的航空零部件,提高飞行器的燃油效率和飞行性能。

在汽车制造领域,热塑复合材料可以制成车身结构和内饰件,降低汽车的整体重量,提高燃油经济性。

在建筑结构领域,热塑复合材料可以制成各种结构件,提高建筑物的抗风抗震能力。

在电子设备领域,热塑复合材料可以制成外壳和散热片,提高设备的散热效果。

最后,热塑复合材料的发展趋势是多样化和高性能化。

随着科技的不断进步,热塑复合材料的种类和性能将不断提升。

未来,热塑复合材料将向着多样化和高性能化的方向发展,不仅可以制成普通结构件,还可以制成具有特殊功能的材料,如导热、导电、阻燃等。

同时,热塑复合材料的制造工艺也将不断改进,降低成本,提高生产效率,推动热塑复合材料的广泛应用。

综上所述,热塑复合材料具有优异的性能和广泛的应用前景,是一种具有发展潜力的新型材料。

随着科技的不断进步,相信热塑复合材料将在未来得到更广泛的应用,为工程领域带来更多的创新和发展。

热塑性复合材料的应用研究

热塑性复合材料的应用研究

优势分析
5、可持续性好:这种材料具有较好的可回收性,能够在生产和使用过程中实 现资源的高效利用,符合绿色发展的要求。
未来展望
未来展望
随着科学技术的不断进步,先进热塑性树脂基复合材料在航天航空领域的应 用前景十分广阔。未来,这种材料将在以下几个方面有更大的发展:
未来展望
1、新一代飞机制造:随着航空工业的发展,新一代飞机对材料的要求更加严 格,先进热塑性树脂基复合材料将在新型飞机设计中得到更广泛的应用,提升飞 机的性能和降低成本。
未来展望
4、智能制造:随着智能制造技术的发展,先进热塑性树脂基复合材料的制造 将更加智能化、自动化,提高生产效率,降低成本,推动产业升级。
未来展望
5、绿色环保:未来,环保和可持续发展成为全球的共识,先进热塑性树脂基 复合材料的可回收性和环保性将得到进一步提升,助力航空航天产业的绿色发展。
结论
结论
应用领域
应用领域
在航天航空领域,先进热塑性树脂基复合材料的应用主要包括以下几个方面: 1、飞机制造:飞机结构中需要大量使用轻质、高强度的材料,先进热塑性树 脂基复合材料成为理想的选择。例如,在机翼、尾翼和机身等部位,这种材料能 够显著降低结构重量,提高飞行效率。
应用领域
2、火箭设计:火箭结构需要承受巨大的推力和热量,先进热塑性树脂基复合 材料能够提供卓越的耐高温性能和承载能力。例如,在火箭发动机和箭体结构中, 这种材料可以显著提高火箭的可靠性和安全性。
应用领域
3、卫星制造:卫星结构需要适应严苛的空间环境,先进热塑性树脂基复合材 料具有优秀的耐候性和抗辐射性能。在卫星壳体、太阳能电池板等关键部位,这 种材料可以提高卫星的稳定性和工作效率。
优势分析
优势分析

耐高温塑性材料

耐高温塑性材料

耐高温塑性材料耐高温塑性材料是一类具有良好热稳定性能的材料,具有较高的软化温度和耐高温变形能力。

它们在高温环境中能够保持其结构和性能的稳定性,因此被广泛应用于航空航天、汽车、电子、化工等领域。

本文将介绍耐高温塑性材料的特点、分类、应用和未来发展趋势。

首先,耐高温塑性材料具有以下几个特点:1. 良好的热稳定性:耐高温塑性材料在高温环境下能够保持其结构和性能的稳定性,不会发生严重的热降解和形态变化。

2. 高软化温度:耐高温塑性材料的软化温度较高,能够在高温条件下保持结构的稳定性,不易软化和变形。

3. 良好的耐高温变形能力:耐高温塑性材料在高温条件下具有较高的耐变形能力,不易发生塑性流动和收缩等变形现象。

4. 优异的机械性能:耐高温塑性材料具有较高的强度、刚度和韧性,在高温条件下仍能够保持较好的机械性能。

根据材料的化学成分和结构特点,耐高温塑性材料可以分为以下几类:1. 聚酰亚胺(PI):聚酰亚胺是一种具有高温稳定性和优异机械性能的塑性材料,广泛应用于航天航空、电子器件等领域。

