结构力学动力学5
结构力学5平面桁架讲解课件
桁架在动力荷载作用下的响应
瞬态响应
当桁架受到突然施加的动荷载 时,它会表现出瞬态响应。这 种响应通常包括一个短暂的过 渡过程,随后达到一个稳定的 振动状态。
频域响应
在周期性动荷载作用下,桁架 会表现出频域响应。通过频域 分析,可以研究桁架在不同频 率下的振动行为,并确定其振 幅和相位响应。
阻尼效应
高效的经济性
平面桁架能以较少的材料 用量承受较大的荷载,具 有较高的经济性。
平面桁架的应用场景
桥梁工程
在桥梁工程中,平面桁架常被用 作桥面板的支撑结构,能提供稳
定的支撑和承载能力。
建筑工程
在建筑工程中,平面桁架常被用于 楼层和屋盖的承重结构,以及建筑 物的支撑体系。
机械工程
平面桁架也被广泛应用于机械工程 领域,如起重机的梁架、设备的支 架等,其优良的受力性能使其在这 些场景中发挥重要作用。
桁架内力计算:轴力、剪力与弯矩
轴力计算
轴力是杆件沿轴线方向的拉力或压力。通过截面法可以得到杆件的轴力分布情况。根据杆 件的轴力和截面积,可以进一步计算杆件的应力状态,以评估其承载能力。
剪力计算
剪力是杆件横截面上的切向力。通过截面法可以得到杆件的剪力分布情况。剪力的大小和 方向决定了杆件的剪切变形和剪切应力,对于桁架的剪切稳定性分析至关重要。
05 平面桁架的数值模拟与实验验证
基于有限元的数值模拟方法
有限元法基本原理
有限元法将连续体离散为一系列小单元,通过节点连接,利用变分 原理建立节点力与位移的关系,进而求解整个结构的响应。
线性弹性有限元法
对于线弹性材料,采用线性弹性有限元法,通过刚度矩阵和载荷向 量的组装,求解节点位移。
非线性有限元法
02 平面桁架的静力学分析
结构动力学
L
L
L
1
2l 3 3EI
M1图
1 m
1 2m 2l 3 EI
3
3 EI 4ml 3
4ml 3 T 2 3EI
2
第十章 结构动力学简介
二、单自由度体系的受迫振动
内 蒙 古 农 业 大 学
受迫振动指体系是在干扰力 FP (t )持续作用下的振动。 单自由度体系在动荷载下的振动及相应的振动模型如图示:
3、自由振动和受迫振动
自由振动 结构在没有动荷载作用时,由初速度、初位移所引起的振动。 研究结构的自由振动,可得到结构的自振频率、振型和阻尼参数。
第十章 结构动力学简介
强迫振动 结构在动荷载作用下产生得振动。研究强迫振动,可得到结构的
内 蒙 古 农 业 大 学
动力反应。
§10-2 动力自由度
一、自由度的定义
内 蒙 古 农 业 大 学
一、多自由度体系的自由振动
1 多自由度体系振动方程的建立(以两个自由度为例来说明)
(1) 柔度法
在惯性力作用下的位移等于实际的动位移。(力法)
y2
m2 y
m1 y
21
11
P 1 1
22
P2 1
y1
12
M 1图
M 2图
第十章 结构动力学简介
t
无阻尼y- t曲线
第十章 结构动力学简介
②阻尼对振幅的影响.
内 蒙 古 农 业 大 学
振幅ae- ξω t 随时间衰减,相邻两个振幅的比
y k 1 e T 常数 yk
振幅按等比级数递减.
