(完整版)高中数学例题:秦九韶算法
(完整版)高中数学例题:秦九韶算法
高中数学例题:秦九韶算法例4.利用秦九韶算法求2345()10.50.166630.041680.00835f x x x x x x =+++++在x=0.2时的值.写出详细计算过程.【思路点拨】秦九韶算法是我国南宋的数学家秦九韶首先提出来的.(1)特点:它通过一次式的反复计算,逐步计算高次多项式的求值问题,即将一个n 次多项式的求值问题,归结为重复计算n 个一次式1()i i a x a -+.即1210()((()))n n n f x a x a x a x a x a --=++++L L .(2)具体方法如下:已知一个一元n 次多项式1110()n n n n f x a x a x a x a --=++++L 0.当x=x 0,我们可按顺序一项一项地计算,然后相加,求得0()f x .【答案】1.2214024【解析】v 0=0.00835,v 1=v 0x+0.04168=0.00835×0.2+0.04168=0.043 35,v 2=v 1x+0.16663=0.04335×0.2+0.16663=0.1753,v 3=v 2x+0.5=0.1753×0.2+0.5=0.53506,v 4=v 3x+1=0.53506×0.2+1=1.107012,v 5=v 4x+1=1.107012×0.2+1=1.2214024.【总结升华】秦九韶算法的原理是01(1,2,3,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩L .在运用秦九韶算法进行计算时,应注意每一步的运算结果,像这种一环扣一环的运算,如果错一步,则下一步,一直到最后一步就会全部算错.同学们在计算这种题时应格外小心.举一反三:【变式1】用秦九韶算法求多项式764=++++当x=2时f x x x x x()85321的值.【答案】1397【解析】765432=++⋅++⋅+⋅++=+++++++ ()85030021((((((85)0)3)0)0)2)1 f x x x x x x x x x x x x x x x .v0=8,v1=8×2+5=21,v2=21×2 4-0=42,v3=42×2 4-3=87,v4=87×2+0=174,v5=174×2+0=348,v6=348×2+2=698,v7=698×2+1=1397,所以,当x=2时,多项式的值为1397.【变式2】用秦九韶算法计算多项式65432f x x x x x x x=++++++()654327在x=0.4时的值时,需做加法和乘法的次数和是()A.10 B.9 C.12 D.8【答案】C【解析】()(((((65)4)3)2)1)7=++++++.f x x x x x x x∴加法6次,乘法6次,∴6+6=12(次),故选C.。
1.3 案例2 秦九韶算法
((an x an1 ) x an 2 ) x a1 ) x a0
当知道了x的值后该如何求多项式的值?
f ( x ) ((an x an1 ) x an 2 ) x a1 ) x a0
要求多项式的值,应该先算最内层的一次多 项式的值,即
所以,当x = 2时,多项式的值等于-41.
高中数学备课组
练习: 已知多项式f(x)=x5+5x4+10x3+10x2+5x+1 用秦九韶算法求这个多项式当 x= -2 时的值.
f(-2)= -1.
高中数学备课组
秦九韶算法的程序框图:
开始 输入n, an, x的值 v=an
v 0 a n v k v k 1 x an k ( k 1,2, , n)
f (5)=55+54+53+52+5+1 =5×(54+53+52+5+1)+1
=5×(5×(53+52+5 +1)+1 )+1
=5×(5×( 5× (52+5 +1)+1 )+1 )+1
=5×(5×(5× (5 × (5 +1 ) +1 )+1 )+1 )+1
两种算法中各用了几次乘法运算? 几次加法运算?
f ( x ) an x n an1 x n1 a1 x a0 (an x n1 an1 x n 2 a1 ) x a0
(( an x n 2 an1 x n 3 a2 ) x a1 ) x a0
高中数学备课组
v1 an x an1
然后,由内到外逐层计算一次多项式的值,即
高中数学备课组
v 3 v 2 x an 3
v n v n 1 x a 0
高中数学必修3公开课课件 1.3.2算法案例--秦九韶算法
10
课后再做好复习巩固. 谢谢!
再见!
新疆 王新敞
奎屯
王新敞 特级教师 源头学子小屋 wxckt@ 新疆奎屯
再统计一下计算当时的值时需要的计算次数,可 以得出仅需4次乘法和5次加法运算即可得出结果。显 然少了6次乘法运算。
这种算法就叫秦九韶算法。
3
秦九韶算法
把一个多项式
f (x) an xn an1xn1 an2 xn2 a1x a0
改写为:
f (x) an xn an1xn1 an2 xn2 a1x a0 (an xn1 an1xn2 an2 xn3 a1)x a0 ((an xn2 an1xn3 a2 )x a1)x a0
·2007·
11
案例2 秦九韶算法
2019年5月6日星期一
1
问题提出
1.辗转相除法和更相减损术,是求两个正整数 的最大公约数的优秀算法,我们将算法转化为程序 后,就可以由计算机来执行运算,实现了古代数学 与现代信息技术的完美结合.
2.对于求n次多项式的值,在我国古代数学中 也有一个优秀算法,即秦九韶算法,本节对这个算 法作些了解和探究.
=……
( ((an x an1)x an2 )x a1) a0
4
秦九韶算法
对于f(x)=(…((anx+an-1)x+ an-2)x+…+a1)x+a0, 由内向外逐层计算一次多项式的值,其算法步骤:
第一步,计算v1=anx+an-1. 第二步,计算v2=v1x+an-2. 第三步,计算v3=v2x+an-3.
1.3 算法案例2-秦九韶算法
2. 利用秦九韶算法求n次多项式f(x)的值的步骤:
先把n次多项式f(x)改写成如下形式: f(x)=(…((anx+an-1)x+an-2)x+…+a1)x+a0. 再按照从内到外的顺序 , 依次计算一次多项 式的值, 即 v1=anx+an-1 ;
注意: 用秦九韶算法
计 算 n 次 多 项 式 f(x) 的 值时,一共需要n次乘法 运算和n次加法运算.
解: f(x)=((((0.83x+0.41)x+0.16)x+0.33)x+0.5)x+1
当x=5时, v1=0.83×5+0.41=4.56; v2=4.56×5+0.16=22.96; v3=22.96×5+0.33=115.13; v4=115.13×5+0.5=576.15; v5=576.15×5+1=2881.75. 所以, f(5)=2881.75.
作业: P48 A组 T2
思考2:阅读下列程序,说明它是解决什么的 问题算法?