它具有较高的玻璃化转变温度和熔点,优异的阻燃性能和电绝缘性能。

2. 聚醚醚酮(PEEK):聚醚醚酮是一种高性能的热塑性聚合物,具有优良的耐高温性能、耐溶剂性能和良好的机械性能。

它广泛应用于航空航天、电子、医疗器械等领域。

3. 高温聚酰胺(PAEK):高温聚酰胺是一种具有优异耐高温性能和机械性能的塑性材料,常见的有聚酰亚胺酮、聚酰胺酰亚胺等,广泛应用于航空航天、化工等领域。

耐高温塑性材料在许多领域有着广泛的应用:1. 航空航天领域:耐高温塑性材料可以用于制造航空发动机部件、导弹、卫星等高温环境下工作的设备和构件。

2. 汽车领域:耐高温塑性材料可以用于制造发动机零部件、排气系统、制动系统等高温环境下的汽车部件,提高汽车的性能和可靠性。

3. 电子领域:耐高温塑性材料可以用于制造高温电缆、电子封装材料、半导体器件等,保证电子设备在高温环境下的正常工作。

聚丙烯腈基碳纤维增强热塑性复合材料成型工艺及应用

聚丙烯腈基碳纤维增强热塑性复合材料成型工艺及应用

聚丙烯腈基碳纤维增强热塑性复合材料成型工艺及应用张超,黄勇(中国石化上海石油化工股份有限公司先进材料创新研究院,上海200540)摘 要:聚丙烯腈基碳纤维增强热塑性复合材料(PAN-CFRTP)因其优异的耐高温性能、刚韧平衡性能等特性,在汽车、医疗器械、航空航天、化工机械等领域被广泛使用。

主要介绍了上浆剂法、液相氧化法、等离子体法三碳纤维界面改性方法以及拉挤成型、缠绕成型、真空辅助成型三种CFRTP成型工艺。

最后通过介绍碳纤维增强尼龙(CF/PA)、碳纤维增强聚苯硫醚(CF/PPS)、碳纤维增强聚醚醚酮(CF/PEEK)三种复合材料的性能特点,说明CFRTP在市场中的巨大应用需求潜力,尤其在航空航天等高端领域。

关键词:聚丙烯腈;碳纤维;热塑性复合材料;界面改性;成型工艺中图分类号:TB 322 文献标识码:A 文章编号:2095-817X(2021)01-0059-005聚丙烯腈基碳纤维(PAN-CF)的制备分为聚丙烯腈原丝液的制备以及碳纤维的制备。

首先,聚合反应单体丙烯腈与加入的少量第二单体(如丙烯酸甲酯)和第三单体(如亚甲基丁二酸),以偶氮二异丁腈(AIBN)为引发剂,以二甲基亚砜(DMSO)或硫氰酸钠(NaSCN)为溶剂,通过共聚反应生成聚丙烯腈原丝液。

接下来,聚丙烯腈原丝液经过纺丝、预氧化、低温碳化、高温碳化、石墨化等工艺过程,得到含碳量大于90%的无机碳材料,即PAN-CF[1]。

PAN-CF的碳化收率能达到45%,高于其他几种原料(沥青、粘胶、酚醛等)制备的碳纤维。

PAN-CF成为如今生产应用研究最为广泛的碳纤维,得益于其生产工艺流程易控,成本较低。

碳纤维由于其独特的乱层石墨结构,高强高模,且耐高温、耐腐蚀。

一般来说,碳纤维主要是通过与热塑性、热固性树脂复合,通过一定的成型工艺制备得到复合材料,才能发挥其优异的综合性能。

热塑性树脂包括聚丙烯(PP)、聚酰胺(PA)、聚苯硫醚(PPS)、聚醚醚酮(PEEK)等。

热塑性复合材料在前端模块上的应用

热塑性复合材料在前端模块上的应用
r if re h pa t s) GMT ( a s M a e n o c d T e mo ls i r c 和 Gls t
量 更轻 的新 材料 ;二 是利用 C E 术优 化汽 车零 部件 A技 的结构 ,使 之薄壁 化 、中空 化、小 型化 和复合 化 等 ,
从而 最 大限度地 减轻 零部 件 的质 量 。 当然 ,汽 车轻 量 化 必须 在 保证 汽 车 整体 性 能 ( 安全 、耐撞 、舒 适 、抗 振 等 ) 前 提下 进 行 。随 着 国 内正 面碰 撞 和 侧 面碰 撞 的
在 前端模块的应用过程 。