经过一个周期后,相邻两振幅yk和yk+1的比值的对数为:
结构动力学克拉夫
结构动力学克拉夫结构动力学是一门研究结构受力、振动和变形的学科。
它是结构力学的一个重要分支,主要研究结构的静力学和动力学行为。
结构动力学的研究可以帮助工程师设计和分析结构的稳定性,预测结构的振动响应,以及提高结构的动力性能。
结构动力学的研究对象是各种类型的结构体系,包括建筑物、桥梁、塔类结构、航空航天器、汽车等。
这些结构在使用过程中会受到各种外部荷载的作用,会发生变形和振动,甚至会发生破坏。
因此,必须通过结构动力学的研究来评估结构的受力情况,以便保证结构的安全和可靠性。
结构动力学的理论基础是力学、振动学和数学分析等。
力学用来描述结构的受力情况,振动学用来描述结构的振动响应,而数学分析则是结构动力学理论的基本工具。
在结构动力学的研究中,常用的数学方法包括牛顿第二定律、拉格朗日方程、哈密顿原理等。
在结构动力学的研究中,需要对结构的质量、刚度和阻尼进行建模。
质量是指结构对外界力的响应情况,通常可以用结构的质量矩阵来描述;刚度是指结构对位移的响应情况,通常可以用结构的刚度矩阵来描述;阻尼是指结构损耗能量的能力,通常可以用结构的阻尼矩阵来描述。
通过对这些参数的建模,可以得到结构的动力学方程。
结构动力学的研究包括两个主要方面:一是结构的自由振动,即结构在没有外界荷载作用下的振动行为;二是结构的强迫振动,即结构在受到外界荷载作用下的振动行为。
通过对这两方面的研究,可以得到结构的振动特性和响应情况。
总的来说,结构动力学是一门重要的学科,它通过对结构受力、振动和变形的研究,可以帮助工程师设计和分析各种类型的结构体系。
同时,结构动力学也为其他学科的研究提供了基础和支持,促进了工程技术的发展和进步。
结构动力学
结构动力学
结构动力学是一门应用物理和数学原理研究动态可塑结构行为的
工程学科。
它不仅涉及到结构力学中的结构响应,而且还涉及到动力
学中的系统性研究。
目标是了解和计算结构受外力作用时的运动行为,预测出结构所受冲击能量,强度和变形情况。
例如,对于一艘平衡船,结构动力学可以帮助我们发现哪些部件会受到激烈的冲击力,以及船
体什么时候会趋向平衡。
为了理解结构动力学,我们需要了解力学。
力学是一种使用物理
学原理的工程学科,主要关注作用在物体上的各种力和它们之间的作用。
例如,重力和导热力是两个典型的力,它们混斗在一起影响物体
的运动。
结构动力学是将力学概念应用于特定可塑结构上,用来分析结构
随时间改变的行为特性。
其中,最常见的类型包括结构稳定性和可塑性,它们可以被应用于从最小的桥梁到最大的建筑结构。
在更深层次上,结构动力学考察不同刚度结构之间的行为,并且考察这些行为如
何通过各种力学和外力来影响复杂系统。
此外,结构动力学还可以用来检查建筑结构的设计是否正确。
它
可以检查系统中机械强度,稳定性和结构完整性,以免因结构设计不
当而出现过分的变形和破坏。
总之,结构动力学是一门复杂的工程学科,研究的内容涉及到力学,动力学,计算机技术和材料科学等多个领域。
它被广泛用于建筑,船舶,飞机,汽车,桥梁,机器人和其他复杂结构的设计与研究中。
结构动力学 结构力学分支
结构动力学结构力学分支
结构力学是应用力学原理研究多体建筑物结构动态变形、稳定性、破
坏机制等重要问题的学科。
从理论上讲,结构力学可被分为以下几个
分支:
(1)绝热动力学:研究在影响力产生热量的变形过程中,能量平衡方程,热导率温度关系等问题。
(2)动力力学:研究分析结构振动反应与模态特性,以及结构在突发
类和碰撞运动时的变形过程。
(3)刚体力学:研究力学分析旋转体的动力响应及弹性结构的变形、
局部应力分布与项势。
(4)材料力学:研究结构力学对各种材料的影响。
包括材料弹性模量、材料弹塑性行为、材料持续性及结构体之间动力相互作用。