INPUT “x=”;a n=0 y=0 WHLE n<5 y=y+(n+1)*a∧n n=n+1 WEND PRINT y END
求多项式f(x)=1+2x+3x2+4x3+5x5在x=a时的值.
当x=5时, v1=5×5+2=27; v2=27×5+3.5=138.5; v3=138.5×5-2.6=689.9; v4=689.9×5+1.7=3451.2; v5=3451.2×5-0.8=17255.2. 所以, f(5)=17255.2.
2
算法案例二--秦九韶算法
作业:
1、课本 P48 A 组第 2 题。 2、用秦九韶算法计算 5 次多项式 f ( x) 2 x5 x4 10 x3 10x2 3x 1 , 当 x 2 时的值。 3、用秦九韶算法计算多项式 f ( x) x6 12x5 60x4 160x3 240x2 192x 64 , 当 x 2 时的值.
第二步: 计算 (an x an1 ) x an2 的值, 可以改写为 v1 x an 2 , 将 v1 x an 2 的值赋给一个变量 v 2 ;
依次类推,即每一步的计算之后都赋予一个新值 vk ,即从最内层的括号到 最外层的括号的值依次赋予变量 v1 , v2 ,, vn .第 n 步所求值 vn vn1 x a0 即为所求多项式的值。
对该多项式按下面的方式进行改写:
f ( x) an x n an1 x n1 a1 x a0 (an x n1 an1 x n2 a1 ) x a0 (( an x n2 an1 x n3 a2 ) x a1 ) x a0
n(n 1) 次乘法运算和 n 次加法运算,减少为 n 次 2
乘法运算和 n 次加法运算,大大提高了运算效率.
三、秦九韶算法应用:
例一、 已知一个 5 次多项式 f ( x) 5x 5 2x 4 3.5x 3 2.6x 2 1.7 x 0.8 , 用秦九韶算法求这个多项式当 x 5 时的值。
10
变形后 x 的“系数” 2 5
25
21
105
108
540
534
2670
2677
思考:如何描述上述计算过程?
结论: 将变形前 x 的第 1 个系数乘以 x 的值, 加上变形前第 2 个系数,得到一个新的系数;将此系数继续乘以 x 的值,再 加上变形前第 3 个系数,又得到一个新的系数;继续对新系 数做上面的变换,直到与变形前最后一个系数相加,得到一 个新系数为止,这个系数即为所求的多项式的值。
2020学年高中数学第一章算法初步1.3.2秦九韶算法练习(含解析)新人教A版必修3(最新整理)
第9课时秦九韶算法知识点一秦九韶算法的原理1.用秦九韶算法计算f(x)=6x5-4x4+x3-2x2-9x当x=x0时的值,需要加法(或减法)与乘法运算的次数分别为( )A.5,4 B.5,5 C.4,4 D.4,5答案D解析n次多项式需进行n次乘法;若各项均不为零,则需进行n次加法,缺一项就减少一次加法运算.f(x)中无常数项,故加法次数要减少一次,为5-1=4.故选D.2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是( )A.-4 B.-1 C.5 D.6答案D解析n=4,a4=2,a3=-3,a2=1,a1=2,a0=1,由秦九韶算法的递推关系式得v0=2,v1=v0x+a3=-5,v2=v1x+a2=6.3.用秦九韶算法求多项式f(x)=7x6+6x5+3x2+2当x=4时的值时,先算的是( )A.4×4=16 B.7×4=28C.4×4×4=64 D.7×4+6=34答案D解析因为f(x)=a n x n+a n-1x n-1+…+a1x+a0=(…((a n x+a n-1)x+a n-2)x+…+a1)x +a0,所以用秦九韶算法求多项式f(x)=7x6+6x5+3x2+2当x=4时的值时,先算的是7×4+6=34.4.用秦九韶算法求多项式f(x)=x4-2x3+3x2-7x-5,当x=4时的值,给出如下数据.①0 ②2 ③11 ④37 ⑤143其中运算过程中(包括最终结果)会出现的数有________.(只填序号)答案②③④⑤解析将多项式改写成f(x)=(((x-2)x+3)x-7)x-5.v=1;v=1×4-2=2;1v=2×4+3=11;2v=11×4-7=37;3v=37×4-5=143.4知识点二利用秦九韶算法计算多项式的值5.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,所以有v=7;v=7×3+6=27;1v=27×3+5=86;2v=86×3+4=262;3v=262×3+3=789;4v=789×3+2=2369;5v=2369×3+1=7108;6v=7108×3=21324.7故当x=3时,多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x的值为21324.易错点利用秦九韶算法求含空项的n次多项式的值时易出现错误6.已知f(x)=3x4+2x2+4x+2,利用秦九韶算法求f(-2)的值.易错分析由于没有抓住秦九韶算法原理的关键,没有正确改写多项式并使每一次计算只含有x的一次项而致误.正解f(x)=3x4+0·x3+2x2+4x+2=(((3x+0)x+2)x+4)x+2,v=3×(-2)+0=-6;1v=-6×(-2)+2=14;2v=14×(-2)+4=-24;3v=-24×(-2)+2=50.4故f(-2)=50.一、选择题1.用秦九韶算法计算多项式f(x)=3x6+9x5+5x4+6x3+12x2+8x-7在x=2时的值,需要做乘法和加法的次数分别是( )A.5,5 B.5,6 C.6,6 D.6,5答案C解析因为f(x)的最高次数是6,所以需要做乘法和加法的次数都是6.2.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时,v4的值为()A.-57 B.220 C.-845 D.3392答案B解析v0=3,v1=3×(-4)+5=-7,v=-7×(-4)+6=34,2v=34×(-4)+79=-57,3v=-57×(-4)-8=220.43.已知多项式f(x)=4x5+3x4+2x3-x2-x-错误!,用秦九韶算法求f(-2)等于()A.-错误! B.错误! C.错误! D.-错误!答案A解析∵f(x)=((((4x+3)x+2)x-1)x-1)x-错误!,∴f(-2)=((((4×(-2)+3)×(-2)+2)×(-2)-1)×(-2)-1)×(-2)-错误!=-错误!.4.秦九韶算法的先进性主要体现在减少运算次数,下列说法正确的是( )A.可以减少加法运算次数B.可以减少乘法运算次数C.同时减少加法和乘法的运算次数D.