上汽 集团新 能源 汽车 事业部 范 军锋
冯 奇

健 凌 天钧
■ 北 京 中材汽车 复合 材料 有 限公司 王庆 明 陈 强
汽 车轻量 化是在 保证 汽车 整体 品质 和 性能 不受影 响甚至还 有 所提 高的前 提下 ,通过 尽可 能地减 轻 汽车 产 品 的 自身质 量 ,而达 到努 力谋 求高输 出功 率 、低噪
的 S系列 后 保 险 杠 支 架 ( GMT L T)等 ,BMW 系 /F
法规 的相 继 出 台以及 公众对 汽车 安全 性认识 的逐 步加 深 ,汽车 结构 的耐 撞性和 安 全性 已经成 为汽 车轻量 化 设计 的首 要考虑 因素 。 复合材 料作 为汽车 工业 的主要原 材料 之一 ,其优
“ 以塑代钢 ”正 在成 为推 动汽车 向轻量化 发展 的主 要
手段 。下面 主要 介绍 纤维增 强热 塑性 复合材 料在 前端 模块 上 的应用 情况 。
声 、低振 动 以及 良好 的操纵性 和 高可靠 性等 目标 。 目
前 实现汽 车轻量 化主 要 有两条途 径 :一是 采用 轻量 化 材料 ,如 高强度 钢材 、铝合 金 以及其 他强度 更 高、质

连续纤维增强热塑性复合材料

连续纤维增强热塑性复合材料

连续纤维增强热塑性复合材料连续纤维增强热塑性复合材料(CFRTP)是一种新型的高性能复合材料,由热塑性树脂基体和连续纤维增强材料组成。

它具有重量轻、强度高、刚度大、耐腐蚀、耐热、耐磨、抗冲击等优点,因此在航空航天、汽车、船舶、建筑等领域有着广泛的应用前景。

首先,连续纤维增强热塑性复合材料的制备工艺是关键。

制备工艺包括预浸料制备、层叠成型、热压成型等步骤。

预浸料制备是将纤维材料浸渍于热塑性树脂中,使其充分浸透,然后进行层叠成型,即将预浸料层叠在一起,形成所需的厚度和形状。

最后,通过热压成型,将层叠好的预浸料在一定的温度和压力下进行成型,使其固化成为连续纤维增强热塑性复合材料。

其次,CFRTP的性能主要取决于纤维增强材料的类型和树脂基体的性能。

常见的纤维增强材料有碳纤维、玻璃纤维、芳纶纤维等,它们各自具有不同的特点和适用范围。

而树脂基体的选择也至关重要,不同的树脂基体具有不同的耐热性、耐化学腐蚀性、加工性等特点,对最终复合材料的性能有着直接的影响。

此外,CFRTP的应用领域非常广泛。

在航空航天领域,CFRTP可以用于制造飞机机身、机翼、航天器外壳等部件,由于其重量轻、强度高的特点,可以大幅减轻飞机的自重,提高飞行性能。

在汽车领域,CFRTP可以用于制造汽车车身、底盘等部件,能够提高汽车的燃油经济性和安全性。

在建筑领域,CFRTP可以用于制造高强度、耐久性好的建筑材料,提高建筑物的抗震性和使用寿命。

总的来说,连续纤维增强热塑性复合材料具有广阔的发展前景和应用前景,但是在实际应用中仍然存在一些挑战,如成本较高、大规模生产难度大等。

因此,需要在材料制备工艺、材料性能改进、成本降低等方面进行进一步的研究和探索,以推动连续纤维增强热塑性复合材料的广泛应用和推广。

高性能热塑性复合材料在汽车领域应用的主要问题

高性能热塑性复合材料在汽车领域应用的主要问题
种, 由于其 能 回收 再 生 、 可重 复 使 用 , 品 的成 型 加 制
已由华东理工大学热塑性复合材料研究团队研制成 功 , 20 年与江苏双 良集 团合作 , 于 04 建立 了国内第