(5)疲劳力学:研究建筑物结构产生疲劳损坏的机理,主要包括循环
加载、应力控制、结构模式和材料疲劳行为等。
(6)结构动力学:研究结构在力学和刚体作用下的运动方程和动力行为。
(7)安全可靠性工程:涉及建筑结构的可靠性,包括结构变形过程中的可靠性设计、抗震设计和生命安全设计等理论。
(8)结构优化:采用计算机技术,利用数学模型求解结构变形特性和参数最优化,实现结构设计的优化,从而得到更为有效的结构。
结构力学5三铰拱课件
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件
目
CONTENCT
录
• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动
结构动力学
第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
结构动力学课件PPT
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
结构力学课后答案第10章结构动力学
10-34试说明用振型分解法求解多自由度体系动力响应的基本思想,这一方法是利用了振动体系的何种特性
10-35试用振型分解法计算题10-32。
解:
刚度矩阵 质量矩阵
其中
由刚度矩阵和质量矩阵可得:
则 应满足方程
其稳态响应为:
同理:
显然最大位移
10-36试用振型分解法计算题10-31结构作有阻尼强迫振动时,质量处的最大位移响应。已知阻尼比ξ1=ξ2=。
得振型方程:
)
,令
,由频率方程D=0
解得: ,
,
(c)
解:
图 图
(1) , ,
(2)振型方程
。
令 ,频率方程为:
(3)当 时,设
当 时,设
绘出振型图如下:
第一振型 第二振型
(d)
解:
#
图 图
频率方程为:
取 代入整理得:
其中
~
振型方程为:
将 代入(a)式中的第一个方程中,得:
绘出振型图如下:
第一振型 第二振型
\
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106Nm2,t1=,FP0=8×104N。
(a)
设 ,
;
使 ,则
(2)
设
如果使速度响应最大,则 最大,设 ,显然要求 最小。使: 得 。
(3)
令 显然要求 最小。
则 解的:
结构力学第五版教学大纲
结构力学第五版教学大纲一、课程简介《结构力学》是土木工程专业本科生必修的一门核心课程,主要介绍结构力学的基本理论和方法,包括静力学原理、梁的基本理论、桁架的理论与分析,以及三力平衡、虚功原理、原初定理和接触问题等。
《结构力学》的学习是土木工程专业学生学习相关课程的基础,因此,本课程的教学内容和方法的选择,对于培养学生良好的学习习惯和能力,以及提高其综合运用知识和解决实际问题的能力具有重要的意义。
二、教学目标1.掌握结构力学中梁的运动学和基本理论。
2.了解桁架的理论和分析方法。
3.掌握三力平衡、虚功原理、原初定理和接触问题的基本概念、原理和方法。
4.培养学生科学分析问题和解决问题的能力。
5.培养学生研究思考、独立学习的能力。
三、教学内容第一章静力学原理1.静力学的基本概念。
2.力的平衡条件。
3.几何性质的基本定理。
4.重心和质心的概念和计算。
5.弯矩图和剪力图的作图方法。
6.预应力混凝土中的静力学问题。
第二章梁的基本理论1.梁的偏转与挠度。
2.梁的应力状态。
3.线弹性力学的基本定理与方法。
4.梁的自由振动和强迫振动。
5.梁的稳定性分析。
第三章桁架的理论1.应力和刚度。
2.单层和多层桁架的计算方法。
3.布尔定理和懒惰勾股定理。
4.摆杆和折杆的分析和计算。
第四章三力平衡、虚功原理、原初定理和接触问题1.三力平衡的原理和应用。
2.虚功原理的基本概念和应用。
3.原初定理的基本概念和应用。
4.接触问题的分析和计算。