加法次数和乘法次数都有可能减少答案B解析秦九韶算法可以把至多n n+12次乘法运算减少为至多n次乘法运算.加法运算次数不变.5.用秦九韶算法计算函数y=2x3-3x2+2x-1在x=2时的函数值,则下列各式正确的是()A.v0=2 B.v0=1 C.v1=4 D.v2=7答案A解析根据秦九韶算法,把多项式改写成y=((2x-3)x+2)x-1,从内到外依次计算:v0=2,v1=2×2-3=1,v2=1×2+2=4,v3=4×2-1=7.二、填空题6.已知f(x)=x5+2x3+3x2+x+1,用秦九韶算法计算x=3时的值,v3的值为________.答案36解析v0=1,v1=1×3+0=3,v2=3×3+2=11,v3=11×3+3=36,….7.用秦九韶算法求多项式f(x)=5x5+3x3+2x2+10,当x=3时f(x)的值为________.答案1324解析f(x)=5x5+0x4+3x3+2x2+0x+10=((((5x+0)x+3)x+2)x+0)x+10=((((5x)x+3)x+2)x)x+10,当x=3时,有v0=5,v1=5×3=15,v2=15×3+3=48,v3=48×3+2=146,v4=146×3=438,v5=438×3+10=1324,∴f(3)=1324.8.用秦九韶算法求多项式f(x)=1-5x-8x2+10x3+6x4+12x5+3x6当x=-4时的值时,v0,v1,v2,v3,v4中最大值与最小值的差是________.答案62解析多项式变形为f(x)=3x6+12x5+6x4+10x3-8x2-5x+1=(((((3x+12)x+6)x+10)x-8)x-5)x+1,v=3,v=3×(-4)+12=0,1v=0×(-4)+6=6,2v=6×(-4)+10=-14,3v=-14×(-4)-8=48,4∴v4最大,v3最小.∴v4-v3=48-(-14)=62.三、解答题9.利用秦九韶算法求多项式f(x)=3x6+12x5+8x4-3.5x3+7.2x2+5x-13,当x=6时的值,写出详细步骤.解f(x)=(((((3x+12)x+8)x-3.5)x+7.2)x+5)x-13,v=3,v=v0×6+12=30,1v=v1×6+8=188,2v=v2×6-3.5=1124.5,3v=v3×6+7.2=6754.2,4v=v4×6+5=40530.2,5v=v5×6-13=243168.2.6f(6)=243168.2.10.用秦九韶算法计算多项式f(x)=5x7+x6-x3+x+3当x=-1时的值,并判断f(x)在区间[-1,0]内有没有零点.解∵f(x)=5x7+x6-x3+x+3=((((((5x+1)x+0)x+0)x-1)x+0)x+1)x+3,∴当x=-1时,v0=5,v=5×(-1)+1=-4,1v=-4×(-1)+0=4,2v=4×(-1)+0=-4,3v=-4×(-1)-1=3,4v=3×(-1)+0=-3,5v=-3×(-1)+1=4,6v=4×(-1)+3=-1,7∴f(-1)=-1.又f(0)=3,∴f(0)·f(-1)<0,由零点存在定理,知f(x)在区间[-1,0]内有零点.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
高中数学_算法案例
算法案例知识图谱算法案例知识精讲一.更相减损术应用:求两个整数的最大公约数的算法更相减损术的步骤:1.任意给定两个正整数;判断它们是否都是偶数.若是,则用2约简;若不是则执行第二步.2.以两个数中较大的数减去较小的数,以差数和较小的数构成一对新的数,对这一对数再用大数减小数,以同样的操作一直做下去,直到产生一对相等的数为止,则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数.等值算法:用“更相减损术”设计出来的算法求最大公约数的算法称为“等值算法”,用等值算法可以求任意两个正整数的最大公约数.说明:《九章算法》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数.以具体的例子来说明更相减损术求最大公约数的原理:以求117和182的最大公约数为例:,,,,,,,,(117182)(11765)(6552)(5213)(1339)(1326)(1313)→→→→→→每次操作后得到的两个数与前两个数的最大公约数相同,而且逐渐减少,故总能得到相等的两个数,即为所求的最大公约数.二.辗转相除法又称欧几里得算法,是由欧几里得在公元前300年左右首先提出来的求两个数的最大公约数的算法.辗转相除法的步骤:对于给定的两个数,以其中较大的数除以较小的数得到一个余数,将较小的数与余数看成一对新的数,重复上面的步骤,直到余数为零为止,此时上一步中较小的数即为所求的最大公约数.以求117和182的最大公约数为例:,,,,,,故13即为所求.→→→→(117182)(11765)(6552)(5213)(130)三.秦九韶算法—求多项式的值的算法应用:快速的求解对于任意一个n次的多项式在某点所取到的值.秦九韶算法:已知一个多项式函数,计算多项式在某点处的函数值的一种算法,是我国古代数学家秦九韶提出的,具体如下.对任意一个n 元多项式1110()n n n n f x a x a x a x a --=++++ ,改写成如下形式:12110()()n n n n f x a x a x a x a ---=++++ 231210(())n n n n a x a x a x a x a ---=+++++ = 1210((()))n n n a x a x a x a x a --=+++++ ,求多项式的值时,先计算最内层括号内的一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+, ,10n n v v x a -=+.这样,求一个n 次多项式的值,就转化为求n 个一次多项式的值.令1(1)(())k n n n k n k v a x a x a x a ----=++++ ,则递推公式为01n kk n k v a v v x a --=⎧⎨=+⎩,其中12k n = ,,,.到目前为止,此算法仍然是世界上多项式求值的最先进的算法.秦九韶算法与其它算法在计算量上面的比较:1110()n n n n f x a x a x a x a --=++++ ,1.直接求和法:先计算各个单项式的值,再把它们相加,乘法次数为(1)(1)212n n n n ++-+++= ,加法次数n ;2.逐项求和法:先计算x 的各项幂的值,再分别相乘,计算幂值需要乘法1n -次,将幂值与多项式系数k a 相乘需要乘法n 次,故共需要乘法21n -次,加法n 次.此方法对直接求和法有所改进,但仍然比秦九韶算法计算量大很多.3.秦九韶算法:计算量仅为乘法n 次,加法n 次.