条 G T工业 化 生 产 线 , 现 了工 业 生 产 , 能达 M 实 性
到 国外 同类产 品 的水平 。
关键词 热塑性复合材料 ; 汽车制造 ; 轻量化 ; 零部件
Th an o lm s o tn i g a d Appiato so g eM i Pr b e fEx e d n n l in fm h c Pe f r a c e m o lsi m p stsi Au o b e ro m n e Th r p a tc Co o ie n t mo i s l Z O i —dn, N i egZ A un H UXa ogWA GQu—f ,H I a o n H
(teK yLbr r o C e i l ni S t e aoa y f hmc g in g at hn nvrt o i c n eho g,In a o t aE n ,Es C i U i sy f c neadT cnl y Sa a e i S e o I 2D 3 ,l吡) (27 Cl i
( 华东理工 大学 化学工程联合 国家重 点实验室 , 上海 20 3 ) 的性 能特点 、 发展趋 势及其 在汽车 领域 的应用 现状 , 结合 目前 国内的实 际
情况 , 分析 了高性 能热 塑性 聚合物复合材料在汽车领 域应 用所 面临的 主要 问题 , 研究 了低 成本 、 高性 能 、 品种热 多 塑性复合材料的制备方法及制 品表面质量 的改善措施 。
轻量化是目 前汽车发展的重要方向, 是汽车节

热塑性复合材料在汽车中的应用

热塑性复合材料在汽车中的应用
后 仓 门
了它在高应力结构 ( 如汽车车身 )中的应用 。为此 ,
E L T 运 而 生 。EL T (n l s a d o g F b e -F应 - F E de s n Ln ir
轻质G l P )与D L — P  ̄"( P f — F P 相竞争 。 DL—P — FP 注塑。 外板为滑石填 充P ,内板为 L — P P FP ; 开始使用E L T —F 。
Tempatc h r o ls i )意为 “ 连续纤维和 长纤维增强热塑 性塑料 ”,是在L T F 成型时局 部用连 续纤维 ( 例如单 向带 )加强来增加刚度和抗冲击性 。相对而言 ,L T F 的力学性能比较普通,但它具有很好的设计灵活性 , 并可经济地 生产大 型制件 。而单 向连续纤维带 具有 优 良的力 学性能 ,可 以三维状态介 入 ,以适应 制件 形状和荷载路径 。E L T - F 把传统 的L T F 技术与单 向连 续 纤维结合起 来 ,兼获 二者的优 点。与金属和传统 L T 比,这样可提高刚度2% 5 ,同时还有 可能 F相 0  ̄2% 节省成本 。E L T - F 的首批应用实例是客货两用车 的后
份额 。
1 4 汽车T C . P 的应用
汽 车T C P ,特 别是长纤维 增强型T C P 在汽车 中的
应用归纳如表 1 。
12 全球宏观 经济对 汽车T C . P 的影响
有几种因素推动着汽车制造业 的转变。它们是:

2 L T 发 展 动态 F的
总 的说来 ,在汽 车T C P 中,长纤维增强热塑性塑 料获得迅速 发展 。它们 多用玻璃纤维增 强,但也可

长纤维增强 (F ):长纤维粒料或长纤维直 LT

长纤维增强热塑性塑料在汽车轻量化与节能减排中的应用

长纤维增强热塑性塑料在汽车轻量化与节能减排中的应用

料 与 国外还 存 在 有 较大 差 距。0 8 20年
中国经 济型 轿 车塑 料 用量 仅 为 5 0~ 6 k 辆 , 型载货车 达到 8kg 辆 , 0 g/ 重 0 / 技术指标远远 落后于 汽车工业 发达 国
家的 汽车 塑料 最 高用 量 30 g 辆 以 0k /


LT F 塑料发展及现状
制备 方法 : FT L 塑料 粒料 制备和 直接 在线生产L T F 塑料制品(F - 。 L T D)前者 是先制成半成 品——粒料 , 再将粒料注 射 或模 压成 型为 制 品 ; 后者 则是 一步 工 艺法 , 即在生产 线上配 混玻璃纤 维、
塑 料及添 加剂后直接在 线一步热模 压 或注射 成型为所需制 品, 省去制作粒料
案之一是 采用 高性 能的汽车轻量化材
了汽车 塑料生产技术 与塑料零部件制 造 水平 不断 的提 高。 先进塑 料及复 合 材 料 可 替 代金 属 材料 制 造 汽 车零 部 件, 作为最 重要的汽车轻量化材料 , 它 不 仅 减轻 约 4 %以上 的车 身质 量 , 0 同 时易于 高 度集 成化 使 成本 降低 4 %, 0 节 能减 排效 果显著 。 国际上 越来越 重
方鲲 北 京化工大学新型高分子材料制备 与加工重点 实验室博士 , 副教授 , 北京纳盛通( S 新材料科技有 N T)
限公 司总经理兼总 工程师 。 主要从事汽 车塑料和 电磁
热功 能复合材料科研 与产业化 工作 , 国 内外发表科 在 研 论文 3 余篇 , 0 编译 专著 一部 , 获得 国家 新材料 发 明