四、教学方法1.讲授教学法。
2.实例教学法。
3.讨论教学法。
4.自学教学法。
五、教学进度教学内容学时安排第一章4第二章13第三章8第四章5复习与考试4六、教材及辅导书主教材:《结构力学第五版》,刘罡、冯洁主编。
参考书:1.《结构力学课件讲义》。
2.《结构力学》,赵文超,沈君骅著,科学出版社。
3.《结构力学》,李承增等著,高等教育出版社。
七、考核方式期末考试:60% 平时成绩:40%。
结构力学中的动力学分析研究
结构力学中的动力学分析研究动力学是结构力学中的重要研究领域之一,主要研究结构在外部力的作用下的运动和振动规律。
动力学分析对于预测结构的响应和安全性评估具有重要意义。
本文将从动力学分析的基本理论、数值模拟方法以及应用领域等方面进行探讨。
1.基本理论动力学分析的基本理论是基于牛顿第二定律,根据结构物体上各个部分的质量、惯性、位移和力的关系进行研究。
基于质点的动力学理论可以方便地应用于刚体和弹性结构的动力学分析。
而对于柔性结构来说,需要引入振动理论来描述结构的运动性质。
2.数值模拟方法动力学分析通常是通过数值模拟方法来实现的。
常用的数值模拟方法包括有限元方法、边界元方法、模态超级位置法等。
其中,有限元方法是最为常用的方法之一,它可以将结构分割成有限数量的单元,通过离散化的力学方程求解结构的动力学响应。
边界元方法则针对无限域的问题,通过模拟结构表面的运动来计算结构的响应。
模态超级位置法则是利用小振动的结构模态进行求解。
3.应用领域动力学分析在结构工程中有广泛的应用。
它可以用于评估结构在自然灾害(如地震、风灾)等外部力作用下的安全性能。
动力学分析还可以用于分析机械系统、飞行器和航天器的动力学行为。
此外,动力学分析还可用于优化结构设计、评估材料的动态性能以及模拟结构的振动响应等方面。
4.动力学分析的挑战与发展尽管动力学分析在结构力学中具有重要意义,但其研究也面临许多挑战。
首先是复杂结构的动力学分析问题,如非线性振动和混合动力学问题,并需要开发相应的数值模拟方法。
其次,对于大规模结构的动力学分析,需要考虑计算效率和计算精度的平衡。
此外,结构的材料非线性和边界条件非线性等因素也是动力学分析中需要考虑的问题。
未来,随着计算能力的提升和数值方法的发展,动力学分析将更好地满足工程实践的需求。
总之,动力学分析在结构力学中起着重要的作用,它通过数值模拟方法研究结构在外部力作用下的运动和振动规律,并应用于结构的安全性评估、设计优化和动态响应预测等方面。
李廉锟《结构力学》(第5版)(下册)课后习题-第12章 结构动力学【圣才出品】
第12章 结构动力学复习思考题1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么?答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载;动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。
主要差别在于是否考虑惯性力的影响。
(2)计算上的差别:①计算式中是否加入惯性力的数值;②静力计算时,结构处于平衡状态,荷载的大小、方向、作用点及由它引起的结构的内力、位移等各种量值都不随时间而变化;而动力计算时,结构将发生振动,各种量值均随时间而变化;③动力分析方法常与荷载类型有关,而静力分析方法与荷载类型无关。
2.何谓结构的振动自由度?它与机动分析中的自由度有何异同?如何确定结构的振动自由度?答:(1)结构振动的自由度是指结构在弹性变形过程中确定全部质点位置所需的独立参数的数目。
(2)机动分析中的自由度简称静力自由度(又称动力自由度)。
①两者相同点:在数学意义上是一致的,都是强调体系空间质量所需的几何参量的个数。