<备注>秦九韶算法是多项式求值的优秀算法,秦九韶算法的特点:(1)化高次多项式求值为一次多项式求值;(2)减少了运算次数,提高了效率;(3)步骤重复执行,容易用计算机实现.利用秦九韶算法计算多项式的值关键是能正确地将所给多项式改写,然后由内向外逐次计算,由于后项计算用到前项的结果,故应认真、细心,确保中间结果的准确性.若在多项式中有几项不存在时,可将这些项的系数看成0,即把这些项看做0·x n .三点剖析一.注意事项1.辗转相除法与更相减损术联系(1)都是求最大公约数的方法,计算上,辗转相除法以除法为主,更相减损术以减法为主,计算次数上,辗转相除法计算次数相对较少,特别当两个数大小差距较大时,计算次数的区别比较明显;(2)从结果的体现形式来看,辗转相除法体现结果是以相除余数为零而得到,而更相减损术则是以减数与差相等而得到;(3)辗转相除法与更相减损术是统一的,因为做一次除法与做若干次减法的效果相同.二.方法点拨1.两个整数的最大公约数是两个整数的公约数中最大的数,与此类似,两个整数的最小公倍数是两个整数的公倍数中最小的数.2.穷举法是将集合中的元素进行一一列举,逐个条件进行验证,知道找出满足条件的元素为止,穷举法可以解决所有问题看,但是一般来说常常可以用来解决一些无规律可循的问题,例如求不定方程的解或者不定方程组的解,运用穷举法思想设计算法时,常常采用循环结构,将验证条件为循环结构的判断条件,将每一个元素作为循环体.求两个正整数的最大公约数例题1、8251与6105的最大公约数是____.例题2、用更相减损来求80和36的最大公约数?例题3、用更相减损术求294与84的最大公约数.随练1、两个数153和119的最大公约数是______________.随练2、用更相减损术求294与84的最大公约数.随练3、有甲、乙、丙三种溶液分别重147g、343g、133g,现要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同,问每瓶最多装多少?秦九韶算法例题1、用秦九韶算法求多项式f(x)=x4+2x3+x2-3x-1,当x=2时的值,则v3=______例题2、使用秦九韶算法计算x=2时f(x)=6x6+4x5-2x4+5x3-7x2-2x+5的值,所要进行的乘法和加法的次数分别为________随练1、用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是______随练2、用秦九韶算法计算多项式f(x)=5x5+4x4+3x3-2x2-x-1在x=-4时的值时,需要进行的乘法、加法的次数分别是_______拓展1、用更相减损术求78和36的最大公约数_________.2、三个数208,351,429的最大公约数是()A.65B.91C.26D.133、用“辗转相除法”求得459和357的最大公约数是()A.3B.9C.17D.514、用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,其中V1的值=_______5、用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值时,需要做乘法和加法的次数分别是。
秦九韶算法
秦九韶算法学习目标:理解秦九韶算法与进位制的含义和运算.知识梳理:1.秦九韶计算多项式的方法f (x )=a n x n +a n -1x n -1+a n -2x n -2+…+a 1x +a 0=(a n x n -1+a n -1x n -2+a n -2x n -3+…+a 1)x +a 0=((a n xn -2+a n -1x n -3+…+a 2)x +a 1)x +a 0=… =(…((a n x +a n -1)x +a n -2)x +…+a 1)x +a 0.求多项式的值时,首先计算最内层括号内一次多项式的值,即11-+=n n a x v v然后由内向外逐层计算一次多项式的值.01a x v v n n +=-例1.已知一个3次多项式为1)(23-+-=x x x x f ,用秦九韶算法求这个多项式当x =2时的值.练习:用秦九韶算法计算多项式641922401606012)(23456+-+-+-=x x x x x x x f 当2=x 时的值.变式:上题中若去掉)(x f 表达式中的2240x 这一项,会有哪些变化?课堂练习:1.用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f 当4.0=x 时的值时,需要做乘法和加法的次数分别是 ( )A.6,6B.5,6C.5,5D.6,52.用秦九韶算法计算x x x x x x x x f ++++++=234567234567)(当2=x 时的值.3.用秦九韶算法求1432)(2367+-+-=x x x x x f 当2=x 时的函数值.小结:秦九韶算法的优点是能大量减少计算量,对相应的程序框图不作具体要求。
高中数学知识点总结:秦九韶算法与排序
高中数学知识点总结:秦九韶算法与排序
秦九韶算法与排序
1、秦九韶算法概念:
f(x)=a n x n+a n-1x n-1+….+a1x+a0求值问题
f(x)=a n x n+a n-1x n-1+….+a1x+a0=( a n x n-1+a n-1x n-2+….+a1)x+a0 =(( a n x n-2+a n-1x n-3+….+a2)x+a1)x+a0 =......=(...( a n x+a n-1)x+a n-2)x+...+a1)x+a0
求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=a n x+a n-1
然后由内向外逐层计算一次多项式的值,即
v2=v1x+a n-2 v3=v2x+a n-3 ......v n=v n-1x+a0
这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。
2、两种排序方法:直接插入排序和冒泡排序
1、直接插入排序
基本思想:插入排序的思想就是读一个,排一个。
将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数进行比较,确定它在从大到小的排列中应处的位置.将该位置以及以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)
2、冒泡排序
基本思想:依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数...... 由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序.