A vn e a r lI u t d acd t isn s y M ea d r
不 过 相 对 比 而 言 , 国 汽 车 塑 中

热塑性复合材料的加工技术现状、应用及发展趋势

热塑性复合材料的加工技术现状、应用及发展趋势

热塑性复合材料的加工技术现状、应用及发展趋势摘要:热塑性复合材料(FRT)具有密度低、强度高、加工快、可回收等突出特点,属于高性能、低成本、绿色环保的新型复合材料,已部分替代价格昂贵的工程塑料、热固性复合材料(FRP)以及轻质金属材料(铝镁合金),在飞机、汽车、火车、医疗、体育等方面有广阔应用前景。

本文概述了热塑性复合材料(FRT)的种类、结构和性能特点,并详细介绍了国内外最新加工技术、应用及发展趋势,以及未来面临的障碍和挑战。

复合材料(Composite Material)分为两种主要类型:热固性(聚合物树脂基)复合材料(FRP)和热塑性(聚合物树脂基)复合材料(FRT),其中,FRT(如GFRT和CFRT, Fiber Weight%:40-85wt%)具有密度低(1.1-1.6g/cm3)、强度高、抗冲击好、抗疲劳好、可回收、加工成型快、造价低等突出特点,属于高性能、低成本、绿色环保的新型复合材料。

通过选择原材料(纤维和树脂基体)的种类、配比、加工成型方法、纤维(GF,CF)含量和纤维(单丝和编织物)铺层方式进行多组份、多相态、多尺度的宏观与(亚)微观的复合过程(含物理过程和化学过程)可以制备FRT,并根据要求进行复合材料结构与性能的设计和制造,达到不同物理、化学、机械力学和特殊的功能,最终使各种制品具有设计自由度大、尺寸稳定、翘曲度低、抗疲劳、耐蠕变等显著优点,部分替代价格昂贵的工程塑料、非环保F RP和轻质金属材料(如铝镁合金)。

目前,FRT广泛应用在电子、电器、飞机、汽车、火车、能源、船舶、医疗器械、体育运动器材、建筑、军工等工业产品,近年,更随着全球各国对节能减排、环保、可再生循环使用等要求的不断提高,FRT获得更快速发展,相关新材料、新技术、新设备不断涌现。

基本种类根据制品中的最大纤维保留尺寸大小,FRP(GFRT和CFRT)可分为:(1)非连续纤维增强热塑性复合材料(N-CFT),包括短切纤维增强工程塑料(SFT,最大纤维保留尺寸0.2-0.6mm);(2)长纤维增强热塑性复合材料(LFT-G,LFT-D,最大纤维保留尺寸5-20mm);(3)连续纤维增强热塑性复合材料(Continuous Fiber Reinforced Thermoplastics, CFT,最大纤维保留尺寸>20mm;包括:玻纤毡增强型热塑性复合材料GMT)。

热塑性复合片材的应用技术_汽车零部件开发及最新进展_戴干策

热塑性复合片材的应用技术_汽车零部件开发及最新进展_戴干策

合作,于2004年建成了我国第一套GMT工业装置。

华东理工大学开发的部分GMT制品见图3。

热塑性复合片材汽车零部件开发由于热塑性复合材料本身为非均一的多相材料,所以其各项物理性能与传统的金属材料相比,具有鲜明的差异,因此对于各个具体的汽车零部件,均需要进行必要的制品设计,然后选择合适的成型工艺,才能得到合格的产品。

1.制品设计制品设计是指根据零部件功能需求,通过结构与受力分析,进行制品相关材料选择及结构设计,尤需关注制品使用环境与材料选择以及制品形状设计方面。

具体考虑的因素包括:制品的功能需求,材料的力学性能,制品表面质量,使用环境的温度、湿度等。

对于热塑性复合片材,通常纤维决定结构力学性能,树脂决定结构物理性能,例如拉伸、弯曲、冲击等力学性能;能、热性能(含阻燃)等物理性能以及耐酸、碱、溶剂,吸水,耐候、紫外、等化学性能。