②不同点:静力自由度是机构移动即刚体位移,排除了各个组成部件的变形运动;而动力自由度是变形位移导致机构位置改变,即体系变形过程质量的运动自由度。
(3)确定结构振动自由度的两种方法:①直接由确定质点位置所需的独立参数数目来判定;②加入最少数量的链杆以限制刚架上所有质点的位置,则该刚架的振动自由度数目即等于所加入链杆的数目。
3.建立振动微分方程有哪两种基本方法?每种方法所建立的方程代表什么条件?答:(1)建立振动微分方程的两种基本方法:刚度法和柔度法。
(2)刚度法代表力的平衡条件,柔度法代表变形协调条件。
4.为什么说结构的自振频率和周期是结构的固有性质?怎样改变它们?答:(1)自振频率和周期是结构的固有性质的原因:结构的自振频率和周期只取决于结构自身的质量和刚度,反映着结构固有的动力特性,而外部干扰力只能影响振幅和初相角的大小并不能改变结构的自振频率。
《结构力学》结构动力学(1)
结构的振动是由两部分组成,一部分是由初位移引起,表现为余 弦规律;另一部分是由初速度引起,表现为正弦规律(图14-6a、 b)。
y
(a)
y0
o
t
(b)
y
y0
o
t
(c)
y
T=
y0
a
a
o
a
a
t
图14-6
若令
y0 a sin ,
y0 a cos
振幅和相位角
a
y02
y02
2
tan y0
y0
则有
图14-2
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关。如图14-3所示的体系。
图14-3
§14-3 单自由度结构的自由振动
自由振动是指结构在初始干扰(初位移或初速度)下开始振动, 而在振动过程中不受外部干扰力作用的那种振动。如图14-4所示。
原有平衡位置
强迫偏离位置
图14-4
和相位角 。
(2) 自振频率与质量的平方根成反比,质量越大,频率越小;自 振频率与刚度的平方根成正比,刚度越大,频率越大;要改变结 构的自振频率,只有从改变结构的质量或刚度着手。
例14-1 图14-7所示三种支承情况的梁,其跨度都为l,且EI都相 等,在中点有集中质量m。当不考虑梁的自重时,试比较这三者 的自振频率。
§14-1 概 述
1. 结构动力计算的特点 (1) 荷载、约束力、内力、位移等随时间变化,都是时间的函数。 (2) 建立平衡方程时要考虑质量的惯性力。
2. 动荷载分类
(1) 周期荷载 (2) 冲击荷载 (3) 随机荷载
3.结构动力计算的内容
(1) 确定结构的动力特性 即结构本身的自振频率、振型和阻尼参数。
土木工程八大力学
土木工程八大力学
土木工程的八大力学包括:力学、振动学、结构力学、材料力学、动
力学、土力学、流体力学和应力分析。
1、力学:是研究弹力学和力学原理的科学,研究物体在外力作用下
如何变形、分布及其变形机理。
2、振动学:是研究机械系统运动的科学,包括振动系统的运动特性、振动与振动的不稳定性行为以及振动的解析解法。
3、结构力学:是以力学原理和有关的数学方法研究结构的设计,分
析和建造的一门科学。
4、材料力学:是研究材料的力学特性的科学,包括材料的强度、变
形和疲劳等性质。
5、动力学:是研究构件及其组合体在有力作用下的运动规律的科学,主要是运动学和动力学的分支学科。
6、土力学:是研究土体的力学特性的学科,包括土体的物理特性、
流变性及其对荷载变化的响应等。
7、流体力学:是研究流体的运动规律和流体中变形现象的科学,包
括气体和液体在重力、表面张力、粘性及其他力作用下的运动规律。
8、应力分析:是研究不同材料的力学参数和强度表现以及建筑物结
构在受力作用时的应力分布及其特性的科学。
结构力学课件—结构动力学
中南大学
退出
返回
17:04
§14-1 概述
二、动力荷载的分类
1. 周期荷载
结构力学
周期荷载—— 随时间周期地变化的荷载。其中最简单、最重要的是 简谐荷载(按弦或余弦函数规律变化)。 F
r
m
F (t) F t
θ t
o
简谐荷载