高中数学知识点总结第 1 页共1 页。
高一数学高中数学人教B版旧试题答案及解析
高一数学高中数学人教B版旧试题答案及解析1.用秦九韶算法求多项式f(x)=7x5+12x4-5x3-6x2+3x-5在 x=7时的值.【答案】144468【解析】由已知。
,,,,即多项式f(x)=7x5+12x4-5x3-6x2+3x-5在 x=7时的值是144468。
【考点】本题主要考查运用秦九韶算法求多项式的值。
点评:秦九韶算法求多项式的值是中国古代数学的辉煌成就,理清思路,细心计算。
2.下列程序运行后,a,b,c的值各等于什么?(1)a="3"b=-5c="8"a="b"b="c"PRINT a,b,cEND(2)a=3b=-5c=8a=bb=cc=aPRINT a,b,cEND【答案】根据赋值语句知道,最终(1)a=-5,b=8,c=8;(2)a=-5,b=8,c=-5.【解析】(1)a=-5,b=8,c=8;(2)a=-5,b=8,c=-5.【考点】本题主要考查程序语言中的赋值语句。
点评:赋值运算符右侧的值由表达式生成,而表达式则由文本、常数、变量、属性、数组元素、其他表达式或函数调用的任意组合所构成。
3.指出下列语句的错误,并改正:(1)A=B=50(2)x=1,y=2,z=3(3)INPUT “How old are you” x(4)INPUT ,x(5)PRINT A+B=;C(6)PRINT Good-bye!【答案】见解析【解析】(1)变量不能够连续赋值.可以改为A=50B=A(2)一个赋值语句只能给一个变量赋值.可以改为x=1y=2z=3(3)INPUT语句“提示内容”后面有个分号(;)改为INPUT “How old are you?”;x(4)INPUT语句可以省略“提示内容”部分,此时分号(;)也省略,也不能有其他符号.改为INPUT x(5)PRINT语句“提示内容”部分要加引号(“”).改为PRINT “A+B=”;C(6)PRINT语句可以没有表达式部分,但提示内容必须加引号(“”).改为PRINT “Good-bye!”【考点】本题主要考查程序语言。
秦九韶算法高中数学
秦九韶算法是一种用于高中数学中多项式运算的快速计算方法。
它可以通过减少乘法和加法的次数,从而提高计算效率。
该算法主要用于多项式的乘法和求值操作。
首先,我们来看多项式的表示形式。
一个n次多项式可以表示为:P(x) = aₙxⁿ+ aₙ₋₁xⁿ⁻¹+ ... + a₁x + a₀其中,a₀, a₁, ..., aₙ是多项式的系数,x是变量。
多项式中,次数最高项的系数aₙ不为零。
接下来,我们将详细介绍秦九韶算法的两个主要操作:多项式的乘法和多项式的求值。
1. 多项式的乘法:假设有两个多项式:A(x) = aₙxᵐ + aₙ₋₁xᵐ⁻¹+ ... + a₁x + a₀B(x) = bₙxⁿ+ bₙ₋₁xⁿ⁻¹+ ... + b₁x + b₀其中,A(x)的次数为m,B(x)的次数为n。
秦九韶算法的乘法操作可以通过如下步骤进行:-创建一个长度为(m+n+1)的结果数组result,初始值为0。
-对于A(x)中的每一项ai和B(x)中的每一项bj,计算乘积并将结果累加到result中对应的指数位置上。
即:result[i+j] += ai * bj。
-最后得到的result数组即为乘积多项式的系数。
例如,假设有两个多项式:A(x) = 2x²+ 3x + 1B(x) = 4x + 2我们可以按照上述步骤进行计算:-创建结果数组result,长度为(2+1)+(1+1)=5,初始值为[0, 0, 0, 0, 0]。
-对于A(x)中的每一项和B(x)中的每一项,进行乘法和累加操作:result[0] += 2 * 4 = 8result[1] += 2 * 2 + 3 * 4 = 16result[2] += 3 * 2 = 6result[3] = 0result[4] = 0-得到结果多项式的系数为[8, 16, 6, 0, 0],即8x⁴+ 16x³+ 6x²。
秦九韶算法与K进制练习题(含详细解答)
秦九韶算法与K进制练习题(含详细解答)秦九韶与k进制练习题一.选择题(共16小题)1.把77化成四进制数的末位数字为()A.4 B.3 C.2 D.12.用秦九韶算法求多项式f(x)=x+2x+x3x1,当x=2时的值,则v3=()A.4 B.9 C.15 D.293.把67化为二进制数为()A.__ B.__-__ C.__-__ D.__-__4.用秦九韶算法计算多项式f(x)=3x+4x+5x+6x+7x+8x+1当x=0.4时的值时,需要做乘法和加法的次数分别是()A.6,6 B.5,6 C.5,5 D.6,55.使用秦九韶算法计算x=2时f(x)=6x+4x2x+5x7x2x+5的值,所要进行的乘法和加法的次数分别为()A.6,3 B.6,6 C.21,3 D.21,66.把27化为二进制数为()A.1011(2)B.__(2)__-__C.__(2)432D.__(2)7.用秦九韶算法计算多项式f (x)=5x+4x+3x2__1在x=4时的值时,需要进行的乘法、加法的次数分别是()A.14,5 B.5,5 C.6,5 D.7,58.二进制数__-__(2)对应的十进制数是()A.401 B.385 C.201 D.2589.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用()分钟.A.13 B.14 C.15 D.2310.用秦九韶算法在计算f(x)=2x+3x2x+4x6时,要用到的乘法和加法的次数分别为()A.4,3 B.6,4 C.4,4 D.3,411.用秦九韶算法求多项式f(x)=1+2x+x3x+2x在x=1时的值,v2的结果是()A.4 B.1 C.5 D.612.下列各数85(9)、210(6)、1000(4)、__(2)中最大的数是()A.85(9)B.210(6)C.1000(4)D.__(2)__13.十进制数89化为二进制的数为()A.__-__(2)B.__-__(2)C.__-__(2)D.__-__(2)14.烧水泡茶需要洗刷茶具(5min)、刷水壶(2min)、烧水(8min)、泡茶(2min)等个步骤、从下列选项中选最好的一种算法()A.第一步:洗刷茶具;第二步:刷水壶;第三步:烧水;第四步:泡茶B.第一步:刷水壶;第二步:洗刷茶具;第三步:烧水;第四步:泡茶C.第一步:烧水;第二步:刷水壶;第三步:洗刷茶具;第四步:泡茶D.第一步:烧水;第二步:烧水的同时洗刷茶具和刷水壶;第三步:泡茶15.在下列各数中,最大的数是()A.85(9)B.210(6)16.把23化成二进制数是()A.00110 B.__二.填空题(共11小题)C.1000(4)D.__(2)C.__ D.__ 17.用秦九韶算法求多项式f(x)=12+35x8x+79x+6x+5x+3x在x=4的值时,其中V1的值= _________ .18.把5进制的数412(5)化为7进制是_________ .19.用秦九韶算法计算多项式f(x)=8x+5x+3x+2x+1在x=2时的值时,v2=.20.用秦九韶算法计算多项式f(x)=3x+4x+5x+6x+7x+8x+1当x=0.4时的值时,至多需要做乘法和加法的次数分别是_________ 和_________ .21.军训基地购买苹果慰问学员,已知苹果总数用八进位制表示为abc,七进位制表示为cba,那么苹果的总数用十进位制表示为_________ .22.若六进制数Im05(6)(m为正整数)化为十进数为293,则m= _________ .23.用秦九韶算法求多项式f(x)=5x+2x+3.5x2.6x+1.7x0.8当x=5时的值的过程中v3=.24.完成下列进位制之间的转化:1234=(4).25.把十进制数51化为二进制数的结果是26.进制转化:403(6)= _________(8)__-__-__2.27.完成右边进制的转化:1011(2)= _________ (10)= _________ (8).三.解答题(共3小题)3228.将多项式x+2x+x1用秦九韶算法求值时,其表达式应写成29.写出将8进制数__转化为7进制数的过程.30.已知一个5次多项式为f(x)=4x3x+2x+5x+1,用秦九韶算法求这个多项式当x=2时的值.532答案与评分标准一.选择题(共16小题)1.把77化成四进制数的末位数字为()A.4 B.3 C.2 D.1考点:排序问题与算法的多样性。