需要注意的是复合材料与金属、塑料某些不同性质,复合材料是一种非均一的多相材料,设计前需要材料性能的实际检验。

产品设计则主要考察:制度、加强筋、圆弧过度、收缩等。

这些参数,有一般的设计通则,制品最好为均匀厚度,变壁厚时最大过渡1:3;加强筋易产生凹痕,需选择适当位置、形状及其尺寸,改进模具设计和成型工艺,可以缓解或消除。

这些通则必须结合实际的制品综合考虑。

此外还要进行必要的模具设计,如脱模角度,温度控制以及排气孔等。

2.模压成型坯料设计是热塑性片材模压成型的核心技术之一,具体反映了研究者对制品结构特征及充模机理的理解,坯料设计的不同,能够引起充模过程中片材流动机理的改变。

合适的坯料设计需要考虑的因素包括:制品的外图4 LFT在汽车中的主要应用图5 LFT在汽车中的应用实例——发动机防护罩国际专利,具有完全自主知识产权。

用此方法,已经能够在中试线上生产轻质片材,并开发出多种规格。

可以预这是一种极具潜力的生产技术。

目前车顶衬里(headliner)仍然是其最典型的应用,其首例工业化应用即为1999年的Azdel Superlite片材用作尼桑Xterra和CrewCab汽车车顶衬里。

2024年玻璃纤维毡热塑性塑料(GMT)市场需求分析

2024年玻璃纤维毡热塑性塑料(GMT)市场需求分析

玻璃纤维毡热塑性塑料(GMT)市场需求分析引言玻璃纤维毡热塑性塑料(Glass Mat Thermoplastic,GMT)是一种用于汽车、建筑和航空航天等领域的高性能复合材料。

GMT材料由玻璃纤维毡和热塑性树脂组成,具有优异的强度、刚度和耐热性能。

本文将对GMT市场需求进行分析。

GMT市场需求分析1. 汽车行业汽车行业是GMT材料市场的主要驱动力之一。

随着环保和能源效率要求的提高,汽车制造商越来越多地采用轻量化材料来减少车辆重量,并提高燃油效率。

GMT材料的优良特性使其成为汽车制造业的理想选择。

它具有优异的强度和刚度,可以在车身结构中起到增强和支撑的作用。

另外,GMT材料的成本相对较低,并且可以通过模压成型大规模生产,满足汽车制造商的需求。

因此,GMT在汽车行业的市场需求将会持续增长。

2. 建筑行业GMT材料在建筑行业中有广泛的应用。

它可以用于制造有特殊要求的建筑材料,如防火门、墙板和屋顶瓦片。

GMT材料具有出色的耐热性能,可以在高温环境下保持结构的完整性。

此外,GMT材料还可以提供良好的隔热性能和抗腐蚀性能,使其成为建筑行业的理想选择。

随着城市化进程的推进和人们对建筑安全和环保要求的提高,GMT材料在建筑行业的市场需求将不断增长。

3. 航空航天行业航空航天行业对材料的要求非常高,需要重量轻、强度高、耐热性好的材料。

GMT材料正好符合这些要求,因此在航空航天行业中有广泛的应用。

它可以用于制造飞机内部结构、座椅和舱壁等部件。

GMT材料的使用可以减轻飞机的重量,并提高飞机的燃油效率和安全性能。

随着全球航空交通的增长和新型飞机的研发,GMT材料在航空航天行业的市场需求将会继续增长。

结论玻璃纤维毡热塑性塑料(GMT)作为一种高性能复合材料,具有广阔的市场前景。

汽车、建筑和航空航天等行业对轻量化、强度高、耐热性好的材料的需求将推动GMT 市场的增长。

未来,随着技术的进一步发展和应用领域的扩大,GMT材料的市场需求有望持续增长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

到一个新的水平,该材料取代金属,可将多个零件组 合成单个部件,形成功能化模块,这不仅可大幅度减 轻重量,而且能减少加工工序、降低模具费用、提高 拼装效率,从而大幅度降低制造成本。 热塑性复合材料作为聚合物基复合材料中的一 种,由于其能回收再生、可重复使用,制品的成型加 工周期短,适合汽车工业所要求的大规模生产的需 要,因此倍受关注,高性能的汽车用热塑性复合材料 不断地开发成功,新的热塑性复合材料零部件也不
KEYWORDS