l/ 2
l/ 2
非简谐性周期荷载
F (t)
例:打桩时落锤撞击所产生的荷载。
o
退出
返回
17:04
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11
即
my k11 y 0
同刚度法所得方程
此二阶线性常系数齐次微分方程的通解为:
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
产生自由振动的原因:结构在振动初始时刻受到干扰。 初始干扰的形式: (1)结构具有初始位移 m (2)结构具有初始速度 Δ st 静平衡位置 (3)上述二者同时存在
yd
结构力学
自由振动:结构在振动进程中不受外部干扰力作用的振动形式。
k11
m
FS (t )
yd
W
FI ( t )
1. 不考虑阻尼时的自由振动
《结构力学》第5章:力法
03
对边界条件敏感
力法对边界条件的处理较为敏感, 边界条件的微小变化可能导致计 算结果的显著不同。
适用范围讨论
适用于线弹性结构
01
力法适用于线弹性结构,即结构在荷载作用下发生的
变形与荷载成正比,且卸载后能够完全恢复。
适用于静定和超静定结构
02 力法既适用于静定结构,也适用于超静定结构,但超
静定结构需要引入多余未知力和变形协调条件。
在传动系统的力学分析中,采用力法计算各部件的受力情况,
确保传动系统的正常运转。
案例分析与启示
力法应用广泛性
力法计算精确性
通过以上案例可以看出,力法在桥梁、建 筑和机械工程等领域具有广泛的应用价值 。
力法作为一种精确的计算方法,在解决超 静定问题方面具有显著优势。
力法在工程实践中的局限性
对未来研究的启示
《结构力学》第 力法典型方程及应用 • 力法计算过程与实例分析 • 力法优缺点及适用范围 • 力法在工程实践中应用 • 力法学习建议与拓展资源
01 力法基本概念与原理
力法定义及作用
力法是一种求解超静定结构的方法, 通过引入多余未知力,将超静定问题 转化为静定问题进行求解。
桁架结构应用
桁架结构由杆件组成,通过力法可以求解桁架结构中的多余未知力,进而分析 桁架的稳定性和承载能力。
组合结构应用
组合结构由不同材料或不同形式的构件组成,通过力法可以分析组合结构的内 力和变形,为结构设计提供优化建议。
复杂结构简化与力法应用
复杂结构简化
对于复杂结构,可以通过合理简化为静定结构或简单超静定结构,进而应用力法求解。
适用于简单和规则结构
03
对于简单和规则结构,力法能够较为方便地求解出结
结构力学应用-结构动力学
(小阻尼) 令
有阻尼的自振频率
1
2
y(t ) e
t
y0 y0 ( y0 cos t sin t )
*写成
y(t ) b e
2 0
t
sin(t )
(14-12)
y0 y0 2 其中 b y ( )
柔度法(力法)
MY KY 0 MY Y 0
10、按柔度法求解
振型方程: ([ ][ 2 [ 1 M ]){Y } 00} ([ I ] M ] ][ [ I ]){Y } { 2 频率(特征)方程
D [ ][ M ] [ I ] 0
y0 tg y0 y0
位移-时间曲线如图示:
阻尼比——阻尼的基本参数: a.阻尼对频率(周期)的影响
k
2m
1 2
T T 1 2 T
0.2
T T
b、阻尼对振幅的影响
be
t
——振幅随时间逐渐衰减
11m1
1
12 m2
(k )
0 0
(14 63)
{Y }
(k )
Y1 Y2
(k )
11m1 k 12 m2
12 m2
k2
(k=1、2)
结构的刚度和质量分布 ——对称 其主振型 ——对称、反对称 计算自振频率: ——分别就正、反对称情况 ——取半跨结构计算 ——两个单自由度问题计算 显然,振型分别为: [1 1]T、[1 -1]T
1
0.2,
yn ln 2 j yn j 相隔j个周期: 1