秦九韶算法及其例题
秦九韶算法及其例题(总1页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。
在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的. 把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式: f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0] =(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0] =((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0] =......=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0]. 求多项式的值时,首先计算最内层括号内一次多项式的值,即 v[1]=a[n]x+a[n-1] 然后由内向外逐层计算一次多项式的值,即 v[2]=v[1]x+a[n-2] v[3]=v[2]x+a[n-3] ...... v[n]=v[n-1]x+a[0] 这样,求n次多项式f(x)的值就转化为求n 个一次多项式的值。
(注:中括号里的数表示下标)结论:对于一个n次多项式,至多做n次乘法和n次加法。
[编辑本段]意义该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。
在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算;对于计算机程序算法而言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,用于减少CPU运算时间。
2。
2021高中数学-秦九韶算法(精选试题)
高中数学-秦九韶算法1、用秦九韶算法求多项式fx=2x7+x6-3x5+2x4+4x3-8x2-5x+6的值时,V4=V3x+__________.2、已知n次多项式Pnx=a0xn+a1xn-1+⋅⋅⋅+an-1x+an.如果在一种算法中,计算x0k(k=2,3,4,⋅⋅⋅,n)的值需要k-1次乘法,计算P3x0的值共需要9次运算(6次乘法,3次加法),那么计算Pnx0的值共需要______次运算.下面给出一种减少运算次数的算法:P0x0=a0,Pk+1x=xPkx+ak+1(k=0,1,2,⋅⋅⋅,n-1).利用该算法,计算P3x0的值共需要6次运算,计算Pnx0的值共需要_______次运算.3、用``秦九韶算法’’计算多项式fx=5x5+4x4+3x3+2x2+x+1,当x=2时的值的过程中,要经过_____________次乘法运算和________次加法运算.4、(1)用辗转相除法求282与470的最大公约数.(2)用秦九韶算法求多项式fx=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时的值.5、用秦九韶算法求多项式fx=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时,v3的值为()A.27B.86C.262D.786、用秦九韶算法求多项式fx=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时的值_______.7、用秦九韶算法计算fx=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值,需要进行乘法运算和加法运算的次数分别为()A.6,6B.5,6C.6,5D.6,128、用秦九韶算法计算函数fx=2x4+3x3+5x-4在x=2时的函数值.9、用秦九韶算法求多项式fx=3x5+x2-x+2,当x=-2时的值时,需要进行的乘法运算和加法运算的次数分别为()A.4,2B.5,3C.5,2D.6,210、用秦九韶算法求多项式fx=x6-5x5+6x4+x2-3x+2,当x=3时的值.11、用秦九韶算法计算fx=6x5-4x4+x3-2x2-9x,需要加法(或减法)与乘法运算的次数分别为()A.5,4B.5,5C.4,4D.4,512、用秦九韶算法求多项式fx=x5+5x4+10x3+10x2+5x+1当x=-2时的值为_________.13、用秦九韶算法求多项式fx=x7-2x6+3x3-4x2+1当x=2时的函数值.14、用秦九韶算法求多项式fx=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,v4的值为()A.-57B.220C.-845D.339215、用秦九韶算法计算多项式fx=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.16、用秦九韶算法计算多项式fx=6x6+5x5+4x4+3x3+2x2+x+7在x=0.4时的值时,需做加法和乘法的次数的和为()A.10B.9C.12D.817、已知fx=x5+2x3+3x2+x+1,应用秦九韶算法计算x=3时的值时,v3的值为()A.27B.11C.109D.3618、用秦九韶算法计算多项式fx=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.19、已知n次多项式Pnx=a0xn+a1xn-1+⋯+an-2x2+an-1x+an,如果在一种算法中,计算x0kk=234⋯n的值需要k-1次乘法,计算P3x0的值共需要9次运算(6次乘法,3次加法),那么计算Pnx0的值共需要____________次运算.下面给出一种减少运算次数的算法:P0x=a0,Pk+1x=xPkx+ak+1k=012⋯n-1.利用该算法,计算P3x0的值共需要6次运算,计算Pnx0的值共需要____________次运算.20、中国古代有计算多项式的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入a为2,2,5,则输出的s=()A.7B.12C.17D.3421、用秦九韶算法求多项式fx=x6+2x5+3x4+4x3+5x2+6x当x=2时的值.22、用秦九韶算法计算fx=2x4+3x3+5x-4在x=2时的值.23、秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35B.20C.18D.924、秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的计算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20D.3525、用秦九韶算法计算多项式fx=1+8x+7x2+5x4+4x5+3x6在x=5时所对应的v4的值为()A.1 829B.1 805C.2 507D.2 54326、用秦九韶算法求多项式fx=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.27、用秦九韶算法计算多项式fx=12+35x-8x2+79x3+6x4+5x5+3x6,在x=-4时的值时,v3的值为()A.-845B.220C.