前言
轻量化是目前汽车发展的重要方向,是汽车节
2高性能热塑性聚合物复合材料 的发展
由于资源与环保的压力,高性能热塑性复合材
能的重要手段。对于目前开发的新能源汽车特别是
电动汽车来说,轻量化具有特别重要的意义。设计 新颖的结构及采用轻质、高强的材料,是实现汽车轻 量化的主要途径。高强度钢、轻质合金(铝、镁合 金)、高性能聚合物基复合材料的出现及性能的不断 优化,为汽车轻量化提供了材料保证。
聚合物基复合材料的应用使汽车“轻量化”上升
料的研究开发日益受到重视。经过长时间的探索,
国外已在高性能热塑性复合材料方面取得了长足的
进步,自美国首先开发成功玻璃纤维毡增强热塑性
复合材料(Glass
Mat Reinforced
Thermoplastics,Gm’)
以来,法国、英国纷纷进行开发,产品已应用于汽车、 建筑、包装及化工等领域,目前,一些新的GMT材料
to
of thermoplastic composites
included in
paper.According
the domestic application,we conclude the mainly
facing
problems of
application
in
autos
of high
perfor・
断在汽车制造中获得应用。
品种及新的制造工艺不断出现。在国内,GMT材料 已由华东理工大学热塑性复合材料研究团队研制成 功,于2004年与江苏双良集团合作,建立了国内第 一条GMT工业化生产线,实现了工业生产,性能达
到国外同类产品的水平。
维增强热塑性复合材料(Long
另外一类重要的高性能热塑性复合材料一长纤 Fiber Reinforced Ther.
of
Chemical
Engineering,East China University of Science and Technology,Shanghai
autos
200237,China)
were
AB,.qTRACT
this
The mechanical performances,developments and applications in
性能上超越GI垤T材料已成为可能。同时,LYr的生
材料低的情况下,也会因为材料价格贵而难以获得 应用。降低材料成本,是拓展应用必须解决的问题。 对于热塑性复合材料,降低成本的途径主要包括: (1)量身定制,形成优化的专用料 根据零部件的功能、对力学性能的要求、使用环 境等技术条件,对材料进行设计,选择合适的增强材 料结构与含量、树脂基体种类,在满足使用要求及安 全要求的情况下,尽量降低原材料及制备工艺成本, 形成特定的材料结构、配方及与之相适应的制备工 艺,避免将较高性能的材料应用于原本要求不高的
验。
(3)掺混回收料 可回收、再生、能重复使用是热塑性复合材料非 常重要的一个性质,将制备及成型加工过程中的边
角废料及使用过程中破损或报废的制品经一定的处
理后(包括去污、破碎等),以一定的添加量添加于热 (2)加入廉价的填充料 随着原油价格的飙升,聚合物树脂的价格在近 塑性复合材料的制备过程中,一方面可提高资源的 利用率,同时可有效降低材料的成本。
量高性能热塑性复合材料零部件。在新推出的车型 中将在座椅骨架、电池托架、保险杠横梁、前端模块、
国内一些研究机构和企业进行了U叩粒料的开 发,一些品种已形成产品并获得应用。华东理工大 学热塑性复合材料研究团队进行了粉末浸渍技术、
熔融浸渍技术及混纤纱技术制备长纤维增强热塑性
复合材料的研究,制得了一系列LFr粒料,形成了可 工业化的生产技术,产品的弯曲和拉伸性能已和GE 公司的LNP相近,而缺口冲击强度则超过LNP。进 行了LFr挤出混炼技术的开发,其中单螺杆挤出混 炼工艺已取得成功,混炼工艺过程为将预热的连续 纤维从料筒上特殊设计的喂料口进入,通过优化的 螺杆结构,使纤维在被熔体牵引人螺杆中的同时,被 切断和分散,制得了纤维分散均匀、浸渍效果良好、
出混炼)、混纤纱浸渍技术【10“2j等。
3热塑性复合材料在汽车制造中 的应用
国外已研制成功的热塑性复合材料汽车零部件 包括:座椅及其骨架、车窗导槽、门内板、保险杠支 架、发动机罩、前端托架、脚踏板、仪表板骨架、导流 板、车厢底板、备胎箱、蓄电池托架、汽车进气歧管。 国内汽车中帕萨特、POLO、宝来、奥迪A6、高尔、高 尔夫、别克凯越、别克GL8商务车等车型已采用大
Hale Waihona Puke moplastics,唧)已成为国外热塑性复合材料的开发
热点,这类材料的强度、模量、冲击韧性、耐热性及耐
万方数据
蠕变性能均明显优于短纤维增强的热塑性复合材