-57D.3428、已知多项式fx=4x5+3x4+2x3-x2-x-12,用秦九韶算法求f-2等于()A.-1972B.1972C.1832D.-183229、用秦九韶算法计算多项式fx=3x6+4x5+5x4+6x3+7x2+8x+1,当x=0.4时的值,需要做乘法和加法的次数分别是()A.6,6B.5,6C.5,5D.6,530、用秦九韶算法求n次多项式fx=anxn+an-1xn-1+⋯+a1x+a0,当x=x0时,求fx0需要算乘方、乘法、加法的次数分别为()A.nn+12,n,nB.n,2n,nC.0,2n,nD.0,n,nfx=1+2x+x2-3x3+2x4,当x=-1的值时,v2的结果是____________.32、阅读程序框图,利用秦九韶算法计算多项式fx=anxn+an-1xn-1+⋯+a1x+a0,当x=x0时,框图中A处应填入____________.33、用秦九韶算法求多项式fx=x5+5x4+10x3+10x2+5x+1,当x=-2时的值.34、用秦九韶算法,求y=7.5x6+8.65x5-3.7x4+4.2x3+2.1x2+x-5.5在x=0.5时的值,写出详细计算过程.35、已知函数fx=x3-2x2-5x+6,用秦九韶算法求f10的值.36、用秦九韶算法求多项式fx=12-8x2+6x4+5x5+3x6在x=-4时,v4的值为()A.-57B.220C.-845D.53637、下面关于算法的说法正确的是()A.秦九韶算法是求两个数的最大公约数B.更相减损术是求多项式的值的方法C.辗转相除法是求多项式的值的方法D.以上皆错38、在利用秦九韶算法求当x=2时,fx=1+2x+3x2+4x3+5x4+6x5的值时,下列说法正确的是()A.先求1+2×2B.先求6×2+5,第二步求2×6×2+5+4C.f2=1+2×2+3×22+4×23+5×24+6×25直接运算求解D.以上皆错39、用秦九韶算法求多项式fx=anxn+an-1xn-1+⋯+a1x+a0时,求fx0需要算乘方、乘法、加法的次数分别为()A.12nn+1,n,nB.n,2n,nC.0,2n,nD.0,n,n40、秦九韶算法与直接计算相比较,下列说法错误的是()A.秦九韶算法与直接计算相比,大大节省了乘法的次数,使计算量减小,并且逻辑结构简单B.秦九韶算法减少计算乘法的次数,在计算机上也就加快了计算的速度C.秦九韶算法减少计算乘法的次数,在计算机上也就降低了计算的速度D.秦九韶算法避免对自变量x单独作幂的计算,而是与系数一起逐次增长幂次,从而可提高计算的精确度41、已知n次多项式Pnx=a0xn+a1xn-1+⋯+an-1x+an,如果在一种算法中,计算x0k(k=2,3,4,⋯,n)的值需要k-1次乘法,计算P3x0的值共需要9次运算(6次乘法,3次加法),那么计算P10x0的值共需要_________次运算.下面给出一种减少运算次数的算法:P0x=a0,Pk+1x=xPkx+ak+1(k=0,1,2,⋯,n-1).利用该算法,计算P3x0的值共需要6次运算,计算P10x0的值共需要___________次运算.42、用秦九韶算法求多项式fx=8x7+5x6+3x4+2x+1,当x=2时的值.43、秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.18B.35C.65D.13044、已知8次多项式fx=a8x8+a7x7+⋯+a1x+a0,用秦九韶算法求fx0的值,需要进行的乘法运算,加法运算的次数分别是()A.8,8B.16,8C.36,8D.9,945、用秦九韶算法求多项式fx=5x5+4x4-3x2+x-1,当x=13时的值时,先算的是()A.13×13B.5×135C.5×13+4D.5×13+4×346、用秦九韶算法求多项式fx=x5+0.11x3-0.15x-0.04当x=0.3时的值.47、用秦九韶算法求多项式fx=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,v4的值为()A.-57B.220C.-845D.339248、用秦九韶算法计算多项式fx=5x7+x6-x3+x+3当x=-1时的值,并判断多项式fx在区间-10内是否有零点.49、用秦九韶算法计算多项式fx=2x7+2x6+3x5+6x4+5x3-x2-5x+8当x=2的值时,其中v3的值为()A.15B.36C.41D.77。
【数学】1.3.2《算法案例――秦九邵算法》(人教A版必修3)
问题提出
1.辗转相除法和更相减损术,是求 两个正整数的最大公约数的优秀算法, 我们将算法转化为程序后,就可以由计 算机来执行运算,实现了古代数学与现 代信息技术的完美结合.
2.对于求n次多项式的值,在我国古 代数学中有一个优秀算法,即秦九韶算 法,我们将对这个算法作些了解和探究.
精品课件
精品课件
否 输出v
输入ai 是
结束
INPUT “n=”;n INPUT “an=”;a INPUT “x=”;x
v=a i=n-1
WHILE i>=0 INPUT “ai=”;a v=v*x+a i=i-1 WEND PRINT y END 精品课件
理论迁移
例1 已知一个5次多项式为
f( x )5 x 5 2 x 4 3 .5 x 32 .6 x 2 1 .7 x0 .8
思考3:能否探索更好的算法,来解决任意多
项式的求值问题? f(x)=2x5-5x4-4x3+3x2-6x+7 v0=2 =(2x4-5x3-4x2+3x-6)x+7 v1=v0x-5=2×5-5=5 =((2x3-5x2-4x+3)x-6)x+7 v2=v1x-4=5×5-4=21 =(((2x2-5x-4)x+3)x-6)x+7 v3=v2x+3=21×5+3=108 =((((2x-5)x-4)x+3)x-6)x+7 v4=v3x-6=108×5-6=534
二步;否则,输精品课出件 多项式的值v.
思考2:该Hale Waihona Puke 法的程序框图如何表示?开始
输入n,an,x的值
v=an i=n-1
i=i-1
高中数学 1.3 算法与案例 秦九韶算法文字素材 新人教A版必修3
算法案例中国数学名家-秦九韶秦九韶(1202~1261年),字道古,南宋普州安岳(今四川省安岳县)人。
,有记载则说秦九韶自称鲁郡(现山东滋阳、曲阜一带)人,幼年时随父亲在四川巴州居住。
青少年时饱受战乱,成年后离开四川,在湖北、安徽、江苏、浙江、广东等地做官,任过县尉、通判、州守等职,死于梅州(今广东梅县)。
秦九韶的突出数学成就表现为四个方面:(1)“大衍求一术”。
即为一次同余式组解法。
西方解决同类问题的理论是高斯于1801年建立的,比秦九韶晚了554年。
他还把这种理论用于解决商功、利息、粟米、建筑等问题。
(2)线性方程组解法。
他在《数书九章》中解决了许多相当于线性方程组的问题,其中数字相当大,计算也很复杂。
他在“均货推本”题草中,井然有序地写出厂解题过程,这种解法与高斯消元法本质相当,但比高斯早约600年。
(3)高次方程数值解法。
他集秦汉以来“开方术”之大成,运用贾宪的“增乘开方法”,解决于数字高次方程有理数根和无理数根的近似值计算问题。
他所设计的演算程序被称为“秦九韶方法”。
西方同类问题的探究始于19世纪,他比意大利的鲁菲尼、英国的霍纳要早五、六百年。
(4)“三斜求积”。
他在《数书九章》中,依据分别为12、14、15的三边求出了相应的三角形面积,其方法具有一般性。
这与西方的海伦公式是等价的。
精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
秦九韶算法
算法2:
= 3906
f(5)=55+54+53+52+5+1
=5×(54+53+52+5+1 ) +1
=5×(5×(53+52+5 +1 )+1 ) +1
=5×(5×(5×(52+5 +1) +1 ) +1 ) +1
=5×(5×(5×(5 ×(5 +1) +1 )+1)+1) +1
.