纤维复合材料
20昕年
料,除冲击强度外,其它性能亦与GMT相当。但其
成型加工性能优于GMT,其制品可以通过压缩模
状更为复杂的制品,可以使用GMT边角料和GMT
料可造粒、作模塑料直接模压成型或挤出型材。目 前单螺杆混炼技术已成熟,可以形成工业化生产。
双螺杆挤出的混炼技术已在开发过程中,可望在
型的相应零部件开发,一些高性能的配件已开发成 功,所获得零部件的性能与汽车主机厂的原装零部 件基本相当。
2006年底具备设计工业化生产装置的能力。 法国圣戈班(Saint—Gobain)公司推出了一类由 聚合物纤维和玻璃纤维复合纱编织而成的织物 (Twintex),其产品在热塑性复合材料领域具有广阔 的应用前景。聚合物纤维与玻璃纤维的复合,显著 改善了树脂对增强材料的浸渍效果,使增强纤维与 树脂充分接触,有效地提高了纤维的增强效果。使 用Twintex,可获得力学性能优良的LFr粒料、连续
行李搁板、发动机下体保护罩、导流板、备胎箱、车厢 护板等多个零部件有望应用长纤维增强热塑性复合 材料。供应汽车维修市场的汽车零配件生产商,为 了提高产品质量,亦采用高性能的热塑性复合材料 替代原来所采用的一些低档材料,进行帕萨特、PO—
LO、宝来、奥迪A6、高尔、高尔夫、别克凯越等多种车
纤维可保持较长的长度的岍模塑料,混炼所得材
目前我国废弃塑料的回收已经形成具备相当的
几年来发生了很大的变化,聚丙烯、聚乙烯等聚烯烃 树脂与几年前相比,价格翻了一倍,尼龙、热塑性聚 酯、聚苯乙烯、ABS等聚合物的价格均有不同程度的 上涨,这无疑对降低热塑性复合材料的成本十分不 利。通过在复合材料中加入一些廉价的填料如云 母、碳酸钙、滑石粉、硅灰石、粉煤灰、木粉等,可以降 低材料的成本,成本降低的程度与廉价填料的含量 密切相关,随着填料含量的增加,成本降低的幅度增 大。但填料的加入,将显著影响材料的形态结构、力
列化产品。 一些部件对结构刚度要求较高,希望可以承受
显的下降。 同样,对于含有增强材料的热塑性复合材料,填 料的团聚及其与树脂的不良粘结,也将造成复合材 料强度及韧性的下降,尽管在填料含量较低的情况 下其性能下降的程度可能低于不含增强材料的填充
回收料生产唧材料。由此可见,ⅡTI'必将不断拓
展其应用范围,在一些领域也将逐步挤占GMT材料 的市场。目前,热塑性复合材料的研发、应用发展很 快,一些高性能的热塑性复合材料制备与成型新工
艺及一些新型的品种不断涌现。
塑、注塑、挤塑等工艺成型,可用于成型形状非常复 杂的构件,可望取代一些金属材料和热固性的SMC、 BMC及一系列工程塑料在汽车及其它车辆制造、建 筑、包装、家电、化工等行业中获得应用。LFr材料 已成为热塑性复合材料研究和发展的重要方向。已 开发的LFr浸渍技术包括:溶液浸渍技术、粉体浸渍 技术[卜3}、熔体浸渍技术【4-9j(熔体包覆法、直接挤
第1期 2007年3月
纤维复合材料 FmER
CoⅣⅡ’oIS皿S
No.1

Mar.,2007
产品・应用
高性能热塑性复合材料在汽车领域应用的主要问题
周晓东,王秋峰,翟

(华东理工大学化学工程联合国家重点实验室,上海200237) 摘要介绍了热塑性聚合物复合材料的性能特点、发展趋势及其在汽车领域的应用现状,结合目前国内的实际 情况,分析了高性能热塑性聚合物复合材料在汽车领域应用所面临的主要问题,研究了低成本、高性能、多品种热 塑性复合材料的制备方法及制品表面质量的改善措施。 关键词热塑性复合材料;汽车制造;轻量化;零部件
产成本要低于GMT,成型时的流动性好,能成型形
万方数据
1期
周晓东等:高性能热塑性复合材料在汽车领域应用的主要问题
零部件所带来的浪费,从而可使材料低成本化。要 做到这一点,必须对热塑性复合材料结构与性能的 关系、材料性能的影响因素及其规律有深人的了解, 需要在材料结构与配方设计方面积累丰富的实践经
The
Main Problems
of Extending and Applications of High
Performance
Thermoplastic
Composites in Automobiles
Qiu—feng,ZHAI
Huan
ZHOU Xiao—dong,WANG
(State
Key
I.al】0mtory
学性能及成型加工性能。
水平和规模,各种类型(按品种经过分拣)的回收塑
料均可形成稳定的来源,尽管近期回收塑料的价格
相关文档
最新文档