算法1:因为f(x) =x5+x4+x3+x2+x+1 所以f(5)=55+54+53+52+5+1
共做了4次乘法运算,5次加.法运算。
《数书九章》——秦九韶算法
设f (x) 是一个n 次的多项式 f (x) an xn an1xn1 a1x a0
对该多项式按下面的方式进行改写:
f (x) an xn an1xn1 a1x a0
这是怎样的 一种改写方 式?最后的 结果是什么?
(an xn1 an1xn2 a1)x a0
((an xn2 an1xn3 a2 )x a1)x a0
( (anx an1)x an2 )x a1)x a0
思考:当知道了x的值后该如何求多项式的值?
.
f (x) ( (an x an1)x an2 )另一种直观算法)多项式的系数
+
X5
5 2 3.5 -2.6 1.7 -0.8 0 25 135 692.5 3449.5 17256 5 27 138.5 689.9 3451.2 17255.2
多项式的值
.
思考:你能设计程序把“秦九韶算法”表示出来
吗?
(1)、算法步骤:
i=n-1
i>=0? N
输出v 结束
人教A版高中数学必修三试卷《算法案例---秦九韶算法》测试(新).docx
1.3算法案例---秦九韶算法1、利用秦九韶算法求多项式1153723+-+x x x 在23=x 的值时,在运算中下列哪个值用不到( )A 、164B 、3767C 、86652D 、851692、利用秦九韶算法计算多项式1876543x f(x )23456++++++x x x x x = 当x=4的值的时候,需要做乘法和加法的次数分别为( )A 、6,6B 、5,6C 、5,5D 、6,53、利用秦九韶算法求多项式1352.75.38123)(23456-++-++=x x x x x x x f 在6=x 的值,写出详细步骤。
4、下图的框图是一古代数学家的一个算法的程序框图,它输出的 结果s 表示( )A 、3210a a a a +++的值B 、300201032x a x a x a a +++的值C 、303202010x a x a x a a +++的值D 、以上都不对5、已知n 次多项式1011()n n n n n P x a x a x a x a --=++++L ,如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,(1)计算30()P x 的值需要9次运算(6次乘法,3次加法),那么计算0()n P x 的值需要多少次运算?(2)若采取秦九韶算法:0011(),()()k k k P x a P x xP x a ++==+(k =0, 1,2,…,n -1),计算30()P x 的值只需6次运算,那么计算0()n P x 的值共需要多少次运算?(3)若采取秦九韶算法,设a i =i+1,i=0,1,…,n ,求P 5(2)(写出采取秦九韶算法的计算过程)答案:1、D2、A3、解:13)5)2.7)5.3)8)123((((()(-++-++=x x x x x x x f2.243168)6(2.2431681362.40530562.67542.765.11245.36188863012635645342312010==-⨯==+⨯==+⨯==-⨯==+⨯==+⨯==f v v v v v v v v v v v v v4、C5、n +3)(2)2n ;(3)∵0011(),()()k k k P x a P x xP x a ++==+, ∴P 0(2)=1,P 1(2)=2P 0(2)+2=4;P 2(2)=2P 1(2)+3=11;P 3(2)=2P 2(2)+4=26;P 4(2)=2P 3(2)+5=57;P 5(2)=2P 4(2)+6=120。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学例题:秦九韶算法
例4.利用秦九韶算法求2345()10.50.166630.041680.00835f x x x x x x =+++++在x=0.2时的值.写出详细计算过程.
【思路点拨】秦九韶算法是我国南宋的数学家秦九韶首先提出来的.
(1)特点:它通过一次式的反复计算,逐步计算高次多项式的求值问题,即将一个n 次多项式的求值问题,归结为重复计算n 个一次式1()i i a x a -+.即1210()((()))n n n f x a x a x a x a x a --=++++.
(2)具体方法如下:已知一个一元n 次多项式1110()n n n n f x a x a x a x a --=++++0.当x=x 0,我们可按顺序一项一项地计算,然后相加,求得0()f x .
【答案】1.2214024
【解析】
v 0=0.00835,
v 1=v 0x+0.04168=0.00835×0.2+0.04168=0.043 35,
v 2=v 1x+0.16663=0.04335×0.2+0.16663=0.1753,
v 3=v 2x+0.5=0.1753×0.2+0.5=0.53506,
v 4=v 3x+1=0.53506×0.2+1=1.107012,
v 5=v 4x+1=1.107012×0.2+1=1.2214024.
【总结升华】秦九韶算法的原理是
01(1,2,3,,)n
k k n k v a v v x a k n --=⎧⎨=+=⎩.
在运用秦九韶算法进行计算时,应注意每一步的运算结果,像这
种一环扣一环的运算,如果错一步,则下一步,一直到最后一步就会
全部算错.同学们在计算这种题时应格外小心.
举一反三:
【变式1】用秦九韶算法求多项式764
=++++当x=2时
f x x x x x
()85321
的值.
【答案】1397
【解析】
765432
=++⋅++⋅+⋅++=+++++++ ()85030021((((((85)0)3)0)0)2)1 f x x x x x x x x x x x x x x x .
v0=8,
v1=8×2+5=21,
v2=21×2 4-0=42,
v3=42×2 4-3=87,
v4=87×2+0=174,
v5=174×2+0=348,
v6=348×2+2=698,
v7=698×2+1=1397,
所以,当x=2时,多项式的值为1397.
【变式2】用秦九韶算法计算多项式65432
f x x x x x x x
=++++++
()654327
在x=0.4时的值时,需做加法和乘法的次数和是()
A.10 B.9 C.12 D.8
【答案】C
【解析】()(((((65)4)3)2)1)7
=++++++.
f x x x x x x x
∴加法6次,乘法6次,
∴6+6=12(次),